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Analytic approximants for the eigenvalues of the one-dimensional Schrödinger equation with potentials of the formV (x) = xa + λxb are
found using a multi-point quasi-rational approximation technique. This technique is based on the use of the power series and asymptotic
expansion of the eigenvalues inλ, as well as the expansion at intermediate points. These expansions are found through a system of differential
equations. The approximants found are valid and accurate for any values ofλ > 0 (with b > a). As an example, the technique is applied to
the quartic anharmonic oscillator.
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Se determinaron aproximaciones analı́ticas para los valores propios de la ecuación unidimensional de Schrödinger con potenciales de la
formaV (x) = xa + λxb, usando la t́ecnica de los aproximantes quasi-racionales a múltiples puntos. Esta técnica se basa en el uso de una
serie potencial y una expansión asint́otica de los valores propios en potencias deλ, aśı como la expansión en puntos intermedios. Estos
expansiones se determinaron a través de un sistema de ecuaciones diferenciales. Las aproximaciones encontradas son válidas y precisas para
cualquier valor deλ > 0 (conb > a). Como un ejemplo, la técnica se aplica al oscilador anarmónico de cuarto grado.
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1. Introduction

There are many techniques that have been developed with the
purpose of solving the Schrödinger equation since it was first
introduced more than eighty years ago. One might think that
after so many years this should be a closed subject, yet this
area of research is still being pursued nowadays by a number
of physicists in the world. There are still many potentials of
interest for which no exact solution is known and, moreover,
new potentials that seem to model the behavior of physical
systems, such as a set of different molecules interacting with
each other or with an external field, are still being proposed
from time to time, which prompts physicist to study them in
more detail. A recent example of this can be found in Ref. 5.

Since one cannot find exact solutions for many of the
most interesting potentials, one is left with one of two op-
tions: (1) use a numerical method or (2) try to find an ap-
proximate analytic solution. The last option is particularly
appealing, since in many situations it is possible to use pre-
cise approximate solutions in the same way as the exact ones.
Approximate analytic solutions can be obtained by different
methods for both, the energy eigenvalues and eigenfunctions
of the Schr̈odinger equation, although more methods can be
found in the literature for the eigenvalues than for the eigen-
functions. In either case, there are hundreds of publications
devoted to this subject, and it would be impossible to make

justice by citing them all. Some of the most recent ones can
be found in Refs. 1 to 12.

An analytic approximant should be a function of the pa-
rameters of the potential that comes very close to the values
of the exact solutions (found numerically) when evaluated at
any particular point in the parameter space. The usefulness
of a particular method used to obtain these approximants will
depend on the precision of the approximations as well as the
simplicity of the analytic expressions.

In this paper, a new method is proposed for finding an-
alytic approximants to the energy eigenvalues of the one-
dimensional Schr̈odinger equation with two-power poten-
tials, i.e., potentials of the formV (x) = xa + λxb [13-18],
valid for any (positive) values of the parameterλ. This kind
of potentials are of great theoretical interest, since they in-
clude potentials such as the quartic and sextic anharmonic
oscillators, and they are a good choice to test new methods
before applying them to other problems that might be more
interesting from a phenomenological point of view, such as
radial potentials in three dimensions.

The method we are proposing here is based on the
multi-point quasi-rational approximation technique, which
has been successfully applied before to similar kinds of prob-
lems involving differential equations [19-24]. This technique
consists in using the expansions of the function to be approx-
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imated around different values of the parameters in the differ-
ential equation where this function appears, in order to write
an approximant in terms of rational functions of these param-
eters combined with auxiliary ones. The approximant will
then have almost the same expansions around the different
chosen values of the parameters. The auxiliary functions are
usually needed in order to match the behavior of the quantity
to be approximated when the parameters go to infinity, which
normally cannot be done solely using rational functions as in
a Pade’s approximation.

In our case, the differential equation we are interested in,
of course, the Schrödinger equation

(
− d2

dx2
+ xa + λxb

)
ψ = Eψ . (1)

In this case, we have one parameter,λ, which will be assumed
to be positive to simplify the treatment, though the method
can be used without this restriction. It is also assumed that
a andb are positive integers, andb > a ≥ 2. The energy
eigenvaluesE will depend on the parameterλ. Our goal is
to find an approximating function forE(λ) for each energy
level, using expansions around different values ofλ, includ-
ing the power series (perturbative expansion aroundλ = 0),
and the asymptotic expansion (λ →∞). The first part of the
method follows the lines described in Ref. 25, where a pertur-
bation theory is used in such a way that the perturbed terms
are obtained using the eigenvalues and eigenfunctions of the
corresponding unperturbed hamiltonian, instead of the whole
spectrum of unperturbed states. In the present treatment, this
part corresponds to our expansion aroundλ = 0. We have
extended the method presented in Ref. 25 to include expan-
sions around points different from the origin (λ = 0). An
extension of the method has also been performed to obtain
the asymptotic expansion corresponding toλ →∞.

The main part of our method consists in the simultane-
ous use of all expansions inλ, in order to obtain a unique
quasi-rational function in this parameter, which gives good
accuracy forany valueof λ > 0. Here is where the multi-
point quasi-rational approximation technique is used. This
quasi-rational approximation acts as a bridge connecting the
expansions around different values ofλ.

This paper is organized as follows. In Secs. 2 and 3 we
describe the method presented in Ref. 25 and its extension
to arbitrary values ofλ. In Sec. 4, the construction of the
approximants will be shown, using the quartic anharmonic
oscillator as an example. These approximants will be found
for the ground state energy eigenvalues, as well as the first
and second excited levels.

2. Power series

The expansion of the energy eigenvalues and eigenfunctions
aroundλ = 0 can be written as

E =
∞∑

k=0

Ekλk , ψ =
∞∑

k=0

ψkλk . (2)

One would like to find the coefficientsE0, E1, E2 . . .. This
can be done introducing these expansions in (1), and demand-
ing it to be satisfied at every order inλ, which leads to the
following system of differential equations [25]

Lψ0 = E0ψ0 , (3)

Lψ1 + xbψ0 = E0ψ1 + E1ψ0 , (4)

Lψ2 + xbψ1 = E0ψ2 + E1ψ1 + E2ψ0 , (5)

...
...

Lψn + xbψn−1 =
n∑

k=0

En−kψk , for n ≥ 1 , (6)

where

L = − d2

dx2
+ xa (7)

It is important to note that, sinceλ is arbitrary, many of the
properties of the eigenfunctionψ will be inherited by the
functionsψ0, ψ1 . . . . For example, given that for bound
states, the functionψ should fall off quickly for large val-
ues ofx, so should the expansion functionsψk. Also, if the
functionψ has definite parity, then the functionsψk will all
have the same parity asψ.

The coefficients in the expansion of the energy can be
found by solving numerically the system of differential equa-
tions (using, for example, the shooting method).

On the other hand, Eq. (3) can be solved exactly for
a = 2, since then it would be the Schrödinger equation
for a harmonic oscillator. It can be shown that in this case,
all the other equations in the system can also be solved
exactly. For example, for the ground stateE0 = 1 and
ψ0(x) ∝ exp(−x2/2). If we takeb = 4 (quartic anharmonic
oscillator) the next function,ψ1(x), can be written as

ψ1(x) = (p0 + p1x + p2x
2 + p3x

3 + p4x
4) exp

(−x2/2
)

.

When this is introduced in (4), the functionexp(−x2/2) dis-
appears and a relation between two polynomials is left. Since
this relation must be satisfied at each order inx, a system of
equations inE1 and thepi’s is obtained, whose solution is

p1 = 0, p2 = −3
8

, p3 = 0 , p4 = −1
8

, E1 =
3
4
,

and it can be seen thatp0 is arbitrary, which means that just
like for ψ0(0), the initial conditionψ1(0) = p0 is arbitrary
(this will be the case for all the other functions in the expan-
sion).

The same procedure can be repeated forψ2, ψ3, etc.,
writing

ψn =

(
4n∑

k=0

pkxk

)
exp

(
−x2

2

)
.

Rev. Mex. Fis.58 (2012) 301–307



MULTI-POINT QUASI-RATIONAL APPROXIMANTS FOR THE ENERGY EIGENVALUES OF TWO-POWER POTENTIALS 303

We obtain

E0 = 1, E1 =
3
4
, E2 = −21

16
,

E3 =
333
64

, E4 = −30885
1024

.

This coincides with the results obtained by using the standard
Rayleigh-Schr̈odinger perturbation method, with the advan-
tage that no information about the eigenstates of energy levels
different from the one being considered is required in order
to obtain the terms of higher order. The same can be done for
other values ofb.

Similar expansions can be found around any point other
thanλ = 0. Let us callλα = λ− α, then we can write

(
− d2

dx2
+ xa + αxb + λxb

)
ψ = Eψ (8)

and now an expansion aroundλα = 0 (i.e. aroundλ = α)
can be performed.

E =
∞∑

k=0

Ea
k λk ψ =

∞∑

k=0

ψa
k λk (9)

Here theα in Ea andψa is a label, not a power. The follow-
ing set of equations is obtained

Lαψα
0 = Eα

0 ψα
0 (10)

Lαψα
1 + xbψα

0 =Eα
0 ψα

1 + Eα
1 ψα

0 , (11)

Lαψα
2 + xbψα

1 =Eα
0 ψα

2 + Eα
1 ψα

1 + Eα
2 ψα

0 , (12)

...
...

Lαψα
n + xbψα

n−1 =
n∑

k=0

Eα
n−kψα

k , for n ≥ 1 , (13)

where

Lα = − d2

dx2
+ xa + αxb . (14)

Clearly, Eq. (10) will not have exact solutions for any values
of a andb, so one is forced to find the coefficients numeri-
cally.

The coefficientEα
k is actuallyk! times the value of the

k-th derivative of the functionE(λ) evaluated atλ = α. One
might find these derivatives directly, evaluatingE(λ) nearby
λ = α. However, this way of finding the coefficients be-
comes relatively difficult for higher derivatives, since then
one needs to evaluate the functionE(λ) with increasing ac-
curacy. The method proposed here can be viewed as an alter-
native and more accurate way to find these derivatives.

3. Asymptotic expansion

Doing the change of variables

x = λ−
1

2+b y,

and defining
λ̃ = λ−

2+a
2+b

and
Ẽ = λ−

2
2+b E,

the Schr̈odinger equation becomes
(
− d2

dy2
+ λ̃ya + yb

)
ψ = Ẽψ . (15)

One can expand now̃E andψ in a similar way as before,

Ẽ =
∞∑

k=0

Ẽkλk , ψ =
∞∑

k=0

ψ̃kλ̃k , (16)

Introducing this in (15) leads also to a system of differential
equations

L̃ψ̃0 = Ẽ0ψ̃0 , (17)

Ł̃ψ̃1 + yaψ̃0 = Ẽ0ψ̃1 + Ẽ1ψ̃0 , (18)

Ł̃ψ̃2 + yaψ̃1 = Ẽ0ψ̃2 + Ẽ1ψ̃1 + Ẽ2ψ̃0 , (19)

...
...

L̃ψ̃n + yaψ̃n−1 =
n∑

k=0

Ẽn−kψ̃k , for n ≥ 1 , (20)

where

L̃ = − d2

dy2
+ yb (21)

Rewriting the asymptotic expansion in terms ofλ instead
of λ̃, it is clear that the form of the expansion depends on the
particular potential to be considered. In the case of the quar-
tic anharmonic oscillator (a = 2 andb = 4), Eq. (16) leads
to

E = λ1/3
∞∑

k=0

Ẽ3k

λ2k

+ λ−1/3
∞∑

k=0

Ẽ3k+1

λ2k
+

1
λ

∞∑

k=0

Ẽ3k+2

λ2k
. (22)

while in the case of the sextic anharmonic oscillator (a = 2
andb = 6), we obtain

E = λ1/4
∞∑

k=0

Ẽ2k

λk
+ λ−1/4

∞∑

k=0

Ẽ2k+1

λk
. (23)

In general, the expansions will have this structure,i.e., they
can be divided in a few pieces, each one consisting in a se-
ries of negative integer powers ofλ, multiplied by a rational
power ofλ. For this reason, the approximants that we will
build must also be divided in a similar way, in order to match
the behavior of each piece. This will be seen explicitly in the
next section.
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4. Approximants for the Quartic Anharmonic
Oscillator

For the quartic anharmonic oscillator [26-30], the approxi-
mant for the energy eigenvalues can be written in the follow-
ing form

Eapp(λ) = (1 + µλ)1/3 Pa(λ)
Q(λ)

+ (1 + µλ)−1/3 Pb(λ)
Q(λ)

+
1

1 + µλ

Pc(λ)
Q(λ)

, (24)

where

Pa(λ) =
N∑

k=0

akλk,

Pb(λ) =
N∑

k=0

bkλk, Pc(λ) =
N∑

k=0

ckλk,

and

Q(λ) = 1 +
N∑

k=1

qkλk =
N∑

k=0

qkλk, (q0 = 1),

that is, the approximant is constructed using rational func-
tions multiplied by auxiliary ones, conveniently chosen in or-
der to match the asymptotic behavior of the eigenvalues. Fur-
thermore, since the power series is also going to be used, it
should be possible to Taylor-expand these functions around
non-negative values ofλ, and in particular aroundλ = 0.
It is for this last reason that the auxiliary functions are not
chosen directly as the factors ofλ1/3, λ−1/3 and 1/λ that
appear multiplying each one of the three pieces that make
up the asymptotic expansion. Instead, we do the change
λ → (1 + µλ) inside these roots, which, of course, still gives
the right behavior forλ → ∞. An arbitrary factor ofµ > 0
has also been included, which can be adjusted in order to
improve the precision of the approximant. In general, the
form of a quasi-rational approximant is mainly determined
by the asymptotic expansion. As another example, based on
Eq. (23), an approximant for the sextic anharmonic oscilla-
tor [31,32] can be written as

Eapp(λ) = (1+µλ)1/4 Pa(λ)
Q(λ)

+(1+µλ)−1/4 Pb(λ)
Q(λ)

. (25)

With these choices of auxiliary functions the degrees of
the polynomials in the numerator must be the same as the
ones in the denominator. In principle, this can be done inde-
pendently for each one of the three pieces in (24),i.e. Pa(λ),
Pb(λ) andPc(λ) could be chosen with different degrees, and
in that case, different denominators matching the degree of
each one of these polynomials would be needed. For sim-
plicity, a denominatorQ(λ) common to all three pieces has
been chosen, and so all polynomials have the same degree.
As it will be understood later, any other choice would lead to

TABLE I. Exact coefficients of the power series for the first three
energy levels of the quartic anharmonic oscillator

Coeffs. n = 0 n = 1 n = 2

E0 1 3 5

E1 3/4 15/4 39/4

E2 -21/16 -165/16 -615/16

E3 333/64 3915/64 20079/64

E4 -30885/1024 -520485/1024 -3576255/1024

E5 916731/4096 21304485/4096 191998593/4096

TABLE II. Coefficients of the asymptotic expansion for the eigen-
values of the quartic anharmonic oscillator obtained solving the dif-
ferential equations using the shooting method

Coeffs. n = 0 n = 1 n = 2

Ẽ0 1.060361944 3.799672848 7.455697916

Ẽ1 0.362022935 0.901605953 1.244714261

Ẽ2 -0.034510565 -0.057483095 -0.046601602

Ẽ3 0.005195593 0.005492673 0.000958945

Ẽ4 -0.000831127 -0.000513914 -0.000831127

a system of non-linear equations in theak ’s, bk ’s, ck ’s and
qk ’s, making the determination of the approximant unneces-
sarily complicated.

The coefficients of the polynomials in the approximant
are found using the power series, asymptotic expansion and
the expansions around intermediate points (0 < α < ∞),
whose calculation was explained in the previous two sections.
One is free to choose as many terms from each expansion as
one desires, as long as the total number of terms from all
expansions equals the total number of coefficients in the ap-
proximant. If the degree of the polynomials isN , the total
number of coefficients will be4N + 3. In general, the ap-
proximants will have higher precision for higherN .

The values of the first few terms in the power series
(aroundλ = 0) for the first three energy levels (labeled by
n) of the quartic anharmonic oscillator are shown in Table I,
while the values of the first few terms in the asymptotic ex-
pansion are shown in Table II. Notice that in accordance with
what was discussed in Sec. 2, the values of the coefficients
for the power series are exact. The values of the coeffi-
cients for the asymptotic expansion were obtained by solv-
ing Eqs. (17)-(20) using the shooting method. For the ground
state (n = 0) and the second excited level (n = 2), the eigen-
functions are even inx, and as mentioned before, so must
be the functions̃ψk (and the same applies toψk andψα

k ), so
the initial conditions used in those cases wereψ̃k(0) = 1 and
ψ̃′k(0) = 0. For the first excited level the eigenfunction is odd
in x, so the conditions werẽψk(0) = 0 andψ̃′k(0) = 1. One
might feel uneasy about the propagation of errors from one
differential equation to the next, but it can be checked numer-
ically that the accuracy of the energy eigenvalues for large
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values ofλ (or small values of̃λ) improves as one includes
higher terms in the expansion, which gives us confidence that
the precision of the coefficients is acceptable.

Let’s choose a few intermediate pointsαi (i = 1, 2, . . . ),
and let’s takeni terms from the expansion around each one of
these points. Let’s also taken0 terms from the power series
(aroundλ = 0) andna terms from the asymptotic expansion.
It will be assumed that

∑
i ni + n0 + na = 4N + 3. Using

the power series atλ = 0 one can write

Q(λ)
n0∑

k=0

Ekλk = (1 + µλ)1/3Pa(λ)

+ (1 + µλ)−1/3Pb(λ) +
1

1 + µλ
Pc(λ) , (26)

Taylor-expanding each side of this equation inλ, and de-
manding it to be satisfied at every order up toλn0 , one ob-
tains a set ofn0 linear equations in the coefficients of the
approximant. Likewise, one can use the expansions at the in-
termediate points, and doing the changeλ = λαi

+ αi, one
can write

(
1 +

N∑

k=1

qk(λαi + αi)k

)
ni∑

k=0

Eαi

k λk
αi

= (1 + µ(λαi + αi))1/3
N∑

k=0

ak(λαi + αi)k

+ (1 + µ(λαi + αi))−1/3
N∑

k=0

bk(λαi + αi)k

+
1

1 + µ(λαi + αi)

N∑

k=0

ck(λαi + αi)k (27)

If one demands this equation to be satisfied at every order
in λαi up toλni

αi
, one obtains a set ofni linear equations in

the coefficients. Finally, one can use the asymptotic expan-
sion. For this we need to do the changeλ′ = 1/λ, and match
the expansion with the approximant for each one of the three
pieces in which it is divided. For example, since

(1 + µλ)1/3 Pa(λ)
Q(λ)

= λ1/3(µ + λ′)1/3

∑N
k=0 akλ′N−k

∑N
k=0 qkλ′N−k

,

one can compare the term multiplyingλ1/3 in the right hand
side of this equation with the term multiplying the same fac-
tor in the asymptotic expansion. Doing the same also for the
other two pieces leads to

N∑

k=0

qkλ′N−k
∞∑

k=0

Ẽ3kλ′2k = (λ′ + µ)1/3
N∑

k=0

akλ′N−k,

N∑

k=0

qkλ′N−k
∞∑

k=0

Ẽ3k+1λ
′2k = (λ′ + µ)−1/3

N∑

k=0

bkλ′N−k,

TABLE III. First coefficient (energy eigenvalues) of the series at
different intermediate points for the first three energy levels with
V (x) = x2 + λx4. These values were obtained using the shooting
method

Coeffs. n = 0 n = 1 n = 2

E0(λ=1/2) 1.24185404314 4.05193233862 7.39690068694

E0(λ=1) 1.39235158010 4.64881282723 8.65504998225

E0(λ=2) 1.60754134812 5.47578464629 10.3585833647

E0(λ=5) 2.01834065745 7.01347929870 13.4677303948

E0(λ=20) 3.00994494779 10.6432159591 20.6941109272

N∑

k=0

qkλ′N−k
∞∑

k=0

Ẽ3k+2λ
′2k =

1
λ′ + µ

N∑

k=0

ckλ′N−k.

Here the number of terms taken in each expansion is de-
termined byna, that is, one would not allow anỹEk with
k > na in the sums. In this way, one gets a set ofna linear
equations for the coefficients of the approximant.

In Table IV, the values of the coefficients of the approxi-
mants are shown for the first three energy levels, using poly-
nomials of degree three. There are fifteen coefficients in each
approximant, and they were obtained using the first five terms
of the power series (aroundλ = 0), the first five terms of the
asymptotic expansion, and the first term of the series around
λ = 0.5, λ = 1, λ = 2, λ = 5 andλ = 20 (which are
shown for the three energy levels in Table III). This means
that we are only using the exact energy eigenvalue around
these intermediate points, and forcing the approximant built
with the power series and asymptotic expansion to further-
more coincide with these “exact” eigenvalues at these points.
This not only brings the relative error of the approximant at
these points down to zero (they become nodes of the rela-
tive error as a function ofλ), but also helps to decrease the
error in between these points. The relative error is defined
using as target the eigenvalues obtained numerically through
the shooting method,i.e., the relative error is given by

|Eapp − Eshooting|
Eshooting

. (28)

The highest relative error with these approximants was
obtained for relatively small values ofλ. Specifically, the
maximum relative error was obtained aroundλ ≈ 0.2. In the
case of the ground state, the highest relative error was

|Eapp − Eshooting|
Eshooting

∣∣∣∣
λ=0.17

= 1.05× 10−6 . (29)

The relative error decreases rapidly for smaller values ofλ,
and of course, it also decreases whenλ increases until it finds
the next node atλ = 0.5. After that, the relative error never
becomes higher than2 × 10−7. For the first and second ex-
cited level, the maximum error aroundλ ≈ 0.2, was about
8× 10−7 and2.4× 10−6, respectively, and after the node at
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TABLE IV. Coefficients for the approximants of the first three en-
ergy eigenvalues ofV (x) = x2 + λx4, using polynomials of de-
gree 3

Coeffs. n = 0 n = 1 n = 2

a0 -235.587774594 3.26113271857 -46.3903727540

a1 129.192528081 45.7861842084 118.622015136

a2 819.219808968 347.592601172 906.778841942

a3 4083.20247083 1023.55148495 3353.40199807

b0 49.9309955808 4.80222464913 8.35806073416

b1 374.551951382 43.2593054339 113.555378592

b2 1181.63222463 259.439145729 536.540936096

b3 2212.93937770 385.537761596 888.696857827

c0 186.656779013 -5.06335736770 43.0323120198

c1 208.866219507 -20.7666223608 48.6886778830

c2 -423.418335743 -35.6233569984 -59.8483255497

c3 -334.866518168 -39.0190739652 -52.8167275564

q1 148.201294158 24.5427291322 29.7104983824

q2 1782.00574019 171.823102857 247.681714807

q3 4851.65727491 339.396077796 566.683604101

λ = 0.5 this error is never higher than4× 10−8. In fact, the
relative error decreases quite rapidly in the case of the first
and second excited levels for large values ofλ, although it
does so more slowly in the case of the ground state.

In all these approximants, we choseµ = 2. This param-
eter is arbitrary except for one restriction: The approximants
should not have any defects, that is, there should not be any
poles in the approximant (positive roots ofQ(λ)) with the
corresponding nearby zeros. Notice in Table IV that with this
choice ofµ all of the coefficients ofQ(λ) are positive, which
will, of course, guarantee that it has no roots forλ > 0. Other
choices ofµ may lead to mixed negative and positive coeffi-
cients inQ(λ), which will in general lead to positive real
roots in this polynomial. Other than that, there is no restric-
tion in µ. Among all of the values ofµ that allow to keep the
approximant free of defects, one is free to choose the one that
minimizes the relative errors.

Other than improving the numerical method used to ob-
tain the coefficients of the expansions, there are several ways
in which the maximum relative error of the approximants can
be decreased for all energy levels. The easiest one is to move
one of the nodes. For example, one may choose the approx-
imant to have a node atλ = 0.2 instead ofλ = 0.5. If
this is done, it can be seen that the maximum relative error is
reduced by about a half for all energy levels. Another possi-
bility is to use the derivatives ofE(λ) at some of the interme-
diate points. Finally, one may try an approximant of higher
degree, allowing it to coincide with the values ofE(λ) and
its derivatives at more points

5. Conclusions

In this paper, it has been shown that accurate analytic ap-
proximants for the energy eigenvalues of potentials of the
form V (x) = xa + λxb can be found using a multi-point
quasi-rational approximation technique. The approximants
are constructed using rational functions, together with auxil-
iary functions introduced to be able to reproduce the behavior
of the eigenvalues for largeλ. The coefficients of the rational
functions are found using the power series of the eigenvalues,
not only atλ = 0, but also for arbitrary finite values ofλ, to-
gether with the asymptotic expansion. These expansions can
be found using a system of differential equations, which in
the case of the power series atλ = 0, represents an alternative
way to find the perturbative expansion, as shown in Ref. 25.
As an example, approximants for the lowest energy levels of
the quartic anharmonic oscillator were obtained. The approx-
imants were fairly simple, since the degree of the polynomi-
als used was not too high. In particular, it was shown that it is
possible to obtain approximants with polynomials of degree 3
for which the relative error is not higher than∼ 3× 10−6.

The method can be applied to other values ofa andb in
V (x) = xa + λxb, such as the sextic anharmonic oscillator
(a = 2, b = 6), or even to potentials with no exact solution
for λ = 0, such asV (x) = x4 + λx6 (as long as one is able
to solve the system of differential equations numerically). It
should not be difficult to extend this method to radial poten-
tials of the formV (r) = ra + λrb.

For simplicity, here we have limited ourselves to the use
of the shooting method to solve the systems of differential
equations. It would be interesting to try to find other methods
that allow to improve the numerical accuracy of the coeffi-
cients in the expansions. If better numerical solutions for the
expansion functions can be found, this should lead to better
coefficients and therefore to better approximants. Experience
with quasi-rational approximants has shown that the accuracy
of the coefficients in the expansions is the main factor influ-
encing the accuracy of multi-point quasi-rational approxima-
tions. In the future, we plan to study this and other issues in
more detail, and apply this technique to other potentials of
interest, both in physics as well as in chemistry.
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