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A positive Lyapunov exponent indicates the presence of chaos in a dynamical system. In this manner, computing its maximum value
guarantees the unpredictability grade of a chaotic system. In this investigation we present the application and comparison of two heuristics:
Differential Evolution (DE) and Particle Swarm Optimization (PSO), to maximize the positive Lyapunov exponent in a multi-scroll chaotic
oscillator based on saturated nonlinear function series. The computed results show that DE and PSO algorithms are suitable to maximize
the positive Lyapunov exponent of truncated coefficients over the continuous spaces. In addition, the phase diagrams show that for a small
positive Lyapunov exponent the attractors are well defined, while for its maximum value, the attractors are not well appreciated because the
unpredictability grade of the chaotic oscillator is increased.
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Un exponente positivo de Lyapunov indica la presencia de caos en un sistémeadinDe esta manera, éliculo de un valor raximo garan-

tiza el grado de impredicibilidad de un sistematizo. En esta investigamn presentamos la aplicaci y comparadin de dos heisticas:

evolucbn diferencial (DE) y optimizaéin por enjambre de particulas (PSO), para maximizar el exponente positivo de Lyapunov en un o0s-
cilador catico de niltiples enrollamientos basado en series de funciones saturadas. Los resultados calculados muestran que DE y PSO son
adecuados para maximizar el exponente positivo de coeficientes truncados sobre espacios continuos. Adicionalmente, los diagramas de fase
muestran que para un exponente positivo de Lyapunov pedos atractores estan bien definidos, mientras que para su vaamm los

atractores no se aprecian bien porque el grado de impredicibilidad del oscilatioo @sé aumentado.

Descriptores: Oscilador céatico; atractor de miltiples enrollamientos; exponente de Lyapunov; serie de funciones saturadasn fBWéL;
algoritmos evolutivos.

PACS: 05.45.Pq; 05.45.Pq; 84.30.Ng; 07.50.Ek; 84.30.-r; 01.50.Pa

1. Introduction A large positive Lyapunov exponent indicates a large in-
crease in the degree of unpredictability of a dynamical sys-
tem. Henceforth, in this investigation we present the appli-

Several multi-scroll chaotic oscillators [1_3], can be mod_Cation and Comparison of two heuristics: Differential Evolu-

eled by piecewise-linear (PWL) approaches [4], so that thdion (DE) and Particle Swarm Optimization (PSO) to maxi-

nonlinear dynamical problem is transformed to a linear oneMize the positive Lyapunov exponent in a multi-scroll chaotic

However, some of the research Cha”enges in chaotic Osci”é)SCi”ator based on saturated nonlinear function series. The

tors are, for example: how to understand when a determinid-yapunov exponents are computed for the chaotic oscillator

tic dynamical system might exhibit chaotic behavior, the reffom two to six scrolls, and with the same execution condi-
quired conditions of this behavior [1-3], the ways availabletions for DE and PSO. Drawing the phase diagrams of the
to control it [5], the ways to implement it with electronic multi-scroll chaotic oscillator highlights the results provided
devices [6-8], and the practical and theoretical implicationd?y these evolutionary algorithms. From the preliminary work
that follow. For instance, the Lyapunov exponents providePresented in Ref. 4, we also provide a figure to observe the

a means of ascertaining whether the behavior of a system Ksaplan-Yorke dimension of the attractors optimized with DE,

chaotic. In this manner, the presence of at least one posPSO and with constant coefficients of 0.7. Finally, a short

tive Lyapunov exponent ina dynamica| system has often beeqiSCUSSion on the behavior of DE and PSO to maximize the
taken as a confirmation of chaotic motion [4]. positive Lyapunov exponent, is provided.
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2. Multi-Scroll Chaotic Oscillator f()
A

A multi-scroll chaotic oscillator can be described by the sys-
tem of differential equations given in (1) [1,3], whetgb, 1 F
¢, andd; are positive constants which can have values in the
interval [0, 1]. The system is controlled by the PWL approxi-
mation,e.g. series of a saturated functigh

r=y I I |t X
. —in i
y==z
2= —ax —by —cz —di f(z;m) (1)
Now, it will be described in detail how the saturated func- — _1

tion f in (1) is obtained. Lef, be the saturated function:

1, if ax>m

fo(z;m) = R ?f lz| <m ) FIGURE 1. Saturated functiorfy (z; m).
-1, if < -—m,

wherel /m is the slope of the middle segment and> 0; the
upper radial fo(z;m) = 1 |z > m}, and the lower radial
{fo(z;m) = —1 |x < —m} are calledsaturated plateays
and the segmentfo(x;m) = z/m | |z| < m} between
the two saturated plateaus is calkaturated slopeFigure 1
shows the phase diagram of the saturated funcfidn; m).

Lets us consider also the saturated functignand f_j,
defined as:

f(x; 0.2)

2, if z>h+m
;lh, if |x—h|<m 3) - R .
0, if z<h-—m, X

fu(xym,h) = z

and

0, if x>h+m
fon(x;m,—h) = I;lh, if |z—h|<m (4)

=2, if x<h-m,

whereh is called thesaturated delay timandh > m. There-
fore, a saturated function series for a chaotic oscillator with
scrolls is defined as the function:

s—2

flx;m) = Z foizsta(x;m, 2i — s+ 2), (5)

=0

wheres > 2.
For example, using = f; in (1) a 2-scrolls chaotic os- (b)

cillator can be generated; the saturated function series for EIGURE 2. Examples of two saturated function series to generate
3-scrolls oscillator is : p g ,

(a) 3-scrolls and (b) 4-scrolls.
flzym) = foa(zym, —1) + fi(xsm, 1),

and for a 4-scrolls oscillator it will be .
3. Computing Lyapunov Exponents

flzsm) = foo(zym, —2) + fo(x;m) + fa(z;m,2). o . . :
The deterministic, still unpredictable behavior of nonlinear
Both function series are shown in Fig. 2 for = 0.2. Note  dissipative dynamical systems is an important subject in more
that the value of. in (3) and (4) represents the center of theand more fields of science, from mathematics to biology;
saturated slopes. even in engineering.
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The Lyapunov exponents (LESs) give the most characterissolutions are generated by combining the old ones and by sur-
tic description of the presence of a deterministic nonperiodiaiving the ones with better fitness. Both algorithms are used
flow. Therefore, LEs are asymptotic measures characterizings solvers for global optimization problems, more commonly
the average rate of growth (or shrinking) of small perturba-in problems with a continuous representation.
tions to the solutions of a dynamical system. LEs provide A global optimization problem can be formulated as to
guantitative measures of response sensitivity of a dynamicahinimize the function
system to small changes in initial conditions [9]. The num-

ber of LE equals the number of state variables, and if at least f:RP SR

one is positive, this is an indication of chaos [4,9,10]. That

way, we show that DE and PSO algorithms are suitable to f(x), st z; €llj,u], j=1,....D )

maximize the positive LE to guarantee chaotic regime.

In order to measure the LE, the initial state is set to wheref is the objective function, angl is a continuous vari-
able vector ofD dimensions. The feasible domain of variable

vo € R x is defined by specifying uppet() and lower {; ) limits of
vo = [ug, e{» e; eg]T ©6) each component

The usefulness of DE and PSO relies in the fact that they
whereleq, e, e3] = I, and[ is the identity matrix of size need only the value of functiofi to work, or in other words,
3 x 3. Thus,e;, for i = 1,2,3, are each unitary column itis not necessary thatbe continuous or to get any informa-
vectors of the identity matrixX. tion about how the derivative of functiofiis.
The original dynamical system in (1) is observed by ex-  DE s one of the most recent population-based stochastic
panding it with other three variational systems. Each one ogyolutionary optimization techniques [12]. We use the most
these added systems will give us the changes in the origtommon version of DE, the rand/1/bin. The pseudocode of

nal dynamical system with respect to three different direc-DE is shown in Algorithm 1. Each individual is represented
tions for each of the three state variables. For instance, if

u = [z,y,2|" represents one state of the system in (1) at
anyt > 0, the state of the new observed system will beALGORITHM 1. Differential evolution algorithm (rand/1/bin ver-
v =[u,u,uy, u3]T' sion).

The observational system is integrated over several steps
until a periodTy is reached [4]. After this step, the state of
the variational system is orthonormalized by using the stan-
dard Gram-Schmidt method [11]. Using the new orthonor-
malized vectors as initial conditions carries out the next inte-
gration.

The exponents measure the long time sensitivity of the
flow in u with respect to the initial dataiy at the di-
rections of every orthonormalized vector. This measure is
taken when the variational system is orthonormalized. If
v=[u, p1, P2, P3]" is the state after the matrpa;, uy, us]
is orthonormalized, the LB;, for i = 1,2, 3, is calculated

by

1 N is the number of individuals
2 G is the number of iterations (generations)
3 Variable bounds; € [l;,u;],fori =1,2,...D
4 ProcedureDE (N, G, {li,u:})
5: fori=1: Ndo © Initialize the population
6 ford=1:Ddo
7 z;[d] = la + (uq — lq)- rand()
8 x;.fit — evaluate (X)
9 fori=1:Gdo
10: Letj1, j» andjs be three random numbers{i, N}
T without replacement and also differentito
A~ 1 Z In HpZH (7 . ;
T J 11: jrand<— [rand) - D] + 1
S 7=To ) o 12:  ford=1:Ddo
\l/Jv:eedretg“%éT\gtg;fe step greater than the integration time step 13 if rand()< R ORd = jrandthen
Since LEs measure the long-term sensitivity, it is not re-  14:  yld] = ziz[d] + F(wio[d] — zi[d])
quired to calculate them at every integration step. The se- 15: if y[d] < la ORy[d] > uq then
lection of T is made by using the inverse of the minimum  16:  y[d] = I, + (ua — l4) - rand)
absolute value of all the eigenvalues of the system [4], thatis: ;. else
1 for =123 8) 18 yld = zild]
min(A;) 19: y.fit = evaluate(y)
20: if y.fit < x;.fit then
21: X < Y; X fit — y.fit

DE and PSO are two evolutionary algorithms, both work with  22:  searchq =X | min(x fit), for k£ =1,2,..., N.
a population of tentative solutions to the problem, and new 23: q is the solution at iteration

To =

4. DE and PSO
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by a vectorx € R”, and its fitness value is represented asto the first father, at least one vector’'s component is forced to
x.fit. The locationj of individual i is represented asg;[j].  be calculated from their fathers values, it is in line 13 of the
rand() is a function that returns a random number greater gpseudocode, whei = jrand, and jrand is an integer random
equal to zero and less than one. evaluate() is a function thaumber between 1 anB. Then the new individual is evalu-
calculates the fitness function (function to be optimized). ated. If it is better than the father (in line 20), then the child
The core of DE is in the loop on lines 13-18: a new indi- replaces its father (line 21).
vidual is generated from three different individuals randomly =~ The pseudocode for PSO is shown in Algorithm 2. Each
chosen; each value of the new vector (a new individual) is calparticlep; has three associated values: posifigpos, veloc-
culated from the first father, plus the difference of the otherity p;.vel, and the value of the fitness functipnfit. Particle
two fathers multiplied by, the difference constant; the new pbest has only position and fitness function value. ghést
vector value is calculated if a random real number (betweem vector to store indexes to reference pbest particles. rand()
zero and one) is less thaR, the DE's recombination con- is a function that returns a random number greater or equal to
stant. To prevent the case when the new individual is equatero and less than one. evaluate() is a function that calculates

ALGORITHM 2. Particle swarm optimization algorithm.

1: N is the number of particles

2: G is the number of iterations (generations)

3: Variable bounds:; € [l;,u;], fori =1,2,...D

4: Procedure PSO(N, G, {l;}, {u:})

5: fori=1: Ndo © Initialize particle’s positions
6: ford=1:Ddo

7: pi-POSi = lg + (uq — lg) - rand()

8: pbest.pos; < p;.pos;

9: p;.fit «— evaluateg;.pos)

10: pbestfit « p;.fit

11: for ¢ = 1: N do > Initialize particles’ velocities
12: ford=1:Ddo

13: vmin =l; — p;.pos;

14: vmax =uq — p;.pos;

15: pi.vel; = vmin + (vmax-vmin) rand()

16: for g = 1: G do > IterateG generations

17: for i = 1: N do > For each particle

18: Letj1, j2 andjs be three random numbers{i, N}
19: gbesii] = k | min(pbest fit), fork € {i, j1, jo, js}
20: for i = 1: N do > For each particle

21: for d =1: D > For each dimension

22: Pi-pOS; < w  pi.vela + wi(phest.pos; - pi.pos;) + w2 (PbeS§pesti)-POS: - pi-POSI)
23: p;.Vely « p;.pos; + p;.vely

24: if p;.pos; < l4

25: pi.pOS; = lg; pi. velg =0

26: if p;.pos; > Lq then

27: pi.poS; = Lg; pi.vel; =0

28: f = evaluatefp.pos)

29: if f < pbest.fit then

30: pbestpos« p.pos

31: pbestfit — f

32: searchq = pbest.pos — min(pbest.fit), fork =1,2,..., N.
33: q is the solution at iteratiop
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TaBLE |. Calculated positive Lyapunov exponent and coefficients values from 2 to 6 scrolls.

Scrolls Lyap. exponent Maximum Lyap. exp. and Maximum Lyap. exp. and
obtained with (a, b, c,d1) coef. values for (a,b,c,d1) values for
a=b=c=d1 =07 PSO DE
2 0.1257 0.3859 0.3856
(0.3578, 1.0000, 0.0902, 0.7828) (0.2336, 0.7564, 0.0746, 0.6363)
3 0.1564 0.4226 0.4063
(0.4680, 1.0000, 0.0813 0.5206) (0.3972, 0.8154, 0.0768, 0.4043)
4 0.1748 0.4328 0.4468
(0.6823, 0.9388, 0.1055, 0.6676) (0.3779, 0.8635, 0.0669, 0.3722)
5 0.1867 0.4428 0.4421
(0.9560, 0.7921, 0.1601, 0.9614) (0.9146, 0.9522, 0.1106, 0.8829)
6 0.1810 0.4548 0.4554
(0.9978, 0.7254, 0.1297, 0.9999) (0.7012, 0.9506, 0.0862, 0.6885)
045 2.8
=
2 043 Z |
[} [} 26
> 042 E
g 0.41 g 25 F DE —— H
& 2 PSO ——
> 04 L 24 Constant coeff. ---%--
§ 0.39 g 23 | -1
§ 0.38 CM%*
% DE Average +/-s.d. ——+— | 22 s K .3
§ 037 1 PSO Average +/- s.d. -->-- Lo X *
0.36 1 1 | 1 1 2.1 1 1 1
2 3 4 5 6 2 3 4 5 6

Number of scrolls Number of scrolls

FIGURE 4. Kaplan-Yorke dimension of the attractors optimized
FIGURE 3. Comparison of results obtained by DE and PSO. The with DE, PSO and with constant coefficients of 0.7.
average and- standard deviation of 30 runs of each algorithm are
shown.

TABLE |l. Average execution time:- standard deviation time (in

. . d f 30 ti f h heuristi inst b f
the value function that calculates the value of the f|tnesszeCOn s) o executions ot each heuristic against number o

for the problem to solve. This PSO version was inspired crolls.
from [13] and [14,15]. The main advantage of this PSO al- No. scrolls PSO (sec) DE (sec)
gorithm (not using extra parameters), consists on having only 2 178 £ 15 218 £ 13
the essential parameters as the number of individuals and the 3 114 + 16 1747
_nL_Jr_nb_er of iterations (generatlons_). Partl(_:l_es p_()Slme;re 4 148 + 13 170 + 13
initialized randomly and also their velocities (in lines 5-10
and 11-15 in Algorithm 2, respectively). Each particle is 5 102416 9T +8
evaluated and pbesparticles are initialized equal to the 6 158 + 14 162+9
ones.

For a given number of iterations the following process is5.  Maximizing the Positive Lyapunov EXxpo-
applied: (1) three random numbers are calculatefl jiV] nent

(N= population size) with replacement; ghj¢ispoints to the

best particle inside this cluster of three particles. (2) A newThe calculation of the Lyapunov exponents for the saturated
particle is calculated (line 22 on Algorithm 2) and its velocity nonlinear function series based chaotic oscillator described
is updated (line 23). If this new patrticle is better than its as-by (1), can be performed by simply setting:= b = ¢ =
sociated pbest, then pbest particle takes the values of the nely = 0.7 andm = 0.1 [2,3].

particle. The solution after one iteration is searched in the set In most of the work reported using saturated nonlinear
of pbest particles (lines 32-33 in Algorithm 2). function series based chaotic oscillator [2-4], the coefficients

Rev. Mex. Fis58(2012) 274-281
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FIGURE 5. Attractors for the maximized Lyapunov exponent: First column with constant coefficients of 0.7, second column is for PSO
results, and third column for DE results; row 1 to 5 show the results for 2, 3, 4, 5 and 6 scrolls, respectively.

of the system are fixed to 0.7, but the positive Lyapunov exand the number of generations was set arbitrarily to 100. The
ponent is relatively small. Furthermore, in this investigationcomparison of statistics for 30 executions of both algorithms
we compare this value for the fixed and equal constants af provided in Fig. 3.

0.7, with the values obtained by DE and PSO, as shown in |n Fig. 4 is shown the Kaplan-Yorke dimension (Lya-

Table I. punov dimension) calculated as [4]:

DE was executed with the value for the recombination
constantkR = 8, and difference constant df = 0.6. For AL F At
both DE and PSO, a population of 40 individuals was used, dp =j+ T

Rev. Mex. Fis58(2012) 274-281
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where for our casej = 2 and )\; are the Lyapunov coeffi- mention that the original implementation in MatLab [4], took
cients ordered in decreasing order. The largest dimension @hore than one day for only one execution. According to the
the optimized results indicates less contraction over the travalues in Tab. Il our implementation gives one result in less
jectories. The average execution time for 30 executions ofthan 4 minutes.

DE and PSO are shown in Tabl€.ll The execution times From the point of view of memory consumption, PSO
showed in Table Il are for one run to obtain one solution,takes around twice memory than DE, this is because PSO
i.e. the execution of the heuristic with 40 individuals and 100uses normal and pbest particles. From the point of view of
generations. execution time, we can consider from times on Table I, that

Figure 5 shows the phase diagram for the cases listed inoth evolutionary algorithms have the same execution time.
Table I. As one sees, the dynamic behavior of the chaoti©scillators with 3 and 5 scrolls take less simulation time be-
system is more complex as the positive Lyapunov exponentause there are lots of solutions that are discharged if their
increases, because it achieves greater unpredictability. output range inx is not in [—2.1,2.1] for 3 scrolls, and in
[—4.1,4.1] for 5 scrolls.

From the values in Table | we can deduce that the chaotic
behavior is multimodal, with several maxima, with respect to
The search space in our problem can be calculated from e coefficient values: very differen_t coefficients values pro-
size of a variable: each coefficient in (1) has one significan uce very small changes in the maximum Lyapunov exponent
digit that can be 0 or 1 and four decimal places can have val MLE) (i.e, see res_ult for 2 scr_olls in Table ). .AISO’ DE ano!
ues in{0,9} (each one). Then iti@ x 10 x 10 x 10 x 10 = PSO o_nly search_ different regions of the multimodal chaotic
2 x 10%. For the whole problem, the search space will pePehavior: fqr agiven set of values e, b, ¢, dy ), the valug
(2 x 1014, itis 16 x 10'°. This huge search space justi- of the M.LE. is the same.n?dependently of the used algorithm.
fies the use of heuristics to solve the problem of computinq Maximizing the pos!tlve Lyapunov exponeqt lead us to

mplement better chaotic oscillators [6-8], and improved se-

Lyapunov exponents. icai ; 5 161, for inst
Basically, both algorithms, PSO and DE, give the samé Ure communication sys ems [5,16], for instance.

result in this application to maximize the positive Lyapunov

exponent of the multi-scroll chaotic oscillator with PWL- 7. Conclusion

functions. From the values listed in Table I, the third coef-

ficient has the smaller value. PSO trend to find higher valueéPplying DE and PSO heuristics have maximized the pos-

for the coefficients (second coefficient is 1.0 for the oscillatoritive Lyapunov exponent of a PWL-function-based muilti-

with 2 and 3 scrolls). PSO produced a greater value for th&croll chaotic oscillator. The usefulness of DE and PSO relies

maximum Lyapunov exponent with 3 scrolls. DE has a betin the fact that they need only the value of functjbto work,

ter value for the maximum Lyapunov exponent with 4 and 6i-€- it is not necessary any information about how the deriva-

scrolls. For 2 and 5 scrolls, the values of the maximum Lyadive of function f is.

punov exponent are slightly different (less than 0.0004) but In this investigation both heuristics give basically the

the obtained coefficient values are tota”y different. same reSUltS, but with very different coefficient Values, show-
Our implementation was coded in C programming lan-ing that chaotic behavior is highly multimodal with respect of

guage. The Runge-Kutta method of four order was used téhe coefficient values. The proposed PSO version has the ad-

solve (1) and also to calculate the Lyapunov exponents. Théantage of avoiding the use Qf any external control parameter.
integration step was fixed to 0.01. For all simulations the ini-From the computed results, it was observed that coefficient

tial condition was set ta, = [0.1,0.0,0.0]". in (1) is the most sensitive in the dynamical system. As a con-

The execution time is important because PSO and DElusion, by selecting small values ferand keeping:, b, d;
heuristics work only with the value of the objective function, With large values, one obtains large positive Lyapunov expo-
they do not require the derivative of the objective function"€nts.
or the objective function be continuous on the search space,
but they need to perform lots of evaluations of the ObjeCtiVeACknOWIedgments
function. In our problem, we used 40 individuals and 100
generations, this means thél - 100 = 4000 evaluations This work is partially supported by CONACyT-&4ico under
of the objective function were performed. It is important to grant 131839-Y.

6. Discussion

i. The program was compiled with gcc and -O2 flags, over a 2. J. Lu, S. Yu, H. Leung, and G. ChelEEE Transactions on
SUNz20v machine with two AMD Opteron 248 microproces- Circuits and Systems36 (2006) 149-165.

SOrs. 3. J.M. Muioz-Pacheco and E. Tlelo-Cuautiectronic Design
1. J. Lu and G. Chenlnternational Journal of Bifurcation and Automation of Multi-scroll Chaos GeneratorBentham Sci-
Chaos16 (2006) 775-858. ence Publishers Ltd, USA, 2010).
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