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A positive Lyapunov exponent indicates the presence of chaos in a dynamical system. In this manner, computing its maximum value
guarantees the unpredictability grade of a chaotic system. In this investigation we present the application and comparison of two heuristics:
Differential Evolution (DE) and Particle Swarm Optimization (PSO), to maximize the positive Lyapunov exponent in a multi-scroll chaotic
oscillator based on saturated nonlinear function series. The computed results show that DE and PSO algorithms are suitable to maximize
the positive Lyapunov exponent of truncated coefficients over the continuous spaces. In addition, the phase diagrams show that for a small
positive Lyapunov exponent the attractors are well defined, while for its maximum value, the attractors are not well appreciated because the
unpredictability grade of the chaotic oscillator is increased.
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Un exponente positivo de Lyapunov indica la presencia de caos en un sistema dinámico. De esta manera, el cálculo de un valor ḿaximo garan-
tiza el grado de impredicibilidad de un sistema caótico. En esta investigación presentamos la aplicación y comparacíon de dos heurı́sticas:
evolucíon diferencial (DE) y optimización por enjambre de particulas (PSO), para maximizar el exponente positivo de Lyapunov en un os-
cilador cáotico de ḿultiples enrollamientos basado en series de funciones saturadas. Los resultados calculados muestran que DE y PSO son
adecuados para maximizar el exponente positivo de coeficientes truncados sobre espacios continuos. Adicionalmente, los diagramas de fase
muestran que para un exponente positivo de Lyapunov pequeño los atractores estan bien definidos, mientras que para su valor máximo, los
atractores no se aprecian bien porque el grado de impredicibilidad del oscilador caótico est́a aumentado.

Descriptores: Oscilador cáotico; atractor de ḿultiples enrollamientos; exponente de Lyapunov; serie de funciones saturadas; función PWL;
algoritmos evolutivos.

PACS: 05.45.Pq; 05.45.Pq; 84.30.Ng; 07.50.Ek; 84.30.-r; 01.50.Pa

1. Introduction

Several multi-scroll chaotic oscillators [1-3], can be mod-
eled by piecewise-linear (PWL) approaches [4], so that the
nonlinear dynamical problem is transformed to a linear one.
However, some of the research challenges in chaotic oscilla-
tors are, for example: how to understand when a determinis-
tic dynamical system might exhibit chaotic behavior, the re-
quired conditions of this behavior [1-3], the ways available
to control it [5], the ways to implement it with electronic
devices [6-8], and the practical and theoretical implications
that follow. For instance, the Lyapunov exponents provide
a means of ascertaining whether the behavior of a system is
chaotic. In this manner, the presence of at least one posi-
tive Lyapunov exponent in a dynamical system has often been
taken as a confirmation of chaotic motion [4].

A large positive Lyapunov exponent indicates a large in-
crease in the degree of unpredictability of a dynamical sys-
tem. Henceforth, in this investigation we present the appli-
cation and comparison of two heuristics: Differential Evolu-
tion (DE) and Particle Swarm Optimization (PSO) to maxi-
mize the positive Lyapunov exponent in a multi-scroll chaotic
oscillator based on saturated nonlinear function series. The
Lyapunov exponents are computed for the chaotic oscillator
from two to six scrolls, and with the same execution condi-
tions for DE and PSO. Drawing the phase diagrams of the
multi-scroll chaotic oscillator highlights the results provided
by these evolutionary algorithms. From the preliminary work
presented in Ref. 4, we also provide a figure to observe the
Kaplan-Yorke dimension of the attractors optimized with DE,
PSO and with constant coefficients of 0.7. Finally, a short
discussion on the behavior of DE and PSO to maximize the
positive Lyapunov exponent, is provided.
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2. Multi-Scroll Chaotic Oscillator

A multi-scroll chaotic oscillator can be described by the sys-
tem of differential equations given in (1) [1,3], wherea, b,
c, andd1 are positive constants which can have values in the
interval[0, 1]. The system is controlled by the PWL approxi-
mation,e.g.series of a saturated functionf ,

ẋ = y

ẏ = z

ż = −ax− by − cz − d1f(x; m) (1)

Now, it will be described in detail how the saturated func-
tion f in (1) is obtained. Letf0 be the saturated function:

f0(x; m) =





1, if x > m
x
m , if |x| ≤ m
−1, if x < −m,

(2)

where1/m is the slope of the middle segment andm > 0; the
upper radial{f0(x;m) = 1 |x > m}, and the lower radial
{f0(x; m) = −1 |x < −m} are calledsaturated plateaus,
and the segment{f0(x;m) = x/m | |x| ≤ m} between
the two saturated plateaus is calledsaturated slope. Figure 1
shows the phase diagram of the saturated functionf0(x;m).

Lets us consider also the saturated functionsfh andf−h

defined as:

fh(x; m,h) =





2, if x > h + m
x−h
m , if |x− h| ≤ m
0, if x < h−m,

(3)

and

f−h(x; m,−h) =





0, if x > h + m
x−h
m , if |x− h| ≤ m
−2, if x < h−m,

(4)

whereh is called thesaturated delay timeandh > m. There-
fore, a saturated function series for a chaotic oscillator withs
scrolls is defined as the function:

f(x;m) =
s−2∑

i=0

f2i−s+2(x; m, 2i− s + 2), (5)

wheres > 2.
For example, usingf = f0 in (1) a 2-scrolls chaotic os-

cillator can be generated; the saturated function series for a
3-scrolls oscillator is

f(x; m) = f−1(x; m,−1) + f1(x; m, 1),

and for a 4-scrolls oscillator it will be

f(x;m) = f−2(x;m,−2) + f0(x;m) + f2(x;m, 2).

Both function series are shown in Fig. 2 form = 0.2. Note
that the value ofh in (3) and (4) represents the center of the
saturated slopes.

FIGURE 1. Saturated functionf0(x; m).

FIGURE 2. Examples of two saturated function series to generate,
(a) 3-scrolls and (b) 4-scrolls.

3. Computing Lyapunov Exponents

The deterministic, still unpredictable behavior of nonlinear
dissipative dynamical systems is an important subject in more
and more fields of science, from mathematics to biology;
even in engineering.
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The Lyapunov exponents (LEs) give the most characteris-
tic description of the presence of a deterministic nonperiodic
flow. Therefore, LEs are asymptotic measures characterizing
the average rate of growth (or shrinking) of small perturba-
tions to the solutions of a dynamical system. LEs provide
quantitative measures of response sensitivity of a dynamical
system to small changes in initial conditions [9]. The num-
ber of LE equals the number of state variables, and if at least
one is positive, this is an indication of chaos [4,9,10]. That
way, we show that DE and PSO algorithms are suitable to
maximize the positive LE to guarantee chaotic regime.

In order to measure the LE, the initial state is set to

v0 ∈ R12

v0 = [uT
0, e

T
1, e

T
2, e

T
3]

T (6)

where[e1, e2, e3] = I, andI is the identity matrix of size
3 × 3. Thus,ei, for i = 1, 2, 3, are each unitary column
vectors of the identity matrixI.

The original dynamical system in (1) is observed by ex-
panding it with other three variational systems. Each one of
these added systems will give us the changes in the origi-
nal dynamical system with respect to three different direc-
tions for each of the three state variables. For instance, if
u = [x, y, z]T represents one state of the system in (1) at
any t > 0, the state of the new observed system will be
v = [u,u1,u2,u3]T.

The observational system is integrated over several steps
until a periodTO is reached [4]. After this step, the state of
the variational system is orthonormalized by using the stan-
dard Gram-Schmidt method [11]. Using the new orthonor-
malized vectors as initial conditions carries out the next inte-
gration.

The exponents measure the long time sensitivity of the
flow in u̇ with respect to the initial datau0 at the di-
rections of every orthonormalized vector. This measure is
taken when the variational system is orthonormalized. If
v=[u,p1,p2,p3]T is the state after the matrix[u1,u2,u3]
is orthonormalized, the LEλi, for i = 1, 2, 3, is calculated
by

λi ≈ 1
T

T∑

j=TO

ln
∥∥pi

∥∥, (7)

whereTO is a time step greater than the integration time step
used to solve (1).

Since LEs measure the long-term sensitivity, it is not re-
quired to calculate them at every integration step. The se-
lection ofTO is made by using the inverse of the minimum
absolute value of all the eigenvalues of the system [4], that is:

TO =
1

min(λi)
, for i = 1, 2, 3. (8)

4. DE and PSO

DE and PSO are two evolutionary algorithms, both work with
a population of tentative solutions to the problem, and new

solutions are generated by combining the old ones and by sur-
viving the ones with better fitness. Both algorithms are used
as solvers for global optimization problems, more commonly
in problems with a continuous representation.

A global optimization problem can be formulated as to
minimize the function

f : RD → R

f(x), s.t. xj ∈ [lj , uj ], j = 1, . . . , D (9)

wheref is the objective function, andx is a continuous vari-
able vector ofD dimensions. The feasible domain of variable
x is defined by specifying upper (uj) and lower (lj ) limits of
each componentj.

The usefulness of DE and PSO relies in the fact that they
need only the value of functionf to work, or in other words,
it is not necessary thatf be continuous or to get any informa-
tion about how the derivative of functionf is.

DE is one of the most recent population-based stochastic
evolutionary optimization techniques [12]. We use the most
common version of DE, the rand/1/bin. The pseudocode of
DE is shown in Algorithm 1. Each individual is represented

ALGORITHM 1. Differential evolution algorithm (rand/1/bin ver-
sion).

1: N is the number of individuals

2: G is the number of iterations (generations)

3: Variable boundsxi ∈ [li, ui], for i = 1, 2, . . . D

4: ProcedureDE (N , G, {li, ui})
5: for i = 1 : N do B Initialize the population

6: for d = 1 : D do

7: xi[d] = ld + (ud − ld)· rand()

8: xi.fit ← evaluate (xi)

9: for i = 1 : G do

10: Letj1, j2 andj3 be three random numbers in{1, N}
without replacement and also different toi.

11: jrand← brand() ·Dc+ 1

12: for d = 1 : D do

13: if rand()< R ORd = jrandthen

14: y[d] = xi2[d] + F (xi0[d]− xi1[d])

15: if y[d] < ld OR y[d] > ud then

16: y[d] = ld + (ud − ld) · rand()

17: else

18: y[d] = xi[d]

19: y.fit = evaluate( y )

20: if y.fit < xi.fit then

21: xi ← y; xi.fit ← y.fit

22: searchq = xk | min(xk.fit), for k = 1, 2, . . . , N.

23: q is the solution at iterationi
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by a vectorx ∈ RD, and its fitness value is represented as
x.fit. The locationj of individual i is represented asxi[j].
rand() is a function that returns a random number greater or
equal to zero and less than one. evaluate( ) is a function that
calculates the fitness function (function to be optimized).

The core of DE is in the loop on lines 13-18: a new indi-
vidual is generated from three different individuals randomly
chosen; each value of the new vector (a new individual) is cal-
culated from the first father, plus the difference of the other
two fathers multiplied byF , the difference constant; the new
vector value is calculated if a random real number (between
zero and one) is less thanR, the DE’s recombination con-
stant. To prevent the case when the new individual is equal

to the first father, at least one vector’s component is forced to
be calculated from their fathers values, it is in line 13 of the
pseudocode, whend = jrand, and jrand is an integer random
number between 1 andD. Then the new individual is evalu-
ated. If it is better than the father (in line 20), then the child
replaces its father (line 21).

The pseudocode for PSO is shown in Algorithm 2. Each
particlepi has three associated values: positionpi.pos, veloc-
ity pi.vel, and the value of the fitness functionpi.fit. Particle
pbest has only position and fitness function value. gbest[ ] is
a vector to store indexes to reference pbest particles. rand()
is a function that returns a random number greater or equal to
zero and less than one. evaluate( ) is a function that calculates

ALGORITHM 2. Particle swarm optimization algorithm.

1: N is the number of particles

2: G is the number of iterations (generations)

3: Variable boundsxi ∈ [li, ui], for i = 1, 2, . . . D

4: Procedure PSO(N , G, {li}, {ui})
5: for i = 1 : N do B Initialize particle’s positions

6: for d = 1 : D do

7: pi.posd = ld + (ud − ld) · rand()

8: pbesti.posd ← pi.posd

9: pi.fit ← evaluate(pi.pos)

10: pbesti.fit ← pi.fit

11: for i = 1 : N do B Initialize particles’ velocities

12: for d = 1 : D do

13: vmin =ld − pi.posd

14: vmax =ud − pi.posd

15: pi.veld = vmin + (vmax-vmin)· rand()

16: for g = 1 : G do B IterateG generations

17: for i = 1 : N do B For each particle

18: Letj1, j2 andj3 be three random numbers in{1, N}
19: gbest[i] = k | min(pbestk.fit), for k ∈ {i, j1, j2, j3}
20: for i = 1 : N do B For each particle

21: for d = 1 : D B For each dimension

22: pi.posd ← w pi.veld + w1(pbesti.posd - pi.posd) + w2 (pbestgbest[i].posd - pi.posd)

23: pi.veld ← pi.posd + pi.veld

24: if pi.posd < ld

25: pi.posd = ld; pi. veld = 0

26: if pi.posd > Ld then

27: pi.posd = Ld; pi.veld = 0

28: f = evaluate(p.posi)

29: if f < pbest.fiti then

30: pbesti.pos← p.posi

31: pbesti.fit ← f

32: searchq = pbestk.pos — min(pbestk.fit), for k = 1, 2, . . . , N.

33: q is the solution at iterationg
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TABLE I. Calculated positive Lyapunov exponent and coefficients values from 2 to 6 scrolls.

Scrolls Lyap. exponent Maximum Lyap. exp. and Maximum Lyap. exp. and

obtained with (a, b, c, d1) coef. values for (a, b, c, d1) values for

a = b = c = d1 = 0.7 PSO DE

2 0.1257 0.3859 0.3856

(0.3578, 1.0000, 0.0902, 0.7828) (0.2336, 0.7564, 0.0746, 0.6363)

3 0.1564 0.4226 0.4063

(0.4680, 1.0000, 0.0813 0.5206) (0.3972, 0.8154, 0.0768, 0.4043)

4 0.1748 0.4328 0.4468

(0.6823, 0.9388, 0.1055, 0.6676) (0.3779, 0.8635, 0.0669, 0.3722)

5 0.1867 0.4428 0.4421

(0.9560, 0.7921, 0.1601, 0.9614) (0.9146, 0.9522, 0.1106, 0.8829)

6 0.1810 0.4548 0.4554

(0.9978, 0.7254, 0.1297, 0.9999) (0.7012, 0.9506, 0.0862, 0.6885)

FIGURE 3. Comparison of results obtained by DE and PSO. The
average and± standard deviation of 30 runs of each algorithm are
shown.

the value function that calculates the value of the fitness
for the problem to solve. This PSO version was inspired
from [13] and [14,15]. The main advantage of this PSO al-
gorithm (not using extra parameters), consists on having only
the essential parameters as the number of individuals and the
number of iterations (generations). Particles positionspi are
initialized randomly and also their velocities (in lines 5-10
and 11-15 in Algorithm 2, respectively). Each particle is
evaluated and pbesti particles are initialized equal to thepi

ones.

For a given number of iterations the following process is
applied: (1) three random numbers are calculated in[1, N ]
(N= population size) with replacement; gbest[i] points to the
best particle inside this cluster of three particles. (2) A new
particle is calculated (line 22 on Algorithm 2) and its velocity
is updated (line 23). If this new particle is better than its as-
sociated pbest, then pbest particle takes the values of the new
particle. The solution after one iteration is searched in the set
of pbest particles (lines 32-33 in Algorithm 2).

FIGURE 4. Kaplan-Yorke dimension of the attractors optimized
with DE, PSO and with constant coefficients of 0.7.

TABLE II. Average execution time± standard deviation time (in
seconds) of 30 executions of each heuristic against number of
scrolls.

No. scrolls PSO (sec) DE (sec)

2 178± 15 218± 13

3 114± 16 117± 7

4 148± 13 170± 13

5 102± 16 97± 8

6 158± 14 162± 9

5. Maximizing the Positive Lyapunov Expo-
nent

The calculation of the Lyapunov exponents for the saturated
nonlinear function series based chaotic oscillator described
by (1), can be performed by simply setting:a = b = c =
d1 = 0.7 andm = 0.1 [2,3].

In most of the work reported using saturated nonlinear
function series based chaotic oscillator [2-4], the coefficients

Rev. Mex. Fis.58 (2012) 274–281



ON MAXIMIZING POSITIVE LYAPUNOV EXPONENTS IN A CHAOTIC OSCILLATOR WITH HEURISTICS 279

FIGURE 5. Attractors for the maximized Lyapunov exponent: First column with constant coefficients of 0.7, second column is for PSO
results, and third column for DE results; row 1 to 5 show the results for 2, 3, 4, 5 and 6 scrolls, respectively.

of the system are fixed to 0.7, but the positive Lyapunov ex-
ponent is relatively small. Furthermore, in this investigation
we compare this value for the fixed and equal constants of
0.7, with the values obtained by DE and PSO, as shown in
Table I.

DE was executed with the value for the recombination
constantR = 8, and difference constant ofF = 0.6. For
both DE and PSO, a population of 40 individuals was used,

and the number of generations was set arbitrarily to 100. The
comparison of statistics for 30 executions of both algorithms
is provided in Fig. 3.

In Fig. 4 is shown the Kaplan-Yorke dimension (Lya-
punov dimension) calculated as [4]:

dL = j +
λ1 + λ2 + · · ·λj

|λj+1|
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where for our case,j = 2 andλi are the Lyapunov coeffi-
cients ordered in decreasing order. The largest dimension of
the optimized results indicates less contraction over the tra-
jectories. The average execution time for 30 executions of
DE and PSO are shown in Table IIi. The execution times
showed in Table II are for one run to obtain one solution,
i.e. the execution of the heuristic with 40 individuals and 100
generations.

Figure 5 shows the phase diagram for the cases listed in
Table I. As one sees, the dynamic behavior of the chaotic
system is more complex as the positive Lyapunov exponent
increases, because it achieves greater unpredictability.

6. Discussion

The search space in our problem can be calculated from the
size of a variable: each coefficient in (1) has one significant
digit that can be 0 or 1 and four decimal places can have val-
ues in{0, 9} (each one). Then it is2× 10× 10× 10× 10 =
2 × 104. For the whole problem, the search space will be
(2 × 104)4, it is 16 × 1016. This huge search space justi-
fies the use of heuristics to solve the problem of computing
Lyapunov exponents.

Basically, both algorithms, PSO and DE, give the same
result in this application to maximize the positive Lyapunov
exponent of the multi-scroll chaotic oscillator with PWL-
functions. From the values listed in Table I, the third coef-
ficient has the smaller value. PSO trend to find higher values
for the coefficients (second coefficient is 1.0 for the oscillator
with 2 and 3 scrolls). PSO produced a greater value for the
maximum Lyapunov exponent with 3 scrolls. DE has a bet-
ter value for the maximum Lyapunov exponent with 4 and 6
scrolls. For 2 and 5 scrolls, the values of the maximum Lya-
punov exponent are slightly different (less than 0.0004) but
the obtained coefficient values are totally different.

Our implementation was coded in C programming lan-
guage. The Runge-Kutta method of four order was used to
solve (1) and also to calculate the Lyapunov exponents. The
integration step was fixed to 0.01. For all simulations the ini-
tial condition was set tox0 = [0.1, 0.0, 0.0]T.

The execution time is important because PSO and DE
heuristics work only with the value of the objective function,
they do not require the derivative of the objective function
or the objective function be continuous on the search space,
but they need to perform lots of evaluations of the objective
function. In our problem, we used 40 individuals and 100
generations, this means that40 · 100 = 4000 evaluations
of the objective function were performed. It is important to

mention that the original implementation in MatLab [4], took
more than one day for only one execution. According to the
values in Tab. II our implementation gives one result in less
than 4 minutes.

From the point of view of memory consumption, PSO
takes around twice memory than DE, this is because PSO
uses normal and pbest particles. From the point of view of
execution time, we can consider from times on Table II, that
both evolutionary algorithms have the same execution time.
Oscillators with 3 and 5 scrolls take less simulation time be-
cause there are lots of solutions that are discharged if their
output range inx is not in [−2.1, 2.1] for 3 scrolls, and in
[−4.1, 4.1] for 5 scrolls.

From the values in Table I we can deduce that the chaotic
behavior is multimodal, with several maxima, with respect to
the coefficient values: very different coefficients values pro-
duce very small changes in the maximum Lyapunov exponent
(MLE) (i.e., see result for 2 scrolls in Table I). Also, DE and
PSO only search different regions of the multimodal chaotic
behavior: for a given set of values for(a, b, c, d1), the value
of the MLE is the same independently of the used algorithm.

Maximizing the positive Lyapunov exponent lead us to
implement better chaotic oscillators [6-8], and improved se-
cure communication systems [5,16], for instance.

7. Conclusion

Applying DE and PSO heuristics have maximized the pos-
itive Lyapunov exponent of a PWL-function-based multi-
scroll chaotic oscillator. The usefulness of DE and PSO relies
in the fact that they need only the value of functionf to work,
i.e. it is not necessary any information about how the deriva-
tive of functionf is.

In this investigation both heuristics give basically the
same results, but with very different coefficient values, show-
ing that chaotic behavior is highly multimodal with respect of
the coefficient values. The proposed PSO version has the ad-
vantage of avoiding the use of any external control parameter.
From the computed results, it was observed that coefficientc
in (1) is the most sensitive in the dynamical system. As a con-
clusion, by selecting small values forc and keepinga, b, d1

with large values, one obtains large positive Lyapunov expo-
nents.
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