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Analytic approximants for the eigenvalues of the one-dimensionakiarger equation with potentials of the foi(z) = z* + Az® are

found using a multi-point quasi-rational approximation technique. This technique is based on the use of the power series and asymptotic
expansion of the eigenvaluesinas well as the expansion at intermediate points. These expansions are found through a system of differential
equations. The approximants found are valid and accurate for any valaes of (with b > a). As an example, the technique is applied to

the quartic anharmonic oscillator.
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Se determinaron aproximaciones atieds para los valores propios de la ecoaciinidimensional de Scbdinger con potenciales de la
formaV(z) = z° + A\z?, usando laécnica de los aproximantes quasi-racionaleditiiples puntos. Estétnica se basa en el uso de una
serie potencial y una expadsi asinbtica de los valores propios en potencias\jed como la expansin en puntos intermedios. Estos
expansiones se determinaron a &wde un sistema de ecuaciones diferenciales. Las aproximaciones encontradéid@®g precisas para
cualquier valor de\ > 0 (conbd > a). Como un ejemplo, le&cnica se aplica al oscilador an@mico de cuarto grado.

Descriptores: Potenciales polibmicos; aproximantes cuasi-racionales; osciladores a@macws; autovalores; autofunciones.

PACS: 03.65.Ge; 02.30.Mv

1. Introduction justice by citing them all. Some of the most recent ones can
. ~ befoundin Refs. 1to 12.
There are many techniques that have been developed with the An analytic approximant should be a function of the pa-

pt:rpgse Odf solvquhthe S.:hm Inger equatlog since 'L}Aﬁf f;(r;t] rameters of the potential that comes very close to the values
introduced more than €ig ty years ago. One might thin a& the exact solutions (found numerically) when evaluated at
after so many years this should be a closed subject, yet th

f his still bei d d b b'gny particular point in the parameter space. The usefulness
area of research IS still being pursued nowadays by a NUMoE(: particular method used to obtain these approximants will

iorftprhystl?lsrt\?vlhr; t:]]en WO)I‘(|d. tTh?rﬁ anr(ia Sl?lnl Tv?]nynzmrimr'alsvoidepend on the precision of the approximations as well as the
erest 1o Ch no exact solution 1S known and, moreove §implicity of the analytic expressions.

new potentials that seem to model the behavior of physica . ) o
systems, such as a set of different molecules interacting with I this paper, a new method is proposed for finding an-
each other or with an external field, are still being proposed/ytic approximants to the energy eigenvalues of the one-
from time to time, which prompts physicist to study them in dimensional Sclidinger equation with two-power poten-
more detail. A recent example of this can be found in Ref. 51ials, i-e., potentials of the fornV(z) = 2 + Az” [13-18],
Since one cannot find exact solutions for many of thev@lid for any (positive) values of the parameterThis kind
most interesting potentials, one is left with one of two Op_of potentlals_are of great theoretlcql interest, since they in-
tions: (1) use a numerical method or (2) try to find an ap_clud.e potentials such as the quartic and sextic anharmonic
proximate analytic solution. The last option is particularly ©Scillators, and they are a good choice to test new methods
appealing, since in many situations it is possible to use pre2€fore applying them to other problems that might be more
cise approximate solutions in the same way as the exact ond§teresting from a phenomenological point of view, such as
Approximate analytic solutions can be obtained by differenf@dial potentials in three dimensions.
methods for both, the energy eigenvalues and eigenfunctions The method we are proposing here is based on the
of the Schoédinger equation, although more methods can bemulti-point quasi-rational approximation technique, which
found in the literature for the eigenvalues than for the eigenhas been successfully applied before to similar kinds of prob-
functions. In either case, there are hundreds of publicationlems involving differential equations [19-24]. This technique
devoted to this subject, and it would be impossible to makeonsists in using the expansions of the function to be approx-
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imated around different values of the parameters in the differOne would like to find the coefficient&,, F;, E> .. .. This
ential equation where this function appears, in order to writecan be done introducing these expansions in (1), and demand-
an approximant in terms of rational functions of these paraming it to be satisfied at every order i which leads to the
eters combined with auxiliary ones. The approximant will following system of differential equations [25]

then have almost the same expansions around the different

chosen values of the parameters. The auxiliary functions are Lipg = Egt)g 3)
usually needed in order to match the behavior of the quantity b

to be approximated when the parameters go to infinity, which L1 + 2o = Eovr + Ervpo , )
normally cannot be done solely using rational functions as in Laby + 2%0; = Egths + Eyiby + Fathy | (5)

a Pade’s approximation.
In our case, the differential equation we are interested in,
of course, the Sclidinger equation

<_d2 +a + Axb> v =Ey. & L+ a1 =Y Eny, for n>1, (6)

dx? k=0

In this case, we have one parameiervhich will be assumed  where
to be positive to simplify the treatment, though the method G
can be used without this restriction. It is also assumed that L= Cdx2

Ziagr?vbaﬁurg Sgov\sl;lt:v;eméigeéi’ tﬁ:d zr;m—e t;r gmﬁ egzlr?sy It is important to note that, sinceis arbitrary, many of the
9 P P : g properties of the eigenfunction will be inherited by the

to find an approxim'ating function_foE()\) for each' energy functions g, ¥ ... . For example, given that for bound
!evel, using expansions around_ different V.alueS\D'hCIUd- states, the function) should fall off quickly for large val-
ing the power series (perturbative expansion arolind 0), ues ofz, so should the expansion functiong. Also, if the

and the asymptotic expansiok ¢ oc). The first part of the function has definite parity, then the functiong will all

method follows the lines described in Ref. 25, where a pertur; .
have the same parity as

bation theory is used in such a way that the perturbed terms . i )

are obtained using the eigenvalues and eigenfunctions of the The coefﬁ_ments In Fhe expansion of thg energy can be
corresponding unperturbed hamiltonian, instead of the wholéOund by'solvmg numerically the sy;tem of differential equa-
spectrum of unperturbed states. In the present treatment, tHions (using, for example, the shooting method).

part corresponds to our expansion aroung- 0. We have On the other hand, Eq. (3) can be solved exactly for
extended the method presented in Ref. 25 to include expaf- = 2» Since then it would be the Sddinger equation
sions around points different from the origih & 0). An for a harmonic oscillator. It can be shown that in this case,

extension of the method has also been performed to obtafll the other equations in the system can also be solved
the asymptotic expansion corresponding\te> oc. exactly. For example, for the ground staly = 1 and

The main part of our method consists in the simultane0(%) exp(—z?/2). If we takeb = 4 (quartic anharmonic
ous use of all expansions ik in order to obtain a unique ©Scillator) the next functiony, (), can be written as
quasi-rational function in this parameter, which gives good ) 3 A )
accuracy forany valueof A > 0. Here is where the multi- V1(z) = (po + pra + pax® + psa® + pax®) exp (—2°/2) .
point quasi-rational approximation technique is used. This

o . . 9 ,
quasi-rational approximation acts as a bridge connecting thé/hen this is introduced in (4), the functierp(—z*/2) dis-
expansions around different values)of appears and a relation between two polynomials is left. Since

This paper is organized as follows. In Secs. 2 and 3 wdhis refation must be satisfied at each order @ system of
describe the method presented in Ref. 25 and its extensidffluations i, and thep;’s is obtained, whose solution is
to arbitrary values of\. In Sec. 4, the construction of the 3 1 3
approximants will be shown, using the quartic anharmonic p; =0, py = 3 ps= 0, pa= —3 E = 7
oscillator as an example. These approximants will be found
for the ground state energy eigenvalues, as well as the firgind it can be seen tha is arbitrary, which means that just

+ ()

and second excited levels. like for +5(0), the initial conditions); (0) = py is arbitrary
(this will be the case for all the other functions in the expan-
2. Power series sion).

The same procedure can be repeatedder 3, etc.,
The expansion of the energy eigenvalues and eigenfunctionariting
aroundX = 0 can be written as

© St 4n x2
E= Z Ek)\k 5 w = Zwk)\k . (2) wn = (kzopkl‘k> exp <_2> .
k=0 k=0 —
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We obtain and defining
A= A"35
3 21 =
Eo=1, Ei=>, Ey=-_,
4 16 and
333 30885 E=\75E,
Es=rgr 1= "o

S ) i _ the Schodinger equation becomes
This coincides with the results obtained by using the standard

Rayleigh-Schidinger perturbation method, with the advan- 2 g b _ i
tage that no information about the eigenstates of energy levels (dy2 TAY Y ) v="FEy.
different from the one being considered is required in order R
to obtain the terms of higher order. The same can be done fddne can expand now ands in a similar way as before,
other values ob. - -
Similar expansions can be found around any point other B = Z BAF = Zwk)\k ’ (16)
k=0 k=0

(15)

than\ = 0. Let us call\, = X — «, then we can write

(dz + 2% 4 axl + )\Ib> = Ei (8) Introd_ucing this in (15) leads also to a system of differential
dx equations
and now an expansion aroung = 0 (i.e. around\ = «) e xs
can be performed. Lo = Eotbo , (47)
o o L1 +y“bo = Eoor + Erto , (18)
_ a \k _ a \k -~ ~ -~ - o~ -~ o~
P Zo B e 1;)% ’ © Ly +y*hr = Eota + Eripr + Eatdo (19)
Here thea in E, and, is a label, not a power. The follow-
ing set of equations is obtained n
o o i~n+ a~n—: En— b s fi >1, 20
La% _ EO wo (10) w Yy lﬁ 1 kz_:—o k'(/)k or mn ( )
Lot + 2" =Bgyf + Bfyy 11 where
(6% « (6% (6% (67 (03 (6% « j=4 d2
Lops + a9 =E§ys + EXyf + ESyg (12) L= ~iE + 90 (21)

_Rewriting the asymptotic expansion in terms\ahstead

N of A, itis clear that the form of the expansion depends on the

LoYe 4 gbye = EC %, for n>1, (13 par'ucular potgnual Fo be considered. In the case of the quar-
¥ n-t kZ:O ks = (13) tic anharmonic oscillatore( = 2 andb = 4), Eq. (16) leads

to
where

2 00

—og tattar’. (14) E=)\/3Y
k=0

22k
Clearly, Eg. (10) will not have exact solutions for any values
of ¢ andb, so one is forced to find the coefficients numeri- _1/3
cally. A 22k B 2k

The coefficientEy is actuallyk! times the value of the F=0 h=0

k-th derivative of the functioriy(\) evaluated ah = o. One  while in the case of the sextic anharmonic oscillatoe{ 2
might find these derivatives directly, evaluatifig\) nearby  andb = 6), we obtain
A = a. However, this way of finding the coefficients be-

L(x =

o0 i~ o0 i
Esp1 1 Esp 12

(22)

comes relatively difficult for higher derivatives, since then B L/ i @ LAl i Eopia 23)

one needs to evaluate the functiéii)) with increasing ac- o Ak Ak

curacy. The method proposed here can be viewed as an alter- h=0 F=0

native and more accurate way to find these derivatives. In general, the expansions will have this structiue, they
can be divided in a few pieces, each one consisting in a se-

3. Asymptotic expansion ries of negative integer powers af multiplied by a rational
power of A\. For this reason, the approximants that we will

Doing the change of variables build must also be divided in a similar way, in order to match
the behavior of each piece. This will be seen explicitly in the

1 .
T =\ 2oy, next section.
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4. Approximants for the Quartic Anharmonic

Oscillator TABLE |. Exact coefficients of the power series for the first three
energy levels of the quartic anharmonic oscillator

For the quartic anharmonic oscillator [26-30], the approxi-

mant for the energy eigenvalues can be written in the follow- COeffs. n =0 n=1 n=2
ing form Eo 1 3 5
E; 3/4 15/4 39/4
1/3 Pa(A)
Eapp(A) = (1 + pA) o B, -21/16 -165/16 -615/16
Es 333/64 3915/64 20079/64
—173P(A) 1 PN
+ (14 pA) (24) Es4 -30885/1024  -520485/1024  -3576255/1024

+ )
A 14 QA
Q) + uA Q(A) Es 016731/4096 21304485/4096 191998593/4096

where

N L TABLE Il. Coefficients of the asymptotic expansion for the eigen-
Pa(A) = Z agA”, values of the quartic anharmonic oscillator obtained solving the dif-
k=0 ferential equations using the shooting method

N N
Pb()\)zzbk/\k, Pc(/\)ZZCMk, Co~effs. n=0 n=1 n=2
P ar Bo 1.060361944  3.799672848  7.455697916
B, 0362022935 0901605953  1.244714261
and B, 0034510565  -0.057483095  -0.046601602
N N By 0.005195593  0.005492673  0.000958945
QA =1+ ; A" = ];) aX' (a0 =1), £, -0.000831127 -0.000513914  -0.000831127

that is, the approximant is constructed using rational funcy system of non-linear equations in thgs, b,'s, ¢x's and
tions multiplied by auxiliary ones, conveniently chosen in or-¢, 's, making the determination of the approximant unneces-
der to match the asymptotic behavior of the eigenvalues. Fussarily complicated.

thermore, since the power series is also going to be used, it The coefficients of the polynomials in the approximant
should be possible to Taylor-expand these functions aroungye found using the power series, asymptotic expansion and
non-negative values of, and in particular around = 0.  the expansions around intermediate poifts<{ o < o0),

It is for this last reason that the auxiliary functions are notyhose calculation was explained in the previous two sections.
chosen directly as the factors af/*, A\=!/* and 1/ that  One is free to choose as many terms from each expansion as
appear multiplying each one of the three pieces that makgne desires, as long as the total number of terms from all
up the asymptotic expansion. Instead, we do the changgxpansions equals the total number of coefficients in the ap-
A — (14 pA) inside these roots, which, of course, still gives proximant. If the degree of the polynomialsAg, the total

the right behavior fon — occ. An arbitrary factor ofu > 0 nymbper of coefficients will be N + 3. In general, the ap-
has also been included, which can be adjusted in order tBroximants will have higher precision for highat.

improve the precision of the approximant. In general, the 1o values of the first few terms in the power series
form of a quasi-rational approximant is mainly determined(around)\ — 0) for the first three energy levels (labeled by

by the asymptotic expansion. As another example, based o) uf the quartic anharmonic oscillator are shown in Table |,
Eq. (23), an approximant for the sextic anharmonic oscillayhjje the values of the first few terms in the asymptotic ex-

tor [31,32] can be written as pansion are shown in Table II. Notice that in accordance with
LaPa(N) PN what was discussed in Sec. 2, the values of the coefficients
Eapp(A) = (14pA)Y W‘F(H‘M )~ o (25)  for the power series are exact. The values of the coeffi-
cients for the asymptotic expansion were obtained by solv-
With these choices of auxiliary functions the degrees ofing Egs. (17)-(20) using the shooting method. For the ground
the polynomials in the numerator must be the same as the&tate ¢ = 0) and the second excited level & 2), the eigen-
ones in the denominator. In principle, this can be done indefunctions are even i, and as mentioned before, so must
pendently for each one of the three pieces in (24),P,()\), be the functions);, (and the same applies t, andyy’), so
Py(\) andP.()) could be chosen with different degrees, andthe initial conditions used in those cases weré0) = 1 and
in that case, different denominators matching the degree afy (0) = 0. For the first excited level the eigenfunction is odd
each one of these polynomials would be needed. For sinin z, so the conditions werg; (0) = 0 and+, (0) = 1. One
plicity, a denominator)(A) common to all three pieces has might feel uneasy about the propagation of errors from one
been chosen, and so all polynomials have the same degredifferential equation to the next, but it can be checked numer-
As it will be understood later, any other choice would lead toically that the accuracy of the energy eigenvalues for large
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values of)\ (or small values of\) improves as one includes
higher terms in the expansion, which gives us confidence thatasLe IlIl. First coefficient (energy eigenvalues) of the series at
the precision of the coefficients is acceptable. different intermediate points for the first three energy levels with
Let’s choose a few intermediate poirts(i = 1,2,...),  V(z) = 2” + Az*. These values were obtained using the shooting
and let’s take:,; terms from the expansion around each one ofmethod
these points. Let's also take) terms from the power ser_ies Coeffs. n=0 n=1 n=29
(around\ = 0) andn, terms from the asymptotic expansion. =" =™ 5 1185404314 405193233862 7.39690068694
It will be assumed tha} _, n; + no + nq = 4N + 3. Using
the power series at = 0 one can write Eo(A=1) 1.39235158010 4.64881282723 8.65504998225
Eo(A\=2) 1.60754134812 5.47578464629 10.3585833647
no
Q) ZEk/\k =1+ M}\)1/3Pa(/\) Eo(A=5) 2.01834065745 7.01347929870 13.4677303948
b—0 Ey(A=20) 3.00994494779 10.6432159591 20.6941109272

+ (1 +pN) 3PN + P.(\) , (26)

1+ pA N oo ;XN

Taylor-expanding each side of this equationXpand de- Zq’c/\/N_k ZEBH?X% N+ [ Z kNN E.
manding it to be satisfied at every order upXty, one ob- k=0 k=0 k=0

tains a set ofyy linear equations in the coefficients of the Here the number of terms taken in each expansion is de-
approximant. Likewise, one can use the expansions at the inermined byn,, that is, one would not allow ang;, with
termediate points, and doing the change- \,, + @;, one k> n, in the sums. In this way, one gets a sengflinear

can write equations for the coefficients of the approximant.
N n: In Table 1V, the values of the coefficients of the approxi-
1+ Z ar(Na, + ai)k Z E?i)\fii manFs are shown for the first three energy Ievells,. using poly-
1 =0 nomials of degree three. There are fifteen coefficients in each

N approximant, and they were obtained using the first five terms
— (1 Ao /3 Ao OF of the power series (around= 0)! the first five terms_ of the
(14 1A, + i) Z @ (Aa; + ) asymptotic expansion, and the first term of the series around

"‘Ji A=05A=1A=2A=>5and\ — 20 (which are
_ shown for the three energy levels in Table IIl). This means
+ (L4 u(ha, +00) 7 Z b(Aa + )" that we are only using the exact energy eigenvalue around
k=0 these intermediate points, and forcing the approximant built
1 N . with the power series and asymptotic expansion to further-
+ m Z ck(Aa; + i) (27)  more coincide with these “exact” eigenvalues at these points.
i k=0

This not only brings the relative error of the approximant at
If one demands this equation to be satisfied at every orddhese points down to zero (they become nodes of the rela-
in \,, Up to A", one obtains a set of; linear equations in tive error as a function oh), but also helps to decrease the
the coefficients. Finally, one can use the asymptotic expar/Tor in between these points. The relative error is defined
sion. For this we need to do the changde= 1/), and match ~ USing as target the eigenvalues obtained numerically through
the expansion with the approximant for each one of the thref1€ shooting method.e., the relative error is given by

pieces in which it is divided. For example, since

|Eapp - Eshooting| (28)
N —r Es ootin .
(1 +#>\)1/3Pa()‘) — )\1/3(M+)\/)1/3 Zk:() ak)\lN k , hooting
QM) Shlo GrN Nk The highest relative error with these approximants was

obtained for relatively small values of. Specifically, the
one can compare the term multiplying/? in the right hand  maximum relative error was obtained aroung 0.2. In the
side of this equation with the term multiplying the same fac-case of the ground state, the highest relative error was
tor in the asymptotic expansion. Doing the same also for the

other two pieces leads to | Eapp — Eshooting| 105 %10~ | (29)
. - . Eshooting A=0.17
ST aNYTEY T Eg X = (X 4 ) B> ap VR, The relative error decreases rapidly for smaller values, of
k=0 k=0 k=0 and of course, it also decreases wheancreases until it finds

N N the next node ak = 0.5. After that, the relative error never
= = _ _ i -7, he first and second ex-
NN=ENY B N2k () /35" b NNk bgcomes higher tha;hx 10~7. For t
kz_oqk kz_o Skl N+ w) Z 4§ cited level, the maximum error around~ 0.2, was about

k=0 .
8 x 1077 and2.4 x 1079, respectively, and after the node at
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TABLE |V. Coefficients for the approximants of the first three en-
ergy eigenvalues of (z) = z* + Az*, using polynomials of de-

5. Conclusions

In this paper, it has been shown that accurate analytic ap-

gree 3 proximants for the energy eigenvalues of potentials of the
Coeffs. n—=0 =1 n—2 form V(z) = 2% + Az’ can be found using a multi-point
@ -235587774504 3.26113271857 -46.3903727540 Judsi-rational approximation technique. The approximants
are constructed using rational functions, together with auxil-
a 129.192528081  45.7861842084  118.622015136 iary functions introduced to be able to reproduce the behavior
az  819.219808968 347.592601172 906.778841942 of the eigenvalues for large The coefficients of the rational
as 4083.20247083 1023.55148495 3353.40199807 functions are found using the power series of the eigenvalues,
bo 49.9309955808 4.80222464913 8.35806073416 Notonly ath = 0, but also for arbitrary finite values of, to-
by 374551951382 43.2593054339  113.555378592 gether with the asymptotic expansion. These expansions can
be found using a system of differential equations, which in
b2 1181.63222463  259.439145729  536.540936096 o 456 of the power serieshat 0, represents an alternative
by  2212.93937770  385.537761596 888.696857827 \way to find the perturbative expansion, as shown in Ref. 25.
co 186.656779013 -5.06335736770 43.0323120198 As an example, approximants for the lowest energy levels of
e 208.866219507 -20.7666223608 48.6886778830 the quartic anharmonic oscillator were obtained. The approx-
e -423.418335743 -35.6233569984 -59.8483255497 imants were fairly simple, since the degree of the polynomi-
als used was not too high. In particular, it was shown that it is
¢y -334.866518168 -39.0190739652 -52.8167275564 possible to obtain approximants with polynomials of degree 3
@ 148.201294158  24.5427291322  29.7104983824 for which the relative error is not higher than3 x 1076,
q2 1782.00574019 171.823102857 247.681714807 The method can be applied to other values @hdb in
q3 4851.65727491  339.396077796 566.683604101 V (x) = 2% + Azb, such as the sextic anharmonic oscillator

A = 0.5 this error is never higher thanx 10=8. In fact, the
relative error decreases quite rapidly in the case of the firdo solve the system of differential equations numerically). It
and second excited levels for large values\pfalthough it
does so more slowly in the case of the ground state.

In all these approximants, we choge= 2. This param-

(a = 2, b = 6), or even to potentials with no exact solution
for A\ = 0, such ad/(z) = #* + \z% (as long as one is able

should not be difficult to extend this method to radial poten-
tials of the formV/ (r) = ¢ + Ar®.

For simplicity, here we have limited ourselves to the use

eter is arbitrary except for one restriction: The approximantsf the shooting method to solve the systems of differential
should not have any defects, that is, there should not be argguations. It would be interesting to try to find other methods

poles in the approximant (positive roots @{\)) with the
corresponding nearby zeros. Notice in Table IV that with thiscients in the expansions. If better numerical solutions for the
choice ofy all of the coefficients of)(\) are positive, which
will, of course, guarantee that it has no rootsXas 0. Other

that allow to improve the numerical accuracy of the coeffi-

expansion functions can be found, this should lead to better
coefficients and therefore to better approximants. Experience

choices ofu may lead to mixed negative and positive coeffi- with quasi-rational approximants has shown that the accuracy
cients inQ(A), which will in general lead to positive real of the coefficients in the expansions is the main factor influ-
roots in this polynomial. Other than that, there is no restric-encing the accuracy of multi-point quasi-rational approxima-
tion in x. Among all of the values of; that allow to keep the tions. In the future, we plan to study this and other issues in
approximant free of defects, one is free to choose the one thatore detail, and apply this technique to other potentials of
minimizes the relative errors. interest, both in physics as well as in chemistry.

Other than improving the numerical method used to ob-
tain the coefficients of the expansions, there are several ways
in which the maximum relative error of the approximants can K led t
be decreased for all energy levels. The easiest one is to movAéC nowledgments

one of the nodes. For example, one may choose the approx- . . .
imant to have a node at — 0.2 instead of\ — 0.5. If We thank to Dr. Abilio de Freitas for support in the computa-

this is done, it can be seen that the maximum relative error idon and in his several suggestions, which improved the paper

reduced by about a half for all energy levels. Another possi@d the text of the manuscript. He preferred not to be one of

bility is to use the derivatives df(\) at some of the interme- 1€ authors against our wish.

diate points. Finally, one may try an approximant of higher ~ This work was partially supported by Decanato de Inves-
degree, allowing it to coincide with the values Bf\) and  tigacion y Desarrollo of Universidad Siom Bolivar (grants

its derivatives at more points GID-59, GID-13 and GID-22).
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