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A formalism in terms of Hertz potentials is presented describing sum-frequency generation in a uniaxial non-linear crystal. A schem
proposed consisting in aligning the sideways propagation of extraordinary waves in combination with phase-matching. Simplified para
equations describing this situation are obtained. Particular attention is paid to the generation of second harmonics.
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1. Introduction 2. Propagation in a birefringent medium

Consider an anisotropic medium described by electric and
Ssum-frequency and difference-frequency generations are infagnetic field vectorsE andB, and electric displacement

portant processes in nonlinear optics (seg, Ref. 1and 2). vector D. The Maxwell equations in the absence of free
The aim of the present article is to develop a formalism de£harges and currents (with magnetic permeabjlity 1 and

scribing such nonlinear optical processes in terms of Hertgettinge = 1) are

potentials. The first part of the article is devoted to a deriva- 0B
tion of the equations describing the generation of higher fre- v-B=0, VxE+ ot 0, (2.1)
guencies in a uniaxial nonlinear (up to second order) crys- oD
tal in the paraxial approximation. Particular attention is paid V-D=0, VxB—-—=0. (2.2)

ot
The effect of the material medium can be described by a
Polarization vectoiP such that

to the fact that, for extraordinary waves, the wave vectors
do not coincide with the group velocity vector. This usually
originates some difficulties in optical experiments and mus
be taken into account carefully [3]. Several experimental D =E +47P,
schemes have been proposed to take this effect into accou,[rﬂ]te linear part being given in terms of the dyad
and use it to improve the efficiency of the frequency-doubling
(see Asaumi [4] and references therein). In the second part e=¢c; 1+ Aess,

of the article, a possible scheme is proposed from a theo- . . . .

retical point of view for generating higher frequencies usingWheres is the optical axis of symmet_ry of the meghum, and
precisely this sideways propagation. The idea is to combinét ande) = e, + Ac are the permeability perpendicular and
phase matching, which involves wave vectors, with group Veparallel to this symmetry axis respectively. Then

locity vectors. More specifically, the scheme consists in com- D(w,r) = é(w) E(w,r) + 47PN (w, 1)

bining both ordinary and extraordinary beams in such a way ) ) o o
that all three waves involved in the process are aligned in thwhereP " is the non-linear contribution to the polarization
same direction. The conditions to be fulfilled by the crystalvector. Here and in the following, Fourier transforms with
parameters for this particular configuration are given explic/€SPect to time of all quantities will be used.

itly. An analytic solution is also obtained for particular values ~ Following Nisbet [3], the electromagnetic field can be de-
of the amplitudes of the initial waves. scribed by two scalar Hertz potentials, to be called and

V¥ i in the present paper, and two additional scalar potentials,

The organization of this article is as follows. In Sec. 2, ato be calledUs andUg. These potentials satisfy the equa-
general formulation of the problem in terms of Hertz poten-tions
tials is worked out following Nisbet'’s original treatment [5].
The results are applied in Sec. 3 to the problem of sum-
frequency generation. The possible alignment of the three 1
group velocities involved in the scheme is studied in Sec. 4. m
The evolution equations are presented in Sec. 5, together with
a particular analytic solution. Finally, the particular case of - € «) s -VUg = —4rpPNE (2.4)
second harmonic generation is considered in Sec. 6. e1(w) o

V. Ug+sx VU = 4nP V| (2.3)

V. &w) Vg + e (wwVg
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V2W0 4 € (w)w?To +iwlp = 0. (2.5) for ordinary waves, where (setting = w; + wy,)

In these'formulas,Vl is the' gragient operator in the plane PO(wi = wj + Wi, T) = Xabe(wi = wj + wi)
perpendicular tg. Eq. (2.3) implies _
x B9 (r)EXR) (r) (2.14)
ViUg=4n vV, PN, (2.6)
and
2 NL
ViUp =4ns-(Vx PV 2.7) PO (w; = wi — i t) = Yape(ws = wi — k)
which permits to decouple the potentialg, andUp from @ .
¥ andUg. x B (r)BM*(r). (2.15)
As shown in a previous article (Hacyan ar&idegui [6]),
the advantage of this formulation is théo and V' cor- 3, Sum-frequency generation
respond to the potentials for the ordinary and extraordinary
waves respectively. The electromagnetic field is given by  Consider a typical problem of sum-frequency generation.
Suppose an ordinary and an extraordinary waves, of frequen-
E = —iws x V¥o ciesw; andw, respectively, combine inside the crystal to
1 1 generate an extraordinary wave of frequengy= w; + ws.
+—V(s-V¥g)+w’Vps— —VUg (2.8)  Let1; be the Hertz potential corresponding to frequencies
L L w;, andU; the associated auxiliary potentials. Accordingly
and the basic equations take the form:

B=Vx[Vx(¥os)| —iwV x (Ugs) . (2.9) [wfq(wl) +v? }\pl(r) = —iw Ui (r) (3.1)

From these formulas, the two fundamental modes can be
identified: the ordinary wave with - Eo = 0 and the ex- [wgq(wz)eu(wz)Jrv - €(wa) - V} Wy(r)
traordinary wave withs - By = 0. The caseP™! = 0
with Uo,x = 0 corresponds to the linear limit considered in =) (w2)s - VUs(r)—4me | (ws) P} (wp=ws—wi, 1), (3.2)
Ref. 6.

The non-linear polarization vector is usually defined as

[wgq(m)eu(wg) LV fws) -V } Ws(r)
Pt (w,r) = / dwr / dwz (w — w1 — w2) = (ws)s - VU3 (r)—dme L (ws) P} (ws=wn +wa, 1), (3.3)

X Xabe(w1,w2)Ey(w1,r)Ee(wa,r)  (2.10)  and

in the quadratic approximation, whesg,,.(w:,ws) is the ViU, =4ns- [V x Pl (v =w3 —ws,1)], (3.4)
(Fourier transformed) second-order susceptibility tensor (as- 9 9
sumed to be homogeneous). Vil =4r VL -P(wz = w3 —wy,r), (3-5)
A particularly important case is the one in which there is ViUs; =47 V) -P3 (w3 = wy +wa,r), (3.6)
a discrete set of well defined frequencigs such that
where

Ey(w,r) =) 6w —w)EWP(r). (
zi: P, (w1=w3—w3, T)=Xabe (w1=w3—w2) B} (r) [EZ (r)]*
Then the basic equations take the form P2 (wy=ws—w1,T)=Xabe(wa=ws—w1 ) Ej (r)[E} (r)]* (3.7)

) ) . 3 _ _ _ 1 2
VU9 (@) 45 x VUL (1) = 4rPP(wj,wnr), @11 Lo @smwrten D) =Xave(ws=wrtws) B (1) B (r).

g As a next step, let us assume that the potentials have the
an

form

i ;= Ai ik;-r 38

~[ep@e? + —— 7 Ew) - V| eP () Vi = Air)e (3.8)

eL(wi) where
. . . k2 =¢ (UJ)W2 (39)
GH(Wz) () B (1) 4 i B 1 2
+€J_(Wi) s- VUL (r) = 4m P (wj,wg,T) (2.12) and
for extraordinary waves and K, - &(wy) -k, = q(wj)ki
el (ww? + V28 (1) +iw, U5 (r) =0 (2.13) + e (w)kE = eL(wey(w)) WP, (3.10)
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for j = 2,3, and also V- é(ws) - VA3 + 2iks - é(ws) - VA3
Uy = uq(r)elkeka)r (3.11) = | ie|(ws3) s - (k1 + ko)us
_ i(ks—ki)r )
U2 = ’LLQ(I‘)@ ( ) R (312) _ 47761_(&}3)]93”141142] ezAk.r , (322)
Us = ug(r)e’Kitke)r (3.13)

whereAk = k; + ky — k3, and

In the above equationsi;(r) andu;(r) are slowly varying

fUnCtionS OfI‘. —(kgj_ — kQJ_)2’LL1:47TZ. [S X (k3 — kg)] ‘P1L A;Ag (323)

Within this same approximation: (ki — i1 )2us=di (ks — ki) -poy ATAs, (3.24)
E1 >~ w1 S X k1A1 (I‘)eikl‘r (314) and
and — (k11 +koi)?us = 4mi (k1L +koi ) -psL A1As, (3.25)

1 .
v |w2s — ——— (s k)k; | A (r) ki
E; ~ |w?s q(wj)(s k;)k;|A;(r) e of orderk?).
1

- ——VU;. (3.15) 3.1. Phase matching
€L (w;)

. . . . The phase matching conditionks = k; +ks, in which case
for] =1,2. The last '_[err_n in the above e_quatlon is quadratlcthe above equations somewhat simplify:
in the electromagnetic field; to be consistent, it must be ne-
glected when evaluating the polarization vector up to second V2A; + 2ik; - VA, = —iwuy, (3.26)
order. Accordingly:

Pi(w) = ws — wa,r) =p; As(r)Aj(r)elke k)T V - é(wa) - VAg + 2iks - é(wy) - VAy

Po(wy =ws —wi,r) =p2 Ag(r)A*{(r)ei’(kS_kl)']r , (3.16) = i€ (w2) s - koup — 4me (wo)pyATAz,  (3.27)

P3<W3 =wi + (,()2,1') =p3 Al (I-)A2(I.)ei(k1+k2).r ’
V- é(w3) - VAs + 2iks - é(ws3) - VA3

= 26” (W3) S - kdud — 47T€J_ (W3)p3”A1A2 s (328)
where the vectorp; are given in terms of .., s andk; as

and
Pla = Xabc(wl = w3 — w2) €3,b €2,¢c . "
—(kll)2u1 = 43 (S X kl) . p1A2A3 s
P2,a = Xabe(W2 = w3 —w1) €3p €1.¢ (3.17) . "
( ) —(ko1)?up = 4mi ko - P2y AT A3, (3.29)
P3,a = XabelWs = w1 +w2) €1 €2, .
—(ks1)?us = 4miks - psL A1 Ay .
with
er =wis x ki, (3.18) Now, if no absorption is present, we have the following
1 general relations:
e]‘ = CL)?S — 7(S . kj)kj s (319)
eL(wj) . _ _ _
Xabc(w3 =w1 + WQ) - Xbca(wl = w3 — WZ)
forj =2,3.

= Xcab\W2 = W3 — W
The basic Egs. (3.1) to (3.6) now take the form Xeab(w2 3 1)

(Kleinman [7]). Egs. (3.17) then imply

V2A; + 2ik; - VA = —iwu e 18KT (3.20)
e 'pr=ey-pz=e3-py=-C. (3.30)
V - é(wa) - VAg + 2iks - é(ws) - VA With this last condition, it follows after some lengthy but
. straightforward algebra [taking relations (3.10) into account]
= [ZGH(WQ) s (ks — ki)uz that the basic equations (3.26-3.28) take the form
—4 A A —i1Ak-r 3.21 2 X 4 %
mey (w2)pa AT As € ; (3.21) V2A, + 2ik, - VA, = e CA3A;, (3.31)
11
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within the same approximation (that is, keeping only terms
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V- é(w2) - VAg + 2iks - é(ws) - VA, it follows from (4.5) that
. ‘1{%'2 ej(wa)e(ws) CAj A5, (3.32) Ae(2)ki, = (%)2 —e(Mer@ui, (A7)
V- é(ws) - VAz + 2iks - é(ws) - VA3 Ae(2)k3) = —(X:(D?)))z + €1 (e (2)wi (4.8)
— \I:%IQ €| (ws)e(ws) C*A Ay . (3.33)  From (4.6) it also follows th?t
Aty = () —era@t. @)

4. Sideways alignment 9
Ae(3)k3 = —(M) +e (e (Bw?.  (4.10)

Suppose we want to generate a frequengy= w; + ws. . AG(Q)_ o

Since rays 2 and 3 are extraordinary, they do not propagate Accordingly, the following relation is necessary for con-

alongk; andks, but rather along the direction$2) - k, and ~ SIStency:

€(3) - k3 respectively, due to the sideways effect (seg, 5 w3 w3

Ref. 8). It it then possible to choose the directions of propa- e(Doi = D<A6(2) N Ae(g)) ’

gations in such a way that the three rays propagates along the

T - . " i f r = ws.
same directionin additionto the phase matching condition. bésides, of courses + wp = ws. :
) . . From the above formulas, it follows with some lengthy
This can be achieved setting

but straightforward algebra that the anglebetweerk; and

(4.11)

ki +ky = ks s are given by the following equivalent formulas:
, k3 1 waD \2  €1(2)
—~ .2 Ry 2 _ 1
€2 ke =1k +Dhys=aki @D sCh =200 = TRy (wlAe(3)> Ac(2)
/6\(3) -ks = 6J_(3)k3j_ + 6”(3)/€3HS = Bk, B 1 ( wsD )2 - 1 (3)
(in this section, we set(w;) — €(i) in order to lighten the e1(1)Ae(3) \wiAe(2) Ae(3)
notation). This system of linear equations admits non-trivial  [weAe(2)]2e1 (3) — [wzAe(3)]%eL(2) 412
solutions if the proportionality constants and 5 take the T Ae(2)Ac(3) [wBAe(3) — w2Ae(2)] (4.12)
values: The consistency conditions for these equations (since
€1(2)eL(2)Ae(3) 1 >sin*60 > 0) are
" D B Ae(3)re @) > (<)[w Ae(2)re 3)  (4.13)
2 .
Y3)eL(3)Ac(2) i ” "
B = D ) (42) if wAe(3) > (<)wBAe(2).
where luti .
D= e (3)Ac(2) — e1 (2)Ac(3). 4.3) 5. Evolution equations
Furthermore, itis evident that the three ray veclorand the ~ Equations (3.31-3.33) simplify considerably under the as-
optical axiss must be in the same plane. sumption that the only relevant spatial variations are along
Dividing the wave vectors into components perpendiculaii- Choosing the: axis along that direction, it follows that
and parallel tas, we have additionally the conditions d%Al _ CiALAs,
— Ay = CrA7 As, (5.1)
) e T ' Ly = — CiA A,
) dz 3
k3, n k3 — 2 (4.6) where, using (4.1) and (4.2),
) a3 A
and since 2k [k 11|
Eot = -2 1 kot = —% k Cy= e Dgg 4 (5.3)
21 — 6(2) 11 2” - €H(2) 1” ) €‘|(2)A€ (3)
3
k. _ik k _ik 03272(3)11 3(2)01. (5.4)
3L — 6(3) 1L 3“ - EH(3) 1” ’ 6“ €
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Notice that all three coefficients,, C; andC5 are complex, from where it follows, using the definition d, that
but have the same phase.

From the above equations it follows that there is a con- fo1- [Aii _ 1} 2 (6.2)
served quantity: € 2A€
d ) ) ) and therefore o
(oGl + GG |As2 = 1G5 48]) = 0, (5.5) Do ZAAS 63
€
which is the Manley-Rowe relation [9]. It also follows from (6.2) that
A particular solution of Egs. (5.1) is
Ae
A = a1€i6 sech(’yz) 0< E <4. (64)
Ay = aze™ sech(y2) This inequality must be satisfied in order to have triple align-
, ment of the velocity vectors.
Az = aze™ tanh(y2) , Also y
whereé is the common phase @f; anda; are real coeffi- sin? 0, = A€e — 4eAE . (6.5)
cients. Since the amplitudes gf and A, are given as initial AeA€(4A€ — Ae)
conditions, the amplitudel; of the generated wave follows Thus, if the optical axiss makes an angle with the unit
from the relation normal vector to the surface of the crystal, then according to
Snel’s law,
=— - 5.6 '
3 [Cslazazy™, (5-6) sine = /esin(f; — ¢), (6.6)
with : I : L
where. is the incidence angle to which the impinging ray
7% = |C1]|Csla3 = |Cal|Cyaf. (5.7)

must be directed in order to have a phase-matching assisted
Thus the additional conditiofC;|/|Cy| = a?/a2 must be by sideway alignment. Equation (6.4) must be satisfied.
fulfilled for the above analytic solution to be valid. The ratio ~ The evolution of the field is given by Egs. (5.1) with its

|C1]/|C>| follows directly from Egs. (5.2) and (5.3). coefficient given by
; : Co — e (ﬁ)(ac
6. Second harmonic generation 2= 7 \2ae 1,
Let us consider as a further example the generation of second 73 .
harmonics by non-linear effects. Usually, under appropriate Oy = (ﬁ) cy . (6.7)
conditions, an ordinary wave of frequengygives rise to an Eﬁ 2A€

extraordinary wave of frequendw. Accordingly, the pro-
cess is described by the equations given above, with the fol7 Concluding remarks
lowing identification:k; andk, correspond to the ordinary

and extraordinary rays respectively, both with frequency  The formalism presented in this paper can be applied to other
andk; corresponds to the extraordinary wave of frequencyprocesses, such as difference-frequency generation and para:

2w, thatisiw; = ws = w andw; = 2w. metric down-conversion (to be considered in a forthcoming
In order to further lighten the notation, let us redefinepyplication). As for the particular scheme of sideways align-
€1 (w) = eande, (2w) = € and similarly forAe ande;. ment herein proposed, it is left as a proposal to find crystals
Then, according to the consistency condition (4.11):  wjth the appropriate parameters, and to check its validity ex-
4 1 perimentally.
€= D(E - E)’ (6.1) Work supported by PAPIIT-UNAM project IN101511.
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