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Estimation of length scale of RS II-p braneworld model through perturbations
in Helium’s atom ground state energy
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We put to the test an effective three-dimensional electrostatic potential, obtained effectively by considering an electrostatic source inside
a (5+p)-dimensional braneworld scenario withp compact and one infinite spacial extra dimensions in the RS II-p model, forp = 1 and
p = 2. This potential is regular at the source and matches the standard Coulomb potential outside a neighborhood. We use variational and
perturbative approximation methods to calculate corrections to the ground energy of the Helium atom modified by this potential, by making
use of a 6 and 39-parameter trial wave function of Hylleraas type for the ground state. These corrections to the ground-state energy are
compared with experimental data for Helium atom in order to set bounds for the extra dimensions length scale. We find that these bounds
are less restrictive than the ones obtained by Moraleset. al. through a calculation using the Lamb shift in Hydrogen.
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1. Introduction

Theories that support the existence of spatial dimensions, ad-
ditional to the three we observe in everyday physics, have
been proposed since the 20’s decade of the last century with
the attempts of Theodor Kaluza (1921) and Oscar Klein
(1926) to provide a unified theory of gravity and electro-
magnetism [1,2]. More recently, the idea of a “braneworld”
scenario [3-5], where our three-dimensional world is a sub-
space -or “brane”- embedded into a higher-dimensional uni-
verse known as the “bulk” has been widely spread, specially
given the philosophy and machinery of string theory, which
can only be correctly formulated in a space-time of at least
ten dimensions.

Among brane world models, there are some that con-
sider compact and large extra dimensions [6], and others
comprising infinite and warped ones [7-8]. These models
have opened a gate to interesting possible solutions to long-
standing problems in physics, such as the hierarchy prob-
lem and the cosmological constant problem in high-energy
physics [9-10]. At the same time they allow the testing of
models at the cosmological level [11]. Moreover, the search
for testable, low energy effects of extra dimensions is an area
of research that has been extremely active in the last years.

With regard to the last point above, there have been sev-
eral studies that explore the possibility for obtaining measur-
able evidence from models with extra dimensions by study-
ing low energy phenomena. In particular we mention the
ones that have been performed in the RS II-p setup, such as
the electric charge conservation [12], the Casimir effect be-
tween parallel plates [13,14], the Hydrogen Lamb shift [15],
the Cavendish experiment and the scattering process of elec-
trons by Helium atoms [16].

One of the most successful applications of the quantum-
mechanical variational and perturbative methods is the as-
sociated with the study of the Helium atom, in the non-
relativistic and relativistic [21] formulation. A recent study
of the corrections to the ground-state energy of the Helium
atom by the presence of extra dimensions was performed in
Ref 18, where the ADD model was employed. In the light of
such studies it results interesting to perform a similar analysis
for the Helium atom in the RS II-p model.

This work is organized as follows. In Sec. 2 we consider
an hybrid braneworld scenario that contains both compact
and infinite extra dimensions. It consits of a single (3+p)-
brane embedded in a (3+p+1)-dimensional space, withp
compact extra dimensions and one infinite and warped, mak-
ing the whole model (5+p)-dimensional. This is a modifica-
tion to the Randal-Sundrum II scenario [8], which is known
in the literature as the RSII-p model. The importance of this
model resides in its property of localization of fields in the
brane, scalar, gauge and gravitational, due to the gravitational
field produced by the brane itself. Particularly, gauge fields
are localized only whenp ≥ 1 [12]. Recently, it has been
found that an electromagnetic source lying on the brane of
the RSII-p model along the compact dimensions, that looks
point-like to an observer in the usual 3D subspace, produce
a static potential that is not singular from the 3D perspective,
and matches Coulomb’s potential outside a small neighbor-
hood [15,16]. We use this modified potential as the interact-
ing force between the electrons and the nucleus of the Helium
atom, in order to obtain bounds to the characteristic length of
the model.

In Sec. 3 we obtain a 6-parameter trial wave function of
the Hylleraass type [19], and employ the 39-parameter func-
tion of [20]. Then we use perturbations to the Coulomb po-
tential obtained by Morales et al for the RS II-p scenario [15]
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in order to obtain corrections to the ground-state energy of
the Helium atom. These corrections are given in terms of
ε, the anti-de Sitter radius of the model, and by comparing
the obtained values with the experimental uncertainty of the
Helium’s ionization potential we compute restrictions to the
value ofε under this kind of experiments.

Finally in Sec. 4 we discuss our results, give some con-
clusions and the possibility of future work.

2. (5+p) model and modified potentials

It has been shown recently [15,16] that, when one consid-
ers an static source on a (3+p) brane in the form of ap-
dimensional torus in a Randall-Sundrum II-p scenario, an
observer living on the usual 3D subspace sees, effectively,
a non singular electrostatic potential that coincides with the
Coulomb potential outside a small neighborhood. This 3D
potential depends on the AdS curvature radiusε.

One can test the physical implications of this modified
potential in a phenomenological way, much in the same spirit
as in Refs. 15 and 16, where theoretical bounds were ob-
tained for the radius of the extra dimensions by consider-
ing the Hydrogen Lamb shift, the Cavendish experiment for
electromagnetism, and the scattering of electrons by Helium
atoms. Similar phenomenological considerations have been
put forward in a different scenario in Ref. 18: the ground state
energy for the Helium atom and Helium-like ions was com-
puted considering the gravitational correction to the Arkani-
Hamed-Dimopoulos-Dvali (ADD) model.

In this work we use the modified potential from the RS II-
p model and obtain upper bounds to the AdS radius by com-
puting the ground state of the non relativistic Helium atom
using a combination of the Ritz-variational and perturbation
approximation methods.

2.1. RS II-p model and potential

This section follows from [15,16]. The Randall-Sundrum II-
p model consists of a (3+p) brane withp compact dimensions
in a (5+p) space-time. The metric of this latter space-time is
comprised by two patches of AdS 5+p-dimensional of curva-
tureε

ds5+p = e−2|y|/ε

(
ηµνdxµdxν −

p∑

i=1

R2
i dθ2

i

)
− dy2 (1)

whereηµν is the 4D Minkowski metric,θi ∈ [0, 2π] are com-
pact coordinates andRi the compact dimensions.

The regularized electrostatic potential on the 3D subspace
of the 3+p brane, coming from a scalar source field localized
on the brane, is

φ(r) =


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[
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wherex = r/ε, e1 = e(6)/2Rε2, e2 = e(7)/R2ε2, ande(i)

is the total charge in each case.r is the radial coordinate in
spherical coordinates with origin at the source.

Using the limitr À ε in (2) one obtains
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which clearly reduces to the Coulomb potential for larger.
It is worth noticing that these modified potentials are finite at
the source.

Now we intend to test the model by analyzing the non
relativistic Helium atom ground energy.

3. Modified ground state energy of Helium
atom

3.1. Ritz-variational method

The Schr̈odinger equation for the Helium atom, in atomic
units, is

[
1
2

(∇2
1 +∇2

2

)
+ E +

(
1
r1

+
1
r2
− 1

r12

)]
ψ = 0, (4)

neglecting the dynamics of the nucleus, whereri is the radial
distance from the nucleus to each of the two electrons, and
r12 is the distance between them. Now, following [19,20],
it is customary to use the two elliptical coordinates and the
interparticle distance in (4)

s = r1 + r2, t = r1 − r2, u = r12. (5)

One can integrate the angular dependence in (4) and the
volume element un these coordinates is

dV = 2π2(s2 − t2)uds dt du, 0 ≤ t ≤ u ≤ s < ∞. (6)

We employ a combination of the Ritz-variational and per-
turbative method in order to obtain the ionization potential for
the ground state of the Helium atom. The variational approx-
imation for the upper bound of the ground state energy of a
quantum mechanical system is obtained from minimizing the
following integral

E[U ] =
∫

ψ∗Hψ dV∫ |ψ|2 dV
(7)

whereψ is a suitable wave function. As a first step, and fol-
lowing [19] we propose a test function of the Hylleraas type
with the modifications proposed by [20]

ψ(s, t, u) = e−(1/2)ks

×
N∑

l,m,n=0

Clmnkl+2m+nslt2mun (8)
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TABLE I. Values of the six parameters for the trial wave function
of the ground state of Helium.

Parameter Value

k 3.636

10 C0 0 1 0.972

10 C1 0 0 -0.277

100 C0 1 0 0.97

100 C0 0 2 -0.24

100 C2 0 0 0.25

whereN is the number of terms in the sum and the “effective
nuclear charge”k and the parametersClmn are to be fixed by
minimizing (7).

3.1.1. Six-parameter wave function

As a first attempt, we propose a six-parameter trial function.
Eq. (7), using (6) and (5) translates into

E =
k2M − kL

N
, (9)

with

L =

∞∫

0

s∫

0

u∫

0

ds du dt (4su− s2 + t2)ψ2,
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∞∫

0

s∫

0

u∫

0

ds du dt
{

u(s2 − t2) (∇ψ)2

+ 2s(u2 − t2)ψsψu + 2t(s2 − t2)ψtψu

}
,

N =

∞∫

0

s∫

0

u∫

0

ds du dt u(s2 − t2)ψ2. (10)

The resulting values of the parameters are shown in Ta-
ble I.

We also employ the 39 parameters wave function ob-
tained by Kinoshita [20], which in turn provides one of the
most accurate results available in the estimation of the ground
energy.

3.2. Perturbative approximation for the modified poten-
tial

We now perform the perturbative method to first order to
compute the correction to the ground energy of He. The mod-
ified Hamiltonian can be written in the form

H = H0 + H ′, (11)

whereH0 is the original Hamiltonian (4), whileH ′ comes
from (3)

TABLE II. Estimated values (in meters) for the extra dimensional
radiusε from perturbation method to first order.

p = 1 p = 2

ψ6 ε ≤ 5.9× 10−5 ε ≤ 1.3× 10−4

ψ39 ε ≤ 2× 10−5 ε ≤ 9.6× 10−5

H
′
5 = −4eε3

3π

(
32

(s− t)4
+

32
(s + t)4

− 1
u4

)
,

H
′
6 = −3eε4

8

(
64

(s− t)5
+

64
(s + t)5

− 1
u5

)
, (12)

where we used (5).
From first-order perturbation theory we know that the ex-

pected value of the Hamiltonian in (11) is the correction to
the energy of the ground state

∆E =
∫

ψ∗H ′ψ. (13)

We use the trial wave function obtained in the previous
section, Eq. (8), and Kinoshita’s 39-parameter function ob-
tained in Ref. 20 to evaluate the correction (13) and, in turn,
obtain the estimations for the radius of the extra dimensionsε,
and then contrasting with the uncertainty of the most accurate
experimental value for the Helium’s ionization potential [20].
The results are given in Table II.

These values for the extra dimensions radius are less
stringent than those obtained in Refs. 15 and 16.

4. Conclusions

In this work we have obtained estimations for the radius of
the extra dimensions of a Randall-Sundrum II-p model, for
p = 1, 2, by computing the perturbed modifications to the
ground-state energy of the Helium atom considering the reg-
ularized effective electromagnetic potential, as seen by a 3D
observer living on the brane. We used, as the trial function
for the perturbation, a wave function of the Hylleraas type
with six parameters and the one obtained in Ref. 20 for the
ground state with 39 parameters.

For the case of the six-parameter function the most accu-
rate result isε ∼ 10−5 m., which is very similar to the one
obtained for the 39-parameter function. One can see that the
use of a wave function with more parameters gives a more
accurate result for the ground energy, as has been pointed out
by [20], although in the present work this does not represent
a necessarily better bound for the radius of the extra dimen-
sions.

As for the result itself, ours is less stringent than the one
obtained in the original work [15] and [16], where values
reported for the upper bound ofε range from10−14 m. to
10−7 m.

There are some possibilities to explore in order to close
the gap between these theoretical values: extend the present
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work by including the polarization mass terms, and relativis-
tic corrections, which by itself is a very interesting analysis,
though rather involved. It is known that the inclusion of such
corrections in general add to the precision of the uncertainty,
and may provide a more restricted size for the extra dimen-
sions. Work in this direction is currently under way.

It is also interesting to extend our analysis to more gen-
eral scenarios, like the studio of ionization energies for sev-
eral light (Li+, Be+, etc.) ions, the determination of ioniza-
tion energy in the interaction between molecules formed by
atoms, among others. All these systems provide excellent

grounds for testing the predictions made by higher dimen-
sional theories because experimental values are well mea-
sured and one can actually perform laboratory experiments
in order to contrast experimental and theoretical data.
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