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A procedure for finding the maximum number of energy states for a diatomic molecule is presented. We consider the background energy
of a gaseous thermodynamic system containing atoms, diatomic molecules and their ions, together with the spacing of adjacent energy
states in the molecules. Using similitude and dimensional analysis techniques and defining linear energy densities of the molecular and
thermodynamic systems we obtain expressions for the maximum levels that a molecule can attain. These results are relevant for the correct
evaluation of the partition function.
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Se presenta un@iodo para obtener elarimo rimero de estados enétigos de una mékula diabmica. Se considera la en@glel sustrato

del sistema termodamico gaseoso el cual astonstituido poatomos, maculas y sus respectivos ionesi, @amo el espaciamiento entre
niveles adyacentes de enkrgle las mdtculas. Usandatnicas de similitud y dlisis dimensional y definiendo las densidades lineales de
enerda de la moécula y del sistema termodimico, se obtienen las expresiones de los niveles etieng maximos que la mé@cula puede
alcanzar. Estos resultados son relevantes para la correcta ebaldada funddn de particdn.

Descriptores: Ecuacon de estado; moleculas diaticas; plasma: diagstico.
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1. Introduction dissociation energy and the last discrete energy levels firstly,
from a geometric point of view and later on with a physical

The maximum number of vibrational and rotational statesgPproach. In Sec. 4, one discuses some numerical results for
of a partially ionized and dissociated perfect gas consistindglydrogen chloride (HCI) and finally in Sec.6, some conclu-
of diatomic molecules is important for evaluating the vibra-Sions are presented.

tional and rotational partition function which is fundamental
to calculate the equation of state for plasmas and stellar a?
mospheres. It is important to note that neither a plasma nor’

a stellar a}tmosphgre is in global thermodynamic equilibriumag it is well known, the energy states of a molecule are the
however it is possible to make an analysis of the system byegyt of its electronic configuration, the relative vibrations of
considering regions with local thermodynamic equilibrium, jts atoms and the rotation of the molecule as a whole.
therefore without loss of generality we will consider thatthe  \ne consider a diatomic gas for whichpT is

gas is in thermal equilibrium. When the partition function of 5,4 compared with the energy of dissociatidiyss

such a system is evaluated, in most of the cases, the nurs; gifferent molecules this amounts to the condition,
ber of energy levels is considered as infinite and everythlngﬂ<<EdiSS/sz104_105 K. At these temperatures the num-

is evaluated under this assumption [3]. However the physicghe; of dissociated molecules in the gas would be quite in-
conditions of a thermodynamic system impose re_strictions i%ignificant. At the same time, in most cases, there would be
the number of energy levels through the mean internal engractically no molecules in the excited states as well, for the
ergy [4]. In the present paper, we calculate the maximumyenaration of any of these states from the ground state of the
number of vibrational and rotational states of a perfect gag,plecule is in general comparable to the dissociation energy
consisting of diatomic molecules, atoms and their ions. Thigself. Accordingly, in what follows we take into account only
calculation is based, on the one hand, on the relationship bgne |owest electronic state of the molecule. Hence, in the de-
tween the energy equipartition principle per degree of freeyg|opments presented in this work, we consider only the vi-

dom and the internal energy; and on the other hand on basigational and rotational states of the diatomic molecules.
concepts of molecular structure: the internal energy of the

molequles together with similitude and dimensional analysuil_ Vibrational States
techniques [1].

The outline of the paper is as follows: In Sec. 2, based orAccording to quantum mechanics the vibrational energy
guantum mechanical considerations the vibrational and rostates of a diatomic molecule correspond to the eigenvalues
tational energy states of a diatomic molecule are introducedf the internuclear potential energy. For the lowest energy
Sec. 3includes the procedure to obtain a relation between tHevels this potential can be approximated by the potential of
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a harmonic oscillator whose eigenvalues, in terms of the in3.1. Procedure for Obtaining the Number of Levels in

trinsic oscillator frequencyy, are given by the following ex- Diatomic Molecules
pression
E, = (U + > hvo, (1) There are no_restrlctlons in the number of ener_gy_states avail-
able for an isolated molecule before dissociation. But a

for v = 0,1,2..., the vibrational quantum number, whete molecule in a thermodynamic system is subjected to the in-
is the Planck constant. The oscillator intrinsic frequency isteraction with other molecules through collisions and with

given by the background energy that permeate the system making the
1 [k number of energy states available dependent on the physical
=5\ (2)  conditions of the system. The techniques of similitude and

dimensional analysis are used in developing the procedures
with k the force constant of the oscillator apdhe reduced for deriving the maximum number of states in a diatomic
mass of the diatomic molecule [5,6]. Itis probable that soménolecule given the physical conditions in the system under
vibrational states of the diatomic molecule may not be Wellstudy_ For this purpose one defines linear densities of the en-
described by the harmonic oscillator potential however a deergy of the diatomic molecules and of the mean energy per
tailed treatment of them is beyond the scope of this work. particle of the thermodynamic system through a procedure
. similar to the one used in the atomic case [4]. We consider
2.2. Rotational States two approaches for obtaining the number of states for the

. . . different vibrational and rotational states. On the one hand,
The lowest rotational energy states of a diatomic molecule

: ) . the geometric formulation, where one considers only the size
derived from quantum mechanics, can be approximated b . o )
- ; f the box that each particle occupies in the thermodynamic
the energy levels of a rigid quantum rotor which for the mo-

ment of inertial are expressed by system as a measure of the size of the moIecuIe.. On the
other hand, the physical approach where one considers one

K(K +1)h? of the most important variables of a thermodynamic system
872] () the mean energy per particle as the governing agent in setting

for K = 0,1,2..., the rotational quantum number [7]. As the size of the molecules.

in the previous case, some rotational states may not be ad-
equately described by this approximation but we leave theié > Geometric formulation
analysis for future work. o

Eyg =

) In a thermodynamic system with total number density of par-
3. Thermodynamics of a gaseous system com- ticles V the volume occupied by each particle is given by

posed of diatomic molecules
The main variables that describe a gaseous system in thermo- L? = N’ (6)
dynamic equilibrium are connected functionally by the equa-
tion of state. By definition in a perfect gas the particles in-considering that the volume occupied by the particle is cu-
teract only through collisions. In such a gas, the particles arbic and of sideL. This imposes a maximum size that
immersed in a medium with finite temperature and thereforehe molecule may have without invading the space of other
are governed by the internal energy. The equation of state of@molecules and therefore the number of states becomes finite,
weakly ionized gas, composed by atoms, diatomic moleculeRence this condition is called geometric, because the energy
and their ions, relates the temperatiftethe pressuré and  states of the molecules are a function of the radial distance
the total number density of particlés by the equation from the center of mass, among other quantum mechanical

variables.
P = NkgT (4)

wherekp is the Boltzmann constant. The imperfect nature
manifests itself only at very high densities and it is not the

case in the astrophysical scenarios where the contents of the ) ) )
present work can be applied [2]. The mean internal energ)The diatomic molecules behave as a harmonic oscillator for

per particle of the system is given by thermodynamics andmall displacements of the atoms from the center of mass. In
statistical mechanics as this part we develop the procedure for obtaining the maxi-

mum vibrational state that remains in the molecule just after
U= §l€BT (5) thedissociation energy. The total energy of a harmonic oscil-
2 lator is given by
and is one of the most important parameters for characteriz- 1
ing a thermodynamic system in equilibrium [8,9]. E, = §kX2, (7)

3.2.1. Vibrational states
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where X is the maximum displacement or amplitude of the3.3. Physical Approach
oscillator from the center of mass akds the force constant

of the oscillator. Making the assumption The number of energy states of the molecules is delimited
by the interactions with the rest of the system since the en-
L =2X (8) ergy state above the last one becomes dissociated by the mean

background thermal energy of the system under study.
and using Eq. (1), Eq. (6), Eq. (7), and Eqg. (8) one obtains
§ . 3.3.1. \Vibrational States
Vg = W Ty () Forthe vibrational states the linear energy density is obtained
from the mean energy of the system per degree of freedom di-
for the maximum vibrational level; of the diatomic  vided by the size of the side of the cubic volume occupied by
molecule whose derivative with respectitbis each patrticle.

U  ikgT 1
(10) 3L L 2
Otherwise, the difference in energy between the two last ad-

that is necessary for some applications on the partition fungacent vibrational states of the molecule is given by

tion. 3
E, 11— E, = hy (U + >

dv; kN3

dN — 12hvo’

kpTN3 (17)

2
3.2.2. Rotational States

/ LY = hop = 2o 18
The diatomic molecule rotates around the center of mass as T (v T 2) = (v+32) (18)
if the the two atoms were a single particle with mass equal tQ,, that, by setting

the reduced mass. In this part of the paper, for the rotational 1

states we develop a procedure, similar to the one for the vi- E,.1 = -kpT, (29)
brational states, to obtain the maximum rotational state tha 2

remains in the molecules. From the results of Leighton [5]t11at means that the molecule is dissociated for the staté,

and Herzberg [7] the size of the rotating molecules is giverf)ne obtains E (U + ;)
by = 2, (20)
K(K + 1)h? - 3keT  (v+3) -
TR N Akl (11)  Additionally, making the two linear energy densities equal
) ] i K ] o to each other, Eq. (17) and Eq. (20), the following result is
hererg is the internuclear distance, andis the equilibrium  5piqined
position of the molecule. Making (v+3) 1
5T =2XNs (21)
L=2 (12) (w+3)
= 4TK and using Egs. (1) and (7) the solution forgives
and from Eq. (6) and Eq. (11), one obtains 9 1y,
x = ) 2t ) +k2) il (22)
K(K+1)=b (13) _
so that together with Eq. (20) and after some algebra (21)
with yields 0 1
2
:Lki (14) 02—(3—C)U+Z—§c:0 (23)
heNE ith
wi
and solving forK*, the maximum possible rotational state of _ k (24)
the molecule, yields €= 8higNE '
Solving the quadratic equation for one gets
. —lEV1+44b gmed a roneg
Kg:f (15) . (c=3)+ Ve —4c
v, = 5 . (25)
where distances are measured from the equilibrium positiorfor the maximum vibrational state of the diatomic
The derivative ofK’; with respect taV is molecule,i.e. the last discrete energy state. Hence, the
L derivative with respect tdV is given by
Ay _2mkING (16) dvi kN3 4
AN~ 3n/I+ b ke S 26
3h2V/1 4+ 4b N S4ve { = (26)

necessary for some applications on the partition function agor some application on the partition function.
well.
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3.3.2. Rotational States The derivative ofK; with respect tolV is obtained using

Egs. (33) (35), (36) and (38), producing
For the rotational states of the diatomic molecules, one de-

fines the linear energy density similarly to the case of the dK* okIN:
vibrational states using the size of the orbit that the reduced d]\? =——
mass makes around the center of mass. With the aid of (17), M2VQ

Q" sin(427) cos 0+ 27
R2 /QS — R2 3

(40)

one gets
E 1 2 3 ;
k _ U _ LT N 27) WhenR* > @)° there are not valid roots for our purpose.
2trx 3L 2
or g .
i K orp N3 (28) In the following, other useful results are presenteq to
5keT complete the set of equations for the number of states in di-

According to Eq. (3), the energy difference between the lasfitomic molecules. Whereas the energy spacing between vi-

two adjacent rotational energy states of the rigid rotator irational levels in the quantum harmonic oscillator is con-
given by stant and given b¥ivg near the equilibrium position only [5],

2F 11 the energy between adjacent levels decreases with increasing
Erxi1— Ex = K 12 (29) 4 in the anharmonic oscillator approximation, so that the last
making discrete vibrational state before dissociation is given by
1
Exy1= ikBT (30) 4D, 1

- (41)

vb = hl/g 2

the dissociation energy for stat&+ 1. Now from Egs. (11),

(28), (29), and (30), one obtains This expression has been derived from the Morse poten-

K2 K(K+1)h% - tial function, whereD, is the dissociation energy of the

(K +2)° = il N3 (31)  molecule. This condition means that one can not surpass

this natural maximum limit in the vibrational states imposed
or dK by the molecular dissociation. Indeed, the above derived ex-
m =K(K+1) (32)  pressions for the maximum of energy states apply below this
limit. For the rotational energy states there are not results
with kI reported that give an upper bound for the number of energy
d= NE (33) states imposed by the physical conditions in the gas as for the

case of the vibrational states. The energy spacing between
consequently, one obtains the following equation, rotational levels in the quantum rigid rotator is constant, the
energy between adjacent levels decreases with incre&sing
for a nonrigid rotator. The energy formula for a nonrigid ro-
tator for the statds is given by [7]

K3 +5K*+(8—d)K +4=0 (34)

that is a normal form of a cubic equation f&r with real co-
efficients. The number of real solutions depends on the sign

. _ 2 2
of the discriminantD = R? — Q3 where Erx = BK(K +1) = DK*(K +1)°. (42)
Q= 25 —3(8—d) (35) Making Eq. (42) equal to zero one gets the maximum
9 rotational number,
and 250 — 45(8 — d) + 108
p= 220156 —d) 1108, (36) —1£,/1+43
54 Kp = ———, (43)
WhenR? < Q3 the cubic equation has three real roots. Set-
ting where
0 = arccos i ) (37) E = 47rr§l<:l (44)
A% D hz
the positive root useful in our work is This maximum rotational number corresponds to the last ro-
tational state before dissociation consequently, it imposes a
0+ 2w 5 ) e .
T = —2fcos 3 ~ 3 (38)  natural maximum limit on the number of the rotational states

that only depends on the dissociation energy of the molecule.

so the maximum rotational state of the molecule is given by Therefore, the number of rotational energy states is finite and
just below this maximum rotational number the above de-

K, =z (39) rived equations apply.
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FIGURE 1. Maximum vibrational states of a diatomic molecule as

HCL
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FIGURE 2. Maximum possible rotational states of a diatomic
molecule as a function of the total number density of particles
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by considering the geometrical and the physical constraints.
The data for other molecules can be found in different pub-
lications [10,6,11]. In these figures one can observe that the
physical constraints are more restrictive than the geometri-
cal ones. In general for the low density regions the maxi-
mum number of states is controlled by the dissociation en-
ergy given by Egs. (41) and (43) respectively. At high den-
sities,i.e. at number densities of the order &f>2 cm=3, the
effects of the interactions of the crowded particles with the
background energy begin to dominate the maximum number
of states in the molecules. For higher densities the number
of states decays faster for the physical constraints that are the
most representative of physical conditions of the system.

5. Conclusions

When one takes into account the interaction of the molecules
with the medium in a gaseous system the available number
of vibrational and rotational energy states becomes finite.
By defining linear densities of the molecular and thermody-
namic energies with respect to their natural dimensions one
can compare those linear densities to obtain expressions for
the maximum states that the molecules can reach under the
prevailing physical conditions of the thermodynamic system
under study. These expressions depend on the number den-
sity of particles in the given system and become very useful
for the calculation of the equation of state in plasmas and
stellar atmospheres.

One has restricted the application of our method to the
hydrogen chloride molecule because of its relevance from
the astrophysical point of view. Hydrogen chloride has been
detected at high densities in Orion Nebula [14]. HCL is
also present in molecular clouds [13,15], dense interstellar
clouds [16], interstellar medium [17], diffuse clouds [12] and
in the sun [18,19]. Another application of the method pro-
posed in the present paper is the theoretical calculation of
partitions functions associated to stellar atmospheres [20-24].
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