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Itis shown that, in a similar manner as a complete solution of the Hamilton—Jacobi equation for a systerdegitbes of freedom yields,
constants of motion, each solution of the Silinger equation containing parameters leads & operators that are constants of motion;
these2n operators form two sets of mutually commuting operators.
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Se muestra que, en forma similar a como una solucompleta de la ecudr de Hamilton—Jacobi para un sistema ecgrados de libertad
produce2n constantes de movimiento, cada solucile la ecuadin de Schidinger que contenga pa@metros lleva &n operadores que
son constantes de movimiento; estasoperadores forman dos conjuntosrdeperadores que conmutan entre s

Descriptores: Funciones de onda; ecuanide Hamilton—Jacobi; ecuéci de Schidinger; constantes de movimiento.

PACS: 03.65.Ca; 45.20.Jj

1. Introduction As is well known, the HJ equation can be consid-
ered as a classical limit of the Séidinger equation (see,
One of the methods to find the solution of the equations og_g’ Refs. 2, 3), and, when one solves the time-dependent
motion in classical mechanics is based on the Ham“ton'Schbdinger equation (by separation of variables, in most
Jacobi (HJ) equation (see.g, Ref. 1). Foramechanical sys- cases), usually one does not obtain directly a general solution
tem withn degrees of freedom and Hamiltoni&f(¢;, pi. 1), of this equation, but a family of solutions containing some

the HJ equation is usually expressed as the partial diﬁerenti%arameters (or quantum numbexs), . . . , ay,
equation
08 08
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Instead of looking for the general solution of this equa-yyhich is, in this context, the analog of a complete solution of
tion, one is interested in aomplete solutionwhich is @  he 13 equation. Assuming that the wavefunctions (5) form
functionS(qu, ..., qn, ¢, 1, ..., ay) satisfying the Hl equa- 5 complete set [in the sense that any wavefunction can be
tion, where thew; aren arbitrary parameters. The function expressed as a superposition of the wavefunctions (5)], the

S(g1, -5 dn, by, -, ) i the generating function of & 5 efunctions (5) are eigenfunctions of certain operat@ys,
canonical transformation relating the original canonical co,ith eigenvaluesy;, i.e.

ordinatesp;, ¢; with a new system of canonical coordinates

io;%f;ev%/hbl;h are allconstants of motianThe transformation Pap(aj, b ;) = citb(y, t, ). 6)
pi = g(i (2)  Aswe shall show below, the operatdPsare constant, in the
and sense that
8; = ) 3) l[P H]+ OF; =0 (7)
YT 0wy’ iRt " ot '

i = 1,2,...,n, provided thatdet(0?S/9q;0a;) # 0, so

that Eqgs. (3) can be (locally) inverted to give egglas some

function oft and the2n constantsy;, 3;; then, by substitut-

ing these expressions into Eqgs. (2), theare also given as hoY(g;,t, o)

functions ofa;, 8;, andt (seee.g, Ref. 1). Qiv(g5,t, a5) = i 0 (®)
Since the3; andq; are canonical coordinates, their Pois-

son brackets are the same as those for the variaples  [cf. Eqg. (3)], which are also constant,

(with o; as the momentum conjugate g 50

{Oéi,Oéj}ZO, {ﬂl,ﬁj} :0, {ﬁi,aj}:éij. (4) %[QzaH]"i_ 81& =0 (9)

Furthermore, there exists a second set operators();,
such that
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and these operators satisfy the commutation relations [Q:,Pi1Y (g, t, ar) = Qi [a;1h(gk, t, o))
. ho t
PP =0, [QQ)l =0, [QuP]=ildy; (10) N
[cf. Egs. (4)]. _h 9 hOY(gr, t, ax)

In other words, just as a complete solution of the HJ equa- i 0a; [Pjio(an. t, aw)] = oy i D,
tion leads to2n constants of motion, a solution (5) of the hoo
Schibdinger equation leads ttn operators which are con- — —— [a;¥(gr, t, ar)] = 1R ;¢ (g, t, k),

stants of motion. i day

In Sec. 2 we prove the validity of Egs. (7), (9), and (10), hence|Q;, P;] = ihd;;.
and in Sec. 3 we present several examples. In the Ap-
pendix we obtain the constants of motian g; arising from
complete solutions of the HJ equation corresponding to th%. Examples
analogs in classical mechanics of the problems considered in

Sec. 3. Throughout this paper we deal with wavefunctions in, this section we give some examples where we explicitly

the coordinate representation. find the conserved operatoRs andQ; for some Hamiltoni-
ans.

2. Main results
3.1. Free particle

Since we are assuming the completeness of the wavefunc-

tions (5), Egs. (6) and (8) do define some linear opera®rs The usual Hamiltonian for a free particle of massin the

and@;. In order to prove the validity of Egs. (7), (9), and three-dimensional space is

(10) we shall use the fact that4f and B are two linear oper-

ators such thatly(g;, t, ;) = By (g, t, «;), for a complete 1 2 2 2

set of Wavefunctions;(q,»,t), «;), thenA = )B H= %(m P27+ ps7),

wav\g‘eunbcej[i%lz (I?)/ 2‘:}%')\/,1,29”}'2&? Srr;rr;tfjtggpp(zé;{ ]chffg::f th ayvhere thep; are the Cartgsian components of the linear mo-

P; andH are linear operators, and that (5) is a solution of thementum. The wavefunctions

time-dependent Sctdinger equation

[Pi, H|1b(gj. t, 0)=P; [th

w('x’ya Zataala 0427043) = exp {; |:Oéll‘

:l _Halw(qjat7aj) 1
+ QY + a3z — 7(0&12 + 0522 + a32)t] } (11)
Bw(Qj7taaj)] —ih < ot > ¢(Qjat704j)

0
=ih— |
ot are solutions of the corresponding time-dependent

(g, t, ) P, Schiddinger equation, containing three arbitrary parameters
— aiihij » 97— —ih ”(/}(qj‘,t,aj), A H iofi
ot ot a;. As we can see, Eq. (6) is satisfied by
thus proving the validity of Eq. (7). p_n2o (12)
Similarly, making use of Eq. (8) and the fact tHatdoes Ci O

not depend on the parameters we have . . )
that is, the operataP; coincides withp;.

. 0Y(g),t, o On the other hand, a direct computation gives
Q1 H0 ) = Qs fin 10
( ) ha¢(myztaaa)

_ an Qjataaj . 2 ) . ) Taaz s Yy <y by G, (2, X3

i [ F2UBL0D] i D Qub(ayt.0)] Ny

. 8@1 h O = (.131 - ) w(xvya tha g, 042,053), (13)
_lh< 5t )w(q75t7a7)_laale(Q_]7t7a]) m
- 20 St and therefore, "
-\ o ) V) Qi=mi——, (14)

m

Equations (10) can be proved in an analogous mannewhere we have made use of Eq. (6). One readily verifies
For instance, using the fact that tlheandQ; are linear op- that the operators (12) and (14) indeed satisfy Egs. (7), (9),
erators and that the; do not depend on the;, and (10).
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3.2. Atime-dependent Hamiltonian One can readily find that the operatofs defined by
Eq. (6) are
The time-dependent Sdidinger equation corresponding to
the one-dimensional Hamiltonian Py =py, Py = po, P;=H. (23)
H— ﬁ _ ktx (15) Note that even though the wavefunctions (21) satisfy
. o L0
wherek is a constant, is given by iha ¥(@,y, 2,8 a1, a2, 03) = as¥(z,y, 2,8, a1, a2, 03),
iha—d) _ _ﬁ@ — ktay) (16) it would be wrong to say thaPs is equal toikd/0t because
ot 2m Ox? the latter has no meaning on an arbitrary wavefunction, since
and admits solutions of the form [4] an arbitrary wavefunction is not a function of (Similarly,
) 0/0«; is not an operator defined on an arbitrary wavefunc-
i :
Y(z,t, ) = exp { [ozx tion.)
h In order to identify the operatorQ;, which are defined
k22 1 aktd k25 by Eq. (8), we observe that, by virtue of the chain rule and
5 om < *t 3 + 20) ] }7 A7) Eq.(22),
" 99 _ a1 9%
whereq is an arbitrary real number. According to the discus- day  mF 0z’
sion above, we define an operai@iby requiring that on the hence
wavefunctions (17)Py(z, t, o) = ap(z, t, ) [cf. EQ. (6)]. hoo
Then, by inspection, one finds that Ta?w(% Y, z,t, a1, g, a3)
1
ho kt? kt?
P:T%_sz_7 (18) :(CC+21}173)1/)(17&,2,15,@1,062,043)
and one readily proves that this operator satisfies EQ. (7). and therefore
Now, defining an operatap by the condition that, on the Q) =+ 283 (24)

mF’

wavefunctions (17),
(@7) In a similar manner one finds that

hoy(x,t, o)
t =117 P2p3 p3
we find p kS As in the previous examples, one can verify directly that the
Q=x— - + 3Im (19)  operatorsP; andQ); satisfy Egs. (7), (9), and (10).

This operator is, indeed, a constant of motion, and a direcé 4. Final remarks
computation shows théf), P] = iA. o

o ) ] It should be clear that, in many cases, it may be difficult
3.3. Particle in a uniform force field to find the operators’;, Q; explicitly. For instance, in the
case of a particle in a central potential in two dimensions, the

The time-dependent Sdhdinger equation corresponding to Schidinger equation

the Hamiltonian

1 R [10 [ ov 1 0% . O
H = %(P12+p22+p32)+Fz, (20) “om Lﬂ@r (Tar T 3502 +V(T)¢:1haa
whereF' is a constant, admits separable solutions of the formadmits separable solutions of the form
V@9, 2 t1, 02, 03) b(r, 0,8, a1, a2) = G(r) exp Lli(oqe - a2t):| . (26)
i
= d(z)exp |3 (anz + ooy —ast)| (21 qpen one readily finds that
where they; are three arbitrary parameters afid a solution po— h o P—H
. . 1 — 5 2 — .
of the Airy equation io0
26 On the other hand,
5 —w =0,
dw? h 0
fiw(rv 97 tv aq, a?)
where i doy
_ (2mF e az o’ + o’ =60¢(r,0,t,a1,a0) + 9 exp [i(ale - agt)]
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but we are unable to express the last term as some linear ofind the constants of motiom; ands; given by
erator made out of, 6 and their conjugate momenta acting

on the wavefunction (26), though we could always give an in- a; = pi, Bi = x; — ait =x; — pit (A2)
tegral representation fdP; or ; making use of the assumed m m
completeness of the wavefunctions (5). [cf. Egs. (12) and (14)].

This example also illustrates the fact that we can consider | the case of the time-dependent Hamiltonian (15) a
parametersy; belonging to a discrete spectrum or to a con-complete solution of the corresponding HJ equation is given

tinuous one (as in the first three examples above). by [4]
. 2
4. Conclusions S(z,t,0) = az + kt;
As we have shown, apart from its usual interpretation, the 1 .. aktd kXS
solutions of the Scliidinger equation containing arbitrary 9 (Oé t+——+ 3 ) (A3)

parameters are analogous to the complete solutions of the HJ

equation, definin@n conserved operators. In a similar man- [cf. Eq. (17)]. This functions yields the constants of motion
ner as a complete solution of the HJ equation yields the so- )

lution of the Hamilton equations in classical mechanics, a kt? Bz pt  kt? (Ad)

a=p——,
solution of the Schirdinger equation containing arbitrary L

parameters leads to the solutions of the Heisenberg equatiorwhiCh have the same form as the operat@sndq given by
Egs. (18) and (19), respectively.
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Appendix flz)== / V2m(as — Fz) — g2 — a2 dz.

In this appendix we consider the analogs in classical mechargith the aid of formulas (2) and (3), noting that
ics of the systems employed in Sec. 3. We find the constants

of motion associated with complete solutions of the corre- df o 0f Of _ a Of of _ 10f
sponding HJ equation in order to compare them with the op- 9oy mF 9z’ day mF 9z’ das  F 0z’
eratorspP;, (Q; obtained above. ] )
The function one finds that the constants of motion 3; are
5(337%27@0417042,(13):a1$+@2y a1 = P1, Qg = P2, 043:H,
1 _ p1pP3 - Pp2ps3 _ 4, _Pp3
+a32—%(a12+a22+a32)t (Al) ﬁl_.r—i_mF’ 62_y+WLF7 ﬁ?)_ t F7

is a complete solution of the HJ equation for a free particlewhich have the same form as the conserved opera-
in Cartesian coordinates. Making use of Egs. (2) and (3) weors (23)—(25).
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