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Calculation of the maximun number of vibrational and rotational
energy states for diatomic molecules
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A procedure for finding the maximum number of energy states for a diatomic molecule is presented. We consider the background energy
of a gaseous thermodynamic system containing atoms, diatomic molecules and their ions, together with the spacing of adjacent energy
states in the molecules. Using similitude and dimensional analysis techniques and defining linear energy densities of the molecular and
thermodynamic systems we obtain expressions for the maximum levels that a molecule can attain. These results are relevant for the correct
evaluation of the partition function.
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Se presenta un ḿetodo para obtener el ḿaximo ńumero de estados energéticos de una molécula diat́omica. Se considera la energı́a del sustrato
del sistema termodińamico gaseoso el cual está constituido poŕatomos, moĺeculas y sus respectivos iones, ası́ como el espaciamiento entre
niveles adyacentes de energı́a de las moĺeculas. Usando técnicas de similitud y ańalisis dimensional y definiendo las densidades lineales de
enerǵıa de la moĺecula y del sistema termodinámico, se obtienen las expresiones de los niveles energéticos ḿaximos que la molécula puede
alcanzar. Estos resultados son relevantes para la correcta evaluación de la funcíon de particíon.

Descriptores: Ecuacíon de estado; moleculas diatómicas; plasma: diagnóstico.
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1. Introduction

The maximum number of vibrational and rotational states
of a partially ionized and dissociated perfect gas consisting
of diatomic molecules is important for evaluating the vibra-
tional and rotational partition function which is fundamental
to calculate the equation of state for plasmas and stellar at-
mospheres. It is important to note that neither a plasma nor
a stellar atmosphere is in global thermodynamic equilibrium
however it is possible to make an analysis of the system by
considering regions with local thermodynamic equilibrium,
therefore without loss of generality we will consider that the
gas is in thermal equilibrium. When the partition function of
such a system is evaluated, in most of the cases, the num-
ber of energy levels is considered as infinite and everything
is evaluated under this assumption [3]. However the physical
conditions of a thermodynamic system impose restrictions in
the number of energy levels through the mean internal en-
ergy [4]. In the present paper, we calculate the maximum
number of vibrational and rotational states of a perfect gas
consisting of diatomic molecules, atoms and their ions. This
calculation is based, on the one hand, on the relationship be-
tween the energy equipartition principle per degree of free-
dom and the internal energy; and on the other hand on basic
concepts of molecular structure: the internal energy of the
molecules together with similitude and dimensional analysis
techniques [1].

The outline of the paper is as follows: In Sec. 2, based on
quantum mechanical considerations the vibrational and ro-
tational energy states of a diatomic molecule are introduced.
Sec. 3 includes the procedure to obtain a relation between the

dissociation energy and the last discrete energy levels firstly,
from a geometric point of view and later on with a physical
approach. In Sec. 4, one discuses some numerical results for
hydrogen chloride (HCl) and finally in Sec.6, some conclu-
sions are presented.

2. Energy States of Diatomic Molecules

As it is well known, the energy states of a molecule are the
result of its electronic configuration, the relative vibrations of
its atoms and the rotation of the molecule as a whole.

We consider a diatomic gas for whichkBT is
small compared with the energy of dissociationEdiss;
for different molecules this amounts to the condition,
T¿Ediss/kB≈104−105 K. At these temperatures the num-
ber of dissociated molecules in the gas would be quite in-
significant. At the same time, in most cases, there would be
practically no molecules in the excited states as well, for the
separation of any of these states from the ground state of the
molecule is in general comparable to the dissociation energy
itself. Accordingly, in what follows we take into account only
the lowest electronic state of the molecule. Hence, in the de-
velopments presented in this work, we consider only the vi-
brational and rotational states of the diatomic molecules.

2.1. Vibrational States

According to quantum mechanics the vibrational energy
states of a diatomic molecule correspond to the eigenvalues
of the internuclear potential energy. For the lowest energy
levels this potential can be approximated by the potential of
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a harmonic oscillator whose eigenvalues, in terms of the in-
trinsic oscillator frequencyν0, are given by the following ex-
pression

Ev =
(

v +
1
2

)
hν0, (1)

for v = 0, 1, 2..., the vibrational quantum number, whereh
is the Planck constant. The oscillator intrinsic frequency is
given by

ν0 =
1
2π

√
k

µ
, (2)

with k the force constant of the oscillator andµ the reduced
mass of the diatomic molecule [5,6]. It is probable that some
vibrational states of the diatomic molecule may not be well
described by the harmonic oscillator potential however a de-
tailed treatment of them is beyond the scope of this work.

2.2. Rotational States

The lowest rotational energy states of a diatomic molecule,
derived from quantum mechanics, can be approximated by
the energy levels of a rigid quantum rotor which for the mo-
ment of inertiaI are expressed by

EK =
K(K + 1)h2

8π2I
, (3)

for K = 0, 1, 2..., the rotational quantum number [7]. As
in the previous case, some rotational states may not be ad-
equately described by this approximation but we leave their
analysis for future work.

3. Thermodynamics of a gaseous system com-
posed of diatomic molecules

The main variables that describe a gaseous system in thermo-
dynamic equilibrium are connected functionally by the equa-
tion of state. By definition in a perfect gas the particles in-
teract only through collisions. In such a gas, the particles are
immersed in a medium with finite temperature and therefore
are governed by the internal energy. The equation of state of a
weakly ionized gas, composed by atoms, diatomic molecules
and their ions, relates the temperatureT , the pressureP and
the total number density of particlesN by the equation

P = NkBT (4)

wherekB is the Boltzmann constant. The imperfect nature
manifests itself only at very high densities and it is not the
case in the astrophysical scenarios where the contents of the
present work can be applied [2]. The mean internal energy
per particle of the system is given by thermodynamics and
statistical mechanics as

U =
3
2
kBT (5)

and is one of the most important parameters for characteriz-
ing a thermodynamic system in equilibrium [8,9].

3.1. Procedure for Obtaining the Number of Levels in
Diatomic Molecules

There are no restrictions in the number of energy states avail-
able for an isolated molecule before dissociation. But a
molecule in a thermodynamic system is subjected to the in-
teraction with other molecules through collisions and with
the background energy that permeate the system making the
number of energy states available dependent on the physical
conditions of the system. The techniques of similitude and
dimensional analysis are used in developing the procedures
for deriving the maximum number of states in a diatomic
molecule given the physical conditions in the system under
study. For this purpose one defines linear densities of the en-
ergy of the diatomic molecules and of the mean energy per
particle of the thermodynamic system through a procedure
similar to the one used in the atomic case [4]. We consider
two approaches for obtaining the number of states for the
different vibrational and rotational states. On the one hand,
the geometric formulation, where one considers only the size
of the box that each particle occupies in the thermodynamic
system as a measure of the size of the molecule. On the
other hand, the physical approach where one considers one
of the most important variables of a thermodynamic system
the mean energy per particle as the governing agent in setting
the size of the molecules.

3.2. Geometric formulation

In a thermodynamic system with total number density of par-
ticlesN the volume occupied by each particle is given by

L3 =
1
N

, (6)

considering that the volume occupied by the particle is cu-
bic and of sideL. This imposes a maximum size that
the molecule may have without invading the space of other
molecules and therefore the number of states becomes finite,
hence this condition is called geometric, because the energy
states of the molecules are a function of the radial distance
from the center of mass, among other quantum mechanical
variables.

3.2.1. Vibrational states

The diatomic molecules behave as a harmonic oscillator for
small displacements of the atoms from the center of mass. In
this part we develop the procedure for obtaining the maxi-
mum vibrational state that remains in the molecule just after
the dissociation energy. The total energy of a harmonic oscil-
lator is given by

Ev =
1
2
kX2, (7)
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whereX is the maximum displacement or amplitude of the
oscillator from the center of mass andk is the force constant
of the oscillator. Making the assumption

L = 2X (8)

and using Eq. (1), Eq. (6), Eq. (7), and Eq. (8) one obtains

v∗g =
k

8hν0N
2
3
− 1

2
, (9)

for the maximum vibrational levelv∗g of the diatomic
molecule whose derivative with respect toN is

dv∗g
dN

= − kN
1
3

12hν0
, (10)

that is necessary for some applications on the partition func-
tion.

3.2.2. Rotational States

The diatomic molecule rotates around the center of mass as
if the the two atoms were a single particle with mass equal to
the reduced mass. In this part of the paper, for the rotational
states we develop a procedure, similar to the one for the vi-
brational states, to obtain the maximum rotational state that
remains in the molecules. From the results of Leighton [5]
and Herzberg [7] the size of the rotating molecules is given
by

rK ≈ K(K + 1)h2

4π2rKkI
, (11)

hererK is the internuclear distance, andre is the equilibrium
position of the molecule. Making

L = 2rK (12)

and from Eq. (6) and Eq. (11), one obtains

K(K + 1) = b (13)

with

b =
π2kI

h2N
2
3

(14)

and solving forK∗
g , the maximum possible rotational state of

the molecule, yields

K∗
g =

−1±√1 + 4b

2
(15)

where distances are measured from the equilibrium position.
The derivative ofK∗

g with respect toN is

dK∗
g

dN
= − 2πkIN

1
3

3h2
√

1 + 4b
(16)

necessary for some applications on the partition function as
well.

3.3. Physical Approach

The number of energy states of the molecules is delimited
by the interactions with the rest of the system since the en-
ergy state above the last one becomes dissociated by the mean
background thermal energy of the system under study.

3.3.1. Vibrational States

For the vibrational states the linear energy density is obtained
from the mean energy of the system per degree of freedom di-
vided by the size of the side of the cubic volume occupied by
each particle.

U

3L
=

1
2kBT

L
=

1
2
kBTN

1
3 (17)

Otherwise, the difference in energy between the two last ad-
jacent vibrational states of the molecule is given by

Ev+1 − Ev ≈ hν0

(
v +

3
2

)

− hν0

(
v +

1
2

)
= hν0 =

Ev+1(
v + 3

2

) (18)

so that, by setting

Ev+1 =
1
2
kBT, (19)

that means that the molecule is dissociated for the statev+1,
one obtains

Ev
1
2kBT

=

(
v + 1

2

)
(
v + 3

2

) . (20)

Additionally, making the two linear energy densities equal
to each other, Eq. (17) and Eq. (20), the following result is
obtained

(v + 1
2 )

(v + 3
2 )

= 2XN
1
3 (21)

and using Eqs. (1) and (7) the solution forX gives

X =

√
2(v + 1

2 )hν0

k
(22)

so that together with Eq. (20) and after some algebra (21)
yields

v2 − (3− c)v +
9
4
− 1

2
c = 0 (23)

with
c =

k

8hν0N
2
3
. (24)

Solving the quadratic equation forv, one gets

v∗p =
(c− 3) +

√
c2 − 4c

2
. (25)

for the maximum vibrational statev∗p of the diatomic
molecule, i.e. the last discrete energy state. Hence, the
derivative with respect toN is given by

dv∗p
dN

= − kN
1
3

24hν0

[
1 +

c− 4√
c2 − 4c

]
(26)

for some application on the partition function.

Rev. Mex. Fis.58 (2012) 174–179



CALCULATION OF THE MAXIMUN NUMBER OF VIBRATIONAL AND ROTATIONAL ENERGY STATES FOR DIATOMIC MOLECULES 177

3.3.2. Rotational States

For the rotational states of the diatomic molecules, one de-
fines the linear energy density similarly to the case of the
vibrational states using the size of the orbit that the reduced
mass makes around the center of mass. With the aid of (17),
one gets

EK

2πrK
=

U

3L
=

1
2
kBTN

1
3 (27)

or
EK

1
2kBT

= 2πrKN
1
3 (28)

According to Eq. (3), the energy difference between the last
two adjacent rotational energy states of the rigid rotator is
given by

EK+1 − EK =
2EK+1

K + 2
(29)

making

EK+1 =
1
2
kBT (30)

the dissociation energy for stateK + 1. Now from Eqs. (11),
(28), (29), and (30), one obtains

K2

(K + 2)2
=

K(K + 1)h2

kI
N

2
3 (31)

or
dK

(K + 2)2
= K(K + 1) (32)

with

d =
kI

h2N
2
3

(33)

consequently, one obtains the following equation,

K3 + 5K2 + (8− d)K + 4 = 0 (34)

that is a normal form of a cubic equation forK with real co-
efficients. The number of real solutions depends on the sign
of the discriminantD = R2 −Q3 where

Q ≡ 25− 3(8− d)
9

(35)

and

R ≡ 250− 45(8− d) + 108
54

. (36)

WhenR2 < Q3 the cubic equation has three real roots. Set-
ting

θ = arccos

(
R√
Q3

)
, (37)

the positive root useful in our work is

x = −2
√

Q cos
(

θ + 2π

3

)
− 5

3
, (38)

so the maximum rotational state of the molecule is given by

K∗
p = x. (39)

The derivative ofK∗
p with respect toN is obtained using

Eqs. (33) (35), (36) and (38), producing

dK∗
p

dN
=−2kIN

1
3

9h2
√

Q

[
Q7 sin( θ+2π

3 )

R2
√

Q3 −R2
− cos

(
θ + 2π

3

)]
(40)

WhenR2 > Q3 there are not valid roots for our purpose.

In the following, other useful results are presented to
complete the set of equations for the number of states in di-
atomic molecules. Whereas the energy spacing between vi-
brational levels in the quantum harmonic oscillator is con-
stant and given byhν0 near the equilibrium position only [5],
the energy between adjacent levels decreases with increasing
ν in the anharmonic oscillator approximation, so that the last
discrete vibrational state before dissociation is given by

vD =
4De

hν0
− 1

2
. (41)

This expression has been derived from the Morse poten-
tial function, whereDe is the dissociation energy of the
molecule. This condition means that one can not surpass
this natural maximum limit in the vibrational states imposed
by the molecular dissociation. Indeed, the above derived ex-
pressions for the maximum of energy states apply below this
limit. For the rotational energy states there are not results
reported that give an upper bound for the number of energy
states imposed by the physical conditions in the gas as for the
case of the vibrational states. The energy spacing between
rotational levels in the quantum rigid rotator is constant, the
energy between adjacent levels decreases with increasingK
for a nonrigid rotator. The energy formula for a nonrigid ro-
tator for the stateK is given by [7]

EK = BK(K + 1)−DK2(K + 1)2. (42)

Making Eq. (42) equal to zero one gets the maximum
rotational number,

KD =
−1±

√
1 + 4B

D

2
, (43)

where

B

D
=

4πr2
ekl

h2
. (44)

This maximum rotational number corresponds to the last ro-
tational state before dissociation consequently, it imposes a
natural maximum limit on the number of the rotational states
that only depends on the dissociation energy of the molecule.
Therefore, the number of rotational energy states is finite and
just below this maximum rotational number the above de-
rived equations apply.
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FIGURE 1. Maximum vibrational states of a diatomic molecule as
a function of the total number density of particles

FIGURE 2. Maximum possible rotational states of a diatomic
molecule as a function of the total number density of particles

4. Numerical Results for the Number of States
for Some Diatomic Molecules

In this section numerical results from the derived equations
for the maximum number of states in diatomic molecules
as a function of the total number density of particles
[Eqs. (25), (39)] are shown. Figure 1 shows the behavior
of the vibrational states and Fig. 2 shows the same but for
the rotational states of the hydrogen chloride (HCl) molecule

by considering the geometrical and the physical constraints.
The data for other molecules can be found in different pub-
lications [10,6,11]. In these figures one can observe that the
physical constraints are more restrictive than the geometri-
cal ones. In general for the low density regions the maxi-
mum number of states is controlled by the dissociation en-
ergy given by Eqs. (41) and (43) respectively. At high den-
sities,i.e. at number densities of the order of1022 cm−3, the
effects of the interactions of the crowded particles with the
background energy begin to dominate the maximum number
of states in the molecules. For higher densities the number
of states decays faster for the physical constraints that are the
most representative of physical conditions of the system.

5. Conclusions

When one takes into account the interaction of the molecules
with the medium in a gaseous system the available number
of vibrational and rotational energy states becomes finite.
By defining linear densities of the molecular and thermody-
namic energies with respect to their natural dimensions one
can compare those linear densities to obtain expressions for
the maximum states that the molecules can reach under the
prevailing physical conditions of the thermodynamic system
under study. These expressions depend on the number den-
sity of particles in the given system and become very useful
for the calculation of the equation of state in plasmas and
stellar atmospheres.

One has restricted the application of our method to the
hydrogen chloride molecule because of its relevance from
the astrophysical point of view. Hydrogen chloride has been
detected at high densities in Orion Nebula [14]. HCL is
also present in molecular clouds [13,15], dense interstellar
clouds [16], interstellar medium [17], diffuse clouds [12] and
in the sun [18,19]. Another application of the method pro-
posed in the present paper is the theoretical calculation of
partitions functions associated to stellar atmospheres [20-24].
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