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Apartado Postal 20-364, Ḿexico D.F. 01000, Mexico,
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A formalism in terms of Hertz potentials is presented describing sum-frequency generation in a uniaxial non-linear crystal. A scheme is
proposed consisting in aligning the sideways propagation of extraordinary waves in combination with phase-matching. Simplified paraxial
equations describing this situation are obtained. Particular attention is paid to the generation of second harmonics.
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1. Introduction

Sum-frequency and difference-frequency generations are im-
portant processes in nonlinear optics (see,e.g., Ref. 1 and 2).
The aim of the present article is to develop a formalism de-
scribing such nonlinear optical processes in terms of Hertz
potentials. The first part of the article is devoted to a deriva-
tion of the equations describing the generation of higher fre-
quencies in a uniaxial nonlinear (up to second order) crys-
tal in the paraxial approximation. Particular attention is paid
to the fact that, for extraordinary waves, the wave vectors
do not coincide with the group velocity vector. This usually
originates some difficulties in optical experiments and must
be taken into account carefully [3]. Several experimental
schemes have been proposed to take this effect into account
and use it to improve the efficiency of the frequency-doubling
(see Asaumi [4] and references therein). In the second part
of the article, a possible scheme is proposed from a theo-
retical point of view for generating higher frequencies using
precisely this sideways propagation. The idea is to combine
phase matching, which involves wave vectors, with group ve-
locity vectors. More specifically, the scheme consists in com-
bining both ordinary and extraordinary beams in such a way
that all three waves involved in the process are aligned in the
same direction. The conditions to be fulfilled by the crystal
parameters for this particular configuration are given explic-
itly. An analytic solution is also obtained for particular values
of the amplitudes of the initial waves.

The organization of this article is as follows. In Sec. 2, a
general formulation of the problem in terms of Hertz poten-
tials is worked out following Nisbet’s original treatment [5].
The results are applied in Sec. 3 to the problem of sum-
frequency generation. The possible alignment of the three
group velocities involved in the scheme is studied in Sec. 4.
The evolution equations are presented in Sec. 5, together with
a particular analytic solution. Finally, the particular case of
second harmonic generation is considered in Sec. 6.

2. Propagation in a birefringent medium

Consider an anisotropic medium described by electric and
magnetic field vectors,E andB, and electric displacement
vector D. The Maxwell equations in the absence of free
charges and currents (with magnetic permeabilityµ = 1 and
settingc = 1) are

∇ ·B = 0 , ∇×E +
∂B
∂t

= 0 , (2.1)

∇ ·D = 0 , ∇×B− ∂D
∂t

= 0 . (2.2)

The effect of the material medium can be described by a
polarization vectorP such that

D = E + 4πP,

the linear part being given in terms of the dyad

ε̂ = ε⊥1 + ∆ε s s,

wheres is the optical axis of symmetry of the medium, and
ε⊥ andε‖ = ε⊥ + ∆ε are the permeability perpendicular and
parallel to this symmetry axis respectively. Then

D(ω, r) = ε̂(ω) E(ω, r) + 4πPNL(ω, r)

wherePNL is the non-linear contribution to the polarization
vector. Here and in the following, Fourier transforms with
respect to time of all quantities will be used.

Following Nisbet [5], the electromagnetic field can be de-
scribed by two scalar Hertz potentials, to be calledΨO and
ΨE in the present paper, and two additional scalar potentials,
to be calledUO andUE . These potentials satisfy the equa-
tions

∇⊥UE + s×∇UO = 4πP⊥NL , (2.3)

1
ε⊥(ω)

∇ · ε̂(ω) · ∇ ΨE + ε‖(ω)ω2ΨE

− ε‖(ω)
ε⊥(ω)

s · ∇UE = −4πPNL
‖ , (2.4)
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∇2ΨO + ε⊥(ω)ω2ΨO + iωUO = 0 . (2.5)

In these formulas,∇⊥ is the gradient operator in the plane
perpendicular tos. Eq. (2.3) implies

∇2
⊥UE = 4π ∇⊥ ·P⊥NL , (2.6)

∇2
⊥UO = 4π s · (∇×PNL) , (2.7)

which permits to decouple the potentialsΨO andUO from
ΨE andUE .

As shown in a previous article (Hacyan and Jáuregui [6]),
the advantage of this formulation is thatΨO and ΨE cor-
respond to the potentials for the ordinary and extraordinary
waves respectively. The electromagnetic field is given by

E = −iωs×∇ΨO

+
1
ε⊥
∇(s · ∇ΨE) + ω2ΨE s− 1

ε⊥
∇UE (2.8)

and

B = ∇× [∇× (ΨOs)]− iω∇× (ΨEs) . (2.9)

From these formulas, the two fundamental modes can be
identified: the ordinary wave withs · EO = 0 and the ex-
traordinary wave withs · BE = 0. The casePNL = 0
with UO,E = 0 corresponds to the linear limit considered in
Ref. 6.

The non-linear polarization vector is usually defined as

PNL
a (ω, r) =

∫
dω1

∫
dω2 δ(ω − ω1 − ω2)

× χabc(ω1, ω2)Eb(ω1, r)Ec(ω2, r) (2.10)

in the quadratic approximation, whereχabc(ω1, ω2) is the
(Fourier transformed) second-order susceptibility tensor (as-
sumed to be homogeneous).

A particularly important case is the one in which there is
a discrete set of well defined frequenciesωi, such that

Ea(ω, r) =
∑

i

δ(ω − ωi)E(i)
a (r) .

Then the basic equations take the form

∇⊥U
(i)
E (r) + s×∇U

(i)
O (r) = 4πP(i)

⊥ (ωj , ωk, r) , (2.11)

and

−
[
ε‖(ωi)ω2

i +
1

ε⊥(ωi)
∇ · ε̂(ωi) · ∇

]
Ψ(i)

E (r)

+
ε‖(ωi)
ε⊥(ωi)

s · ∇U
(i)
E (r) = 4πP

(i)
‖ (ωj , ωk, r) (2.12)

for extraordinary waves and
[
ε⊥(ωi)ω2

i +∇2
]
Ψ(i)

O (r) + iωiU
(i)
O (r) = 0 (2.13)

for ordinary waves, where (settingωi = ωj + ωk)

P (i)
a (ωi = ωj + ωk, r) = χabc(ωi = ωj + ωk)

× E
(j)
b (r)E(k)

c (r) (2.14)

and

P (j)
a (ωj = ωi − ωk, r) = χabc(ωj = ωi − ωk)

× E
(i)
b (r)E(k)∗

c (r) . (2.15)

3. Sum-frequency generation

Consider a typical problem of sum-frequency generation.
Suppose an ordinary and an extraordinary waves, of frequen-
cies ω1 and ω2 respectively, combine inside the crystal to
generate an extraordinary wave of frequencyω3 = ω1 + ω2.
Let ψi be the Hertz potential corresponding to frequencies
ωi, andUi the associated auxiliary potentials. Accordingly
the basic equations take the form:

[
ω2

1ε⊥(ω1) +∇2
]
Ψ1(r) = −iω1U1(r) , (3.1)

[
ω2

2ε⊥(ω2)ε‖(ω2)+∇ · ε̂(ω2) · ∇
]
Ψ2(r)

=ε‖(ω2)s · ∇U2(r)−4πε⊥(ω2)P 2
‖ (ω2=ω3−ω1, r), (3.2)

[
ω2

3ε⊥(ω3)ε‖(ω3) +∇ · ε̂(ω3) · ∇
]
Ψ3(r)

=ε‖(ω3)s · ∇U3(r)−4πε⊥(ω3)P 3
‖ (ω3=ω1+ω2, r), (3.3)

and

∇2
⊥U1 = 4π s · [∇×P1

⊥(ω1 = ω3 − ω2, r)] , (3.4)

∇2
⊥U2 = 4π ∇⊥ ·P2(ω2 = ω3 − ω1, r) , (3.5)

∇2
⊥U3 = 4π ∇⊥ ·P3(ω3 = ω1 + ω2, r) , (3.6)

where

P 1
a (ω1=ω3−ω2, r)=χabc(ω1=ω3−ω2)E3

b (r)[E2
c (r)]∗

P 2
a (ω2=ω3−ω1, r)=χabc(ω2=ω3−ω1)E3

b (r)[E1
c (r)]∗ (3.7)

P 3
a (ω3=ω1+ω2, r)=χabc(ω3=ω1+ω2)E1

b (r)E2
c (r).

As a next step, let us assume that the potentials have the
form

ψi = Ai(r)eiki·r (3.8)

where
k2

1 = ε⊥(ω1) ω2
1 (3.9)

and

kj · ε̂(ωj) · kj = ε⊥(ωj)k2
j⊥

+ ε‖(ωj)k2
j‖ = ε⊥(ωj)ε‖(ωj) ω2

j , (3.10)
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for j = 2, 3, and also

U1 = u1(r)ei(k3−k2)·r , (3.11)

U2 = u2(r)ei(k3−k1)·r , (3.12)

U3 = u3(r)ei(k1+k2)·r . (3.13)

In the above equations,Ai(r) andui(r) are slowly varying
functions ofr.

Within this same approximation:

E1 ' ω1 s× k1A1(r)eik1·r (3.14)

and

Ej '
[
ω2

j s−
1

ε⊥(ωj)
(s · kj)kj

]
Aj(r) eikj ·r

− 1
ε⊥(ωj)

∇Uj . (3.15)

for j = 1, 2. The last term in the above equation is quadratic
in the electromagnetic field; to be consistent, it must be ne-
glected when evaluating the polarization vector up to second
order. Accordingly:

P1(ω1 = ω3 − ω2, r) =p1 A3(r)A∗2(r)e
i(k3−k2)·r ,

P2(ω2 = ω3 − ω1, r) =p2 A3(r)A∗1(r)e
i(k3−k1)·r , (3.16)

P3(ω3 = ω1 + ω2, r) =p3 A1(r)A2(r)ei(k1+k2)·r ,

where the vectorspi are given in terms ofχabc, s andki as

p1,a = χabc(ω1 = ω3 − ω2) e3,b e2,c ,

p2,a = χabc(ω2 = ω3 − ω1) e3,b e1,c , (3.17)

p3,a = χabc(ω3 = ω1 + ω2) e1,b e2,c ,

with

e1 = ω1s× k1 , (3.18)

ej = ω2
j s−

1
ε⊥(ωj)

(s · kj)kj , (3.19)

for j = 2, 3.
The basic Eqs. (3.1) to (3.6) now take the form

∇2A1 + 2ik1 · ∇A1 = −iω1u1e
−i∆k·r, (3.20)

∇ · ε̂(ω2) · ∇A2 + 2ik2 · ε̂(ω2) · ∇A2

=
[

iε‖(ω2) s · (k3 − k1)u2

− 4πε⊥(ω2)p2‖A∗1A3

]
e−i∆k·r , (3.21)

∇ · ε̂(ω3) · ∇A3 + 2ik3 · ε̂(ω3) · ∇A3

=
[

iε‖(ω3) s · (k1 + k2)u3

− 4πε⊥(ω3)p3‖A1A2

]
ei∆k·r , (3.22)

where∆k = k1 + k2 − k3, and

−(k3⊥−k2⊥)2u1=4πi [s× (k3−k2)] ·p1⊥ A∗2A3 (3.23)

−(k3⊥ − k1⊥)2u2=4πi (k3⊥ − k1⊥) · p2⊥ A∗1A3 , (3.24)

and

−(k1⊥+k2⊥)2u3 = 4πi (k1⊥+k2⊥) ·p3⊥ A1A2 , (3.25)

within the same approximation (that is, keeping only terms
of orderk2).

3.1. Phase matching

The phase matching condition isk3 = k1+k2, in which case
the above equations somewhat simplify:

∇2A1 + 2ik1 · ∇A1 = −iω1u1, (3.26)

∇ · ε̂(ω2) · ∇A2 + 2ik2 · ε̂(ω2) · ∇A2

= iε‖(ω2) s · k2u2 − 4πε⊥(ω2)p2‖A∗1A3 , (3.27)

∇ · ε̂(ω3) · ∇A3 + 2ik3 · ε̂(ω3) · ∇A3

= iε‖(ω3) s · k3u3 − 4πε⊥(ω3)p3‖A1A2 , (3.28)

and

−(k1⊥)2u1 = 4πi (s× k1) · p1A
∗
2A3 ,

−(k2⊥)2u2 = 4πi k2 · p2⊥A∗1A3 , (3.29)

−(k3⊥)2u3 = 4πi k3 · p3⊥A1A2 .

Now, if no absorption is present, we have the following
general relations:

χ∗abc(ω3 = ω1 + ω2) = χbca(ω1 = ω3 − ω2)

= χcab(ω2 = ω3 − ω1)

(Kleinman [7]). Eqs. (3.17) then imply

e1 · p1 = e2 · p2 = e3 · p∗3 ≡ −C . (3.30)

With this last condition, it follows after some lengthy but
straightforward algebra [taking relations (3.10) into account]
that the basic equations (3.26-3.28) take the form

∇2A1 + 2ik1 · ∇A1 =
4π

|k1⊥|2 CA∗2A3 , (3.31)
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∇ · ε̂(ω2) · ∇A2 + 2ik2 · ε̂(ω2) · ∇A2

=
4π

|k2⊥|2 ε‖(ω2)ε(ω2) CA∗1A3 , (3.32)

∇ · ε̂(ω3) · ∇A3 + 2ik3 · ε̂(ω3) · ∇A3

=
4π

|k3⊥|2 ε‖(ω3)ε(ω3) C∗A1A2 . (3.33)

4. Sideways alignment

Suppose we want to generate a frequencyω3 = ω1 + ω2.
Since rays 2 and 3 are extraordinary, they do not propagate
alongk2 andk3, but rather along the directionŝε(2) · k2 and
ε̂(3) · k3 respectively, due to the sideways effect (seee.g.,
Ref. 8). It it then possible to choose the directions of propa-
gations in such a way that the three rays propagates along the
same direction,in addition to the phase matching condition.
This can be achieved setting

k1 + k2 = k3 ,

ε̂(2) · k2 = ε⊥(2)k2⊥ + ε‖(2)k2‖s = αk1 (4.1)

ε̂(3) · k3 = ε⊥(3)k3⊥ + ε‖(3)k3‖s = βk1

(in this section, we setε(ωi) → ε(i) in order to lighten the
notation). This system of linear equations admits non-trivial
solutions if the proportionality constantsα and β take the
values:

α =
ε‖(2)ε⊥(2)∆ε(3)

D

β =
ε‖(3)ε⊥(3)∆ε(2)

D
, (4.2)

where
D ≡ ε⊥(3)∆ε(2)− ε⊥(2)∆ε(3). (4.3)

Furthermore, it is evident that the three ray vectorski and the
optical axiss must be in the same plane.

Dividing the wave vectors into components perpendicular
and parallel tos, we have additionally the conditions

k2
1⊥ + k2

1‖ = ε⊥(1) ω2
1 , (4.4)

k2
2⊥

ε‖(2)
+

k2
2‖

ε⊥(2)
= ω2

2 , (4.5)

k2
3⊥

ε‖(3)
+

k2
3‖

ε⊥(3)
= ω2

3 , (4.6)

and since

k2⊥ =
α

ε(2)
k1⊥ , k2‖ =

α

ε‖(2)
k1‖ ,

k3⊥ =
β

ε(3)
k1⊥ , k3‖ =

β

ε‖(3)
k1‖ ,

it follows from (4.5) that

∆ε(2)k2
1⊥ =

( ω2D

∆ε(3)

)2

− ε⊥(1)ε⊥(2)ω2
1 , (4.7)

∆ε(2)k2
1‖ = −

( ω2D

∆ε(3)

)2

+ ε⊥(1)ε‖(2)ω2
1 . (4.8)

From (4.6) it also follows that

∆ε(3)k2
1⊥ =

( ω3D

∆ε(2)

)2

− ε⊥(1)ε⊥(3)ω2
1 , (4.9)

∆ε(3)k2
1‖ = −

( ω3D

∆ε(2)

)2

+ ε⊥(1)ε‖(3)ω2
1 . (4.10)

Accordingly, the following relation is necessary for con-
sistency:

ε(1)ω2
1 = D

( ω2
3

∆ε(2)
− ω2

2

∆ε(3)

)
, (4.11)

besides, of course,ω1 + ω2 = ω3.
From the above formulas, it follows with some lengthy

but straightforward algebra that the angleθ1 betweenk1 and
s are given by the following equivalent formulas:

sin2 θ1 =
k2
1⊥

k1‖2
=

1
ε⊥(1)∆ε(2)

( ω2D

ω1∆ε(3)

)2

− ε⊥(2)
∆ε(2)

=
1

ε⊥(1)∆ε(3)

( ω3D

ω1∆ε(2)

)2

− ε⊥(3)
∆ε(3)

=
[ω2∆ε(2)]2ε⊥(3)− [ω3∆ε(3)]2ε⊥(2)
∆ε(2)∆ε(3) [ω2

3∆ε(3)− ω2
2∆ε(2)]

. (4.12)

The consistency conditions for these equations (since
1 > sin2 θ > 0) are

[
ω3∆ε(3)

]2

ε‖(2) > (<)
[
ω2∆ε(2)

]2

ε‖(3) (4.13)

if ω2
3∆ε(3) > (<)ω2

2∆ε(2).

5. Evolution equations

Equations (3.31-3.33) simplify considerably under the as-
sumption that the only relevant spatial variations are along
k1. Choosing thez axis along that direction, it follows that

d

dz
A1 = C1A

∗
2A3,

d

dz
A2 = C2A

∗
1A3, (5.1)

d

dz
A3 = − C∗3A1A2 ,

where, using (4.1) and (4.2),

C1 =
4π

2ik1|k⊥1|2 C (5.2)

C2 =
D3

ε2‖(2)∆ε3(3)
C1 (5.3)

C3 =
D3

ε2‖(3)∆ε3(2)
C1 . (5.4)
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Notice that all three coefficientsC1, C2 andC3 are complex,
but have the same phase.

From the above equations it follows that there is a con-
served quantity:

d

dz

(
C2C

∗
3 |A1|2 + C3C

∗
1 |A2|2 − C1C

∗
2 |A3|2

)
= 0 , (5.5)

which is the Manley-Rowe relation [9].
A particular solution of Eqs. (5.1) is

A1 = a1e
iδ sech(γz)

A2 = a2e
iδ sech(γz)

A3 = a3e
iδ tanh(γz) ,

whereδ is the common phase ofCi andai are real coeffi-
cients. Since the amplitudes ofA1 andA2 are given as initial
conditions, the amplitudeA3 of the generated wave follows
from the relation

a3 = −|C3|a2a2γ
−1, (5.6)

with
γ2 = |C1||C3|a2

2 = |C2||C3|a2
1. (5.7)

Thus the additional condition|C1|/|C2| = a2
1/a2

2 must be
fulfilled for the above analytic solution to be valid. The ratio
|C1|/|C2| follows directly from Eqs. (5.2) and (5.3).

6. Second harmonic generation

Let us consider as a further example the generation of second
harmonics by non-linear effects. Usually, under appropriate
conditions, an ordinary wave of frequencyω gives rise to an
extraordinary wave of frequency2ω. Accordingly, the pro-
cess is described by the equations given above, with the fol-
lowing identification:k1 andk2 correspond to the ordinary
and extraordinary rays respectively, both with frequencyω,
andk3 corresponds to the extraordinary wave of frequency
2ω, that is:ω1 = ω2 ≡ ω andω3 = 2ω.

In order to further lighten the notation, let us redefine
ε⊥(ω) ≡ ε andε⊥(2ω) ≡ ε, and similarly for∆ε andε‖.

Then, according to the consistency condition (4.11):

ε = D
( 4

∆ε
− 1

∆ε

)
, (6.1)

from where it follows, using the definition ofD, that

ε

ε
= 1−

[ ∆ε

2∆ε
− 1

]2

(6.2)

and therefore

D =
ε∆ε2

4∆ε
. (6.3)

It also follows from (6.2) that

0 <
∆ε

∆ε
< 4 . (6.4)

This inequality must be satisfied in order to have triple align-
ment of the velocity vectors.

Also

sin2 θ1 =
∆ε2ε− 4ε∆ε2

∆ε∆ε(4∆ε−∆ε)
. (6.5)

Thus, if the optical axiss makes an angleφ with the unit
normal vector to the surface of the crystal, then according to
Snel’s law,

sin ι =
√

ε sin(θ1 − φ), (6.6)

whereι is the incidence angle to which the impinging ray
must be directed in order to have a phase-matching assisted
by sideway alignment. Equation (6.4) must be satisfied.

The evolution of the field is given by Eqs. (5.1) with its
coefficient given by

C2 =
ε3

ε2‖

( ∆ε

2∆ε

)6

C1 ,

C3 =
ε3

ε2‖

( ∆ε

2∆ε

)6

C1 . (6.7)

7. Concluding remarks

The formalism presented in this paper can be applied to other
processes, such as difference-frequency generation and para-
metric down-conversion (to be considered in a forthcoming
publication). As for the particular scheme of sideways align-
ment herein proposed, it is left as a proposal to find crystals
with the appropriate parameters, and to check its validity ex-
perimentally.
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6. S. Hacyan and R. Jáuregui,J. Opt. A: Pure Appl. Opt.11(2009)
085204.

7. D.A. Kleinman,Phys. Rev.126(1962) 1977.

8. S. Hacyan,J. Opt. Soc. Am.A 27 (2010) 602.

9. J.M. Manley and H.E. Rowe,Proc. IRE47 (1959) 2115.

Rev. Mex. Fis.58 (2012) 265–269


