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The conserved operators generated by a solution of the Schrödinger equation
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It is shown that, in a similar manner as a complete solution of the Hamilton–Jacobi equation for a system withn degrees of freedom yields2n

constants of motion, each solution of the Schrödinger equation containingn parameters leads to2n operators that are constants of motion;
these2n operators form two sets ofn mutually commuting operators.
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Se muestra que, en forma similar a como una solución completa de la ecuación de Hamilton–Jacobi para un sistema conn grados de libertad
produce2n constantes de movimiento, cada solución de la ecuación de Schr̈odinger que contengan paŕametros lleva a2n operadores que
son constantes de movimiento; estos2n operadores forman dos conjuntos den operadores que conmutan entre sı́.
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1. Introduction

One of the methods to find the solution of the equations of
motion in classical mechanics is based on the Hamilton–
Jacobi (HJ) equation (see,e.g., Ref. 1). For a mechanical sys-
tem withn degrees of freedom and HamiltonianH(qi, pi, t),
the HJ equation is usually expressed as the partial differential
equation

H

(
qi,

∂S

∂qi
, t

)
+

∂S

∂t
= 0. (1)

Instead of looking for the general solution of this equa-
tion, one is interested in acomplete solution, which is a
functionS(q1, . . . , qn, t, α1, . . . , αn) satisfying the HJ equa-
tion, where theαi aren arbitrary parameters. The function
S(q1, . . . , qn, t, α1, . . . , αn) is the generating function of a
canonical transformation relating the original canonical co-
ordinatespi, qi with a new system of canonical coordinates
αi, βi which are allconstants of motion. The transformation
is given by

pi =
∂S

∂qi
(2)

and
βi =

∂S

∂αi
, (3)

i = 1, 2, . . . , n, provided thatdet(∂2S/∂qi∂αj) 6= 0, so
that Eqs. (3) can be (locally) inverted to give eachqi as some
function of t and the2n constantsαj , βj ; then, by substitut-
ing these expressions into Eqs. (2), thepi are also given as
functions ofαj , βj , andt (see,e.g., Ref. 1).

Since theβi andαi are canonical coordinates, their Pois-
son brackets are the same as those for the variablesqi, pi

(with αi as the momentum conjugate toβi)

{αi, αj} = 0, {βi, βj} = 0, {βi, αj} = δij . (4)

As is well known, the HJ equation can be consid-
ered as a classical limit of the Schrödinger equation (see,
e.g., Refs. 2, 3), and, when one solves the time-dependent
Schr̈odinger equation (by separation of variables, in most
cases), usually one does not obtain directly a general solution
of this equation, but a family of solutions containing some
parameters (or quantum numbers),α1, . . . , αn,

ψ(qi, t, αi), (5)

which is, in this context, the analog of a complete solution of
the HJ equation. Assuming that the wavefunctions (5) form
a complete set [in the sense that any wavefunction can be
expressed as a superposition of the wavefunctions (5)], the
wavefunctions (5) are eigenfunctions of certain operators,Pi,
with eigenvaluesαi, i.e.,

Piψ(qj , t, αj) = αiψ(qj , t, αj). (6)

As we shall show below, the operatorsPi are constant, in the
sense that

1
i~

[Pi,H] +
∂Pi

∂t
= 0. (7)

Furthermore, there exists a second set ofn operators,Qi,
such that

Qiψ(qj , t, αj) =
~
i
∂ψ(qj , t, αj)

∂αi
(8)

[cf. Eq. (3)], which are also constant,

1
i~

[Qi,H] +
∂Qi

∂t
= 0 (9)



THE CONSERVED OPERATORS GENERATED BY A SOLUTION OF THE SCHRÖDINGER EQUATION 181

and these operators satisfy the commutation relations

[Pi, Pj ] = 0, [Qi, Qj ] = 0, [Qi, Pj ] = i~δij (10)

[cf. Eqs. (4)].
In other words, just as a complete solution of the HJ equa-

tion leads to2n constants of motion, a solution (5) of the
Schr̈odinger equation leads to2n operators which are con-
stants of motion.

In Sec. 2 we prove the validity of Eqs. (7), (9), and (10),
and in Sec. 3 we present several examples. In the Ap-
pendix we obtain the constants of motionαi, βi arising from
complete solutions of the HJ equation corresponding to the
analogs in classical mechanics of the problems considered in
Sec. 3. Throughout this paper we deal with wavefunctions in
the coordinate representation.

2. Main results

Since we are assuming the completeness of the wavefunc-
tions (5), Eqs. (6) and (8) do define some linear operatorsPi

andQi. In order to prove the validity of Eqs. (7), (9), and
(10) we shall use the fact that ifA andB are two linear oper-
ators such thatAψ(qi, t, αi) = Bψ(qi, t, αi), for a complete
set of wavefunctionsψ(qi, t, αi), thenA = B.

We begin by applying the commutator[Pi,H] to the
wavefunction (5), and we make use of Eq. (6), the fact that
Pi andH are linear operators, and that (5) is a solution of the
time-dependent Schrödinger equation

[Pi,H]ψ(qj , t, αj)=Pi

[
i~

∂ψ(qj , t, αj)
∂t

]
−Hαiψ(qj , t, αj)

= i~
∂

∂t
[Piψ(qj , t, αj)]− i~

(
∂Pi

∂t

)
ψ(qj , t, αj)

− αii~
∂ψ(qj , t, αj)

∂t
= −i~

(
∂Pi

∂t

)
ψ(qj , t, αj),

thus proving the validity of Eq. (7).
Similarly, making use of Eq. (8) and the fact thatH does

not depend on the parametersαi, we have

[Qi,H]ψ(qj , t, αj) = Qi

[
i~

∂ψ(qj , t, αj)
∂t

]

−H

[
~
i
∂ψ(qj , t, αj)

∂αi

]
= i~

∂

∂t
[Qiψ(qj , t, αj)]

− i~
(

∂Qi

∂t

)
ψ(qj , t, αj)− ~i

∂

∂αi
Hψ(qj , t, αj)

= −i~
(

∂Qi

∂t

)
ψ(qj , t, αj).

Equations (10) can be proved in an analogous manner.
For instance, using the fact that thePi andQi are linear op-
erators and that thePi do not depend on theαj ,

[Qi,Pj ]ψ(qk, t, αk) = Qi [αjψ(qk, t, αk)]

− Pj
~
i
∂ψ(qk, t, αk)

∂αi
= αjQiψ(qk, t, αk)

− ~
i

∂

∂αi
[Pjψ(qk, t, αk)] = αj

~
i
∂ψ(qk, t, αk)

∂αi

− ~
i

∂

∂αi
[αjψ(qk, t, αk)] = i~δijψ(qk, t, αk),

hence,[Qi, Pj ] = i~δij .

3. Examples

In this section we give some examples where we explicitly
find the conserved operatorsPi andQi for some Hamiltoni-
ans.

3.1. Free particle

The usual Hamiltonian for a free particle of massm in the
three-dimensional space is

H =
1

2m
(p1

2 + p2
2 + p3

2),

where thepi are the Cartesian components of the linear mo-
mentum. The wavefunctions

ψ(x,y, z, t, α1, α2, α3) = exp
{

i
~

[
α1x

+ α2y + α3z − 1
2m

(α1
2 + α2

2 + α3
2)t

]}
(11)

are solutions of the corresponding time-dependent
Schr̈odinger equation, containing three arbitrary parameters
αi. As we can see, Eq. (6) is satisfied by

Pi =
~
i

∂

∂xi
, (12)

that is, the operatorPi coincides withpi.
On the other hand, a direct computation gives

~
i

∂

∂αi
ψ(x, y, z, t, α1, α2, α3)

=
(

xi − αit

m

)
ψ(x, y, z, t, α1, α2, α3), (13)

and therefore,

Qi = xi − tpi

m
, (14)

where we have made use of Eq. (6). One readily verifies
that the operators (12) and (14) indeed satisfy Eqs. (7), (9),
and (10).
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3.2. A time-dependent Hamiltonian

The time-dependent Schrödinger equation corresponding to
the one-dimensional Hamiltonian

H =
p2

2m
− ktx, (15)

wherek is a constant, is given by

i~
∂ψ

∂t
= − ~

2

2m

∂2ψ

∂x2
− ktxψ (16)

and admits solutions of the form [4]

ψ(x, t, α) = exp
{

i
~

[
αx

+
kt2x

2
− 1

2m

(
α2t +

αkt3

3
+

k2t5

20

)]}
, (17)

whereα is an arbitrary real number. According to the discus-
sion above, we define an operatorP by requiring that on the
wavefunctions (17),Pψ(x, t, α) = αψ(x, t, α) [cf. Eq. (6)].
Then, by inspection, one finds that

P =
~
i

∂

∂x
− kt2

2
= p− kt2

2
(18)

and one readily proves that this operator satisfies Eq. (7).
Now, defining an operatorQ by the condition that, on the

wavefunctions (17),

Qψ(x, t, α) =
~
i
∂ψ(x, t, α)

∂α

we find

Q = x− tp

m
+

kt3

3m
. (19)

This operator is, indeed, a constant of motion, and a direct
computation shows that[Q, P ] = i~.

3.3. Particle in a uniform force field

The time-dependent Schrödinger equation corresponding to
the Hamiltonian

H =
1

2m
(p1

2 + p2
2 + p3

2) + Fz, (20)

whereF is a constant, admits separable solutions of the form

ψ(x, y, z, t,α1, α2, α3)

= φ(z) exp
[

i
~
(α1x + α2y − α3t)

]
, (21)

where theαi are three arbitrary parameters andφ is a solution
of the Airy equation

d2φ

dw2
− wφ = 0,

where

w ≡
(

2mF

~2

)1/3 (
z − α3

F
+

α1
2 + α2

2

2mF

)
. (22)

One can readily find that the operatorsPi defined by
Eq. (6) are

P1 = p1, P2 = p2, P3 = H. (23)

Note that even though the wavefunctions (21) satisfy

i~
∂

∂t
ψ(x, y, z, t, α1, α2, α3) = α3ψ(x, y, z, t, α1, α2, α3),

it would be wrong to say thatP3 is equal toi~∂/∂t because
the latter has no meaning on an arbitrary wavefunction, since
an arbitrary wavefunction is not a function oft. (Similarly,
∂/∂αi is not an operator defined on an arbitrary wavefunc-
tion.)

In order to identify the operatorsQi, which are defined
by Eq. (8), we observe that, by virtue of the chain rule and
Eq. (22),

∂φ

∂α1
=

α1

mF

∂φ

∂z
,

hence

~
i

∂

∂α1
ψ(x, y, z, t, α1, α2, α3)

=
(
x +

α1p3

mF

)
ψ(x, y, z, t, α1, α2, α3)

and therefore
Q1 = x +

p1p3

mF
. (24)

In a similar manner one finds that

Q2 = y +
p2p3

mF
, Q3 = −t− p3

F
. (25)

As in the previous examples, one can verify directly that the
operatorsPi andQi satisfy Eqs. (7), (9), and (10).

3.4. Final remarks

It should be clear that, in many cases, it may be difficult
to find the operatorsPi, Qi explicitly. For instance, in the
case of a particle in a central potential in two dimensions, the
Schr̈odinger equation

− ~
2

2m

[
1
r

∂

∂r

(
r
∂ψ

∂r

)
+

1
r2

∂2ψ

∂θ2

]
+ V (r)ψ = i~

∂ψ

∂t
,

admits separable solutions of the form

ψ(r, θ, t, α1, α2) = φ(r) exp
[

i
~
(α1θ − α2t)

]
. (26)

Then, one readily finds that

P1 =
~
i

∂

∂θ
, P2 = H.

On the other hand,

~
i

∂

∂α1
ψ(r, θ, t, α1, α2)

= θψ(r, θ, t, α1, α2) +
∂φ

∂α1
exp

[
i
~
(α1θ − α2t)

]
,
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but we are unable to express the last term as some linear op-
erator made out ofr, θ and their conjugate momenta acting
on the wavefunction (26), though we could always give an in-
tegral representation forPi or Qi making use of the assumed
completeness of the wavefunctions (5).

This example also illustrates the fact that we can consider
parametersαi belonging to a discrete spectrum or to a con-
tinuous one (as in the first three examples above).

4. Conclusions

As we have shown, apart from its usual interpretation, the
solutions of the Schrödinger equation containingn arbitrary
parameters are analogous to the complete solutions of the HJ
equation, defining2n conserved operators. In a similar man-
ner as a complete solution of the HJ equation yields the so-
lution of the Hamilton equations in classical mechanics, a
solution of the Schr̈odinger equation containingn arbitrary
parameters leads to the solutions of the Heisenberg equations.
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Appendix

In this appendix we consider the analogs in classical mechan-
ics of the systems employed in Sec. 3. We find the constants
of motion associated with complete solutions of the corre-
sponding HJ equation in order to compare them with the op-
eratorsPi, Qi obtained above.

The function

S(x, y, z, t, α1,α2, α3) = α1x + α2y

+ α3z − 1
2m

(α1
2 + α2

2 + α3
2)t (A1)

is a complete solution of the HJ equation for a free particle
in Cartesian coordinates. Making use of Eqs. (2) and (3) we

find the constants of motionαi andβi given by

αi = pi, βi = xi − αit

m
= xi − pit

m
(A2)

[cf. Eqs. (12) and (14)].
In the case of the time-dependent Hamiltonian (15) a

complete solution of the corresponding HJ equation is given
by [4]

S(x, t, α) = αx +
kt2x

2

− 1
2m

(
α2t +

αkt3

3
+

k2t5

20

)
(A3)

[cf. Eq. (17)]. This functions yields the constants of motion

α = p− kt2

2
, β = x− pt

m
+

kt3

3m
, (A4)

which have the same form as the operatorsP andQ given by
Eqs. (18) and (19), respectively.

The HJ equation corresponding to the Hamiltonian for a
particle in a uniform force field (20) admits solutions of the
form

S(x, y, z, t, α1, α2, α3) = α1x + α2y − α3t + f(z),

where theαi are arbitrary parameters and

f(z) = ±
∫ √

2m(α3 − Fz)− α1
2 − α2

2 dz.

With the aid of formulas (2) and (3), noting that

∂f

∂α1
=

α1

mF

∂f

∂z
,

∂f

∂α2
=

α2

mF

∂f

∂z
,

∂f

∂α3
=− 1

F

∂f

∂z
,

one finds that the constants of motionαi, βi are

α1 = p1, α2 = p2, α3 = H,

β1 = x +
p1p3

mF
, β2 = y +

p2p3

mF
, β3 = −t− p3

F
,

which have the same form as the conserved opera-
tors (23)–(25).
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