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Fractional mechanical oscillators
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In this contribution we propose a new fractional differential equation to describe the mechanical oscillations of a simple system. In particular,
we analyze the systems mass-spring and spring-damper. The order of the derivatizes is 1. In order to be consistent with the physical
equation a new parameteris introduced. This parameter characterizes the existence of fractional structures in the system. A relation
between the fractional order time derivatiyeand the new parameteris found. Due to this relation the solutions of the corresponding
fractional differential equations are given in terms of the Mittag-Leffler function depending only on the paramEterclassical cases are
recovered by taking the limit when= 1.
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En esta contribuéin se propone una nueva ecuacdiferencial fraccionaria que describe las oscilacionesamieas de un sistema simple.
En particular, se analizan los sistemas masa-resorte y resorte-amortiguador. El orden de las defivadag €s1. Para mantener la
consistencia con la ecuadi fisica se introduce un nuevo panetroo. Este paametro caracteriza la existencia de estructuras fraccionarias
en el sistema. Se muestra que existe una @aentre el orden de la derivada fraccionaria el nuevo paametroo. Debido a esta relagn

las soluciones de las correspondientes ecuaciones diferenciales fraccionarias estan dadas en termino$deléaNinag-Leffler, cuyas
soluciones dependen solo del orden fraccionaribos casos @sicos son recuperados enialite cuandoy = 1.

Descriptores: Calculo fraccionario; oscilaciones mecanicas; derivada de caputo; estructuras fraccionarias.

PACS: 45.10.Hj; 46.40.Ff; 45.20.D-

1. Introduction

Although the application of Fractional Calculus (FC) has at-in comparison with the classical integer-order models, in
tracted interest of researches in recent decades, it has a lomdpich such effects are in fact neglected.

history when the derivative of ordérs has been described by In a paper of Ryabov it is discussed the fractional os-
Leibniz in a letter to L'Hospital inl695. A reviewing paper cillator equation involving fractional time derivatives of the
on applications and the formalism can be found in [1]. FC, in-Riemann-Liouville type [16]. Naber in [17], studied the
volving derivatives and integrals of non-integer order, is hisdinearly damped oscillator equation, written as a fractional
torically the first generalization of the classical calculus [2-5].derivative in the Caputo representation. The solution is
Many physical phenomena have “intrinsic” fractional orderfound analytically and a comparison with the ordinary lin-
description, hence, FC is necessary in order to explain thenearly damped oscillator is made. In [18] was considered the
In many applications FC provides a more accurate model ofractional oscillator, being a generalization of the conven-
physical systems than ordinary calculus do. Since its succes$®nal linear oscillator, in the framework of fractional calcu-
in the description of anomalous diffusion [6], non-integerlus. It is interpreted as an ensemble of ordinary harmonic
order calculus, both in one dimension and in multidimen-oscillators governed by a stochastic time arrow. Despite in-
sional space, has become an important tool in many aredasoducing the fractional time derivatives the cases mentioned
of physics, mechanics, chemistry, engineering, finances anabove seem to be justified, there is no clear understanding of
bioengineering [7-10]. Fundamental physical considerationshe basic reason for fractional derivation in physics. There-
in favor of the use of models based on derivatives of nonfore, it is interesting to analyze a simple physical system and
integer order are given in [11-13]. Another large field whichtry to understand their fully behavior given by a fractional
requires the use of FC is the theory of fractals [14]. Frac-differential equation.

tional derivatives provide an excellent instrument for the de- The aim of this work is to give a simple alternative to
scription of memory and hereditary properties of various ma<construct fractional differential equations for physical sys-
terials and processes [15]. This is the main advantage of F@ems. In particular, we analyze the systems mass-spring and
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spring-damper in terms of the fractional derivative of the Ca- 1 /t £ ()
4

puto type. The analytical solutions are given in terms of the §DIf(t) = Tn—7) ) G=n)p—* dn,
Mittag-Leffler function depending on the parameter v 0 "

. . wheren = 1,2,... € Nandn—1 < v < n. We consider the
2. Fractional oscillator system casen = 1, i.e, in the integrand there is only a first deriva-

. . ._tive. In this casep) < v < 1, is the order of the fractional
We propose a simple alternative procedure for constructing i ~+ive

the fractional differential equation for the fractional oscilla-
tor system. To do that, we replace the ordinary time derivativ? .

. i . i ati
operator by the fractional one in the following way:

d 6 DI[f(t) +g(t)] = § DY f(t)+ § DI g(t),
% — %, 0< v < 1 (l)

The Caputo derivative operator satisfies the following re-
ons

§'D}c =0, where c is constant.  (5)

It can be seen that (1) is not quite right, from a physical point

of view, because the time derivative operatgit has dimen- For example, in the casg(t) = t*, wherek is arbitrary
sion of inverse seconds ', while the fractional time deriva- number and) < v < 1 we have the following expression for
tive operatord” /dt” has,s~”. In order to be consistent with the fractional derivative operation,

the time dimensionality we introduce the new parametir

the following way cpgh — _ KU(K) ey O<y<1) (6)
0t Fk+1-—7) ’ -
[L di} _ 1 0<y<1 (2
o= dty S B whereI'(k) andI'(k 4 1 — ) are the Gamma functions. If

where is an arbitrary parameter which represents the ordef = 1 the expression (6) yields the ordinary derivative
of the derivative. In the casg = 1 the expression (2) be- k
comes an ordinary derivative operatbkit. In this way (2) is CDltF = at*
dimensionally consistent if and only if the new parameter dt
has dimension Oft'mm =5 Then,we have a'S|mpIe proce- During the recent years the Mittag-Leffler function has
dure to construct fractional differential equations. It consists

i the following: i di i " X | caused extensive interest among physicist due to its role
n the 0llowing; In an ordinary di er_entla equatlon replace played in describing realistic physical systems with memory
the ordinary derivative by the following fractional derivative

and delay. The Mittag-Leffler function is defined by the se-

= kt*t @)

operator ries expansion as
d 1 d
— = 0<~y <1 (3) ad $m
dt  ol=vdtv E.(t) = - >0 8
. Tt - o) ZF(GmH), (a>0), (8)
The expression (3) is a time derivative in the usual sense, m=0

because its dimension is''. The parameter (auxiliary
parameter) represents tfractional time components the
system. This non-local time is callébde cosmic timg19].

whereI'(-) is the Gamma function. Whem = 1, from (8)
we have

Another physical and geometrical interpretation of the frac- o0 4m < ym
tional operators is given in [20]. Ei(t) =) D~ > — = el (9)
To analyze the dynamical behavior of a fractional sys- m=0 m=0 """

tem it is necessary to use an appropriate definition of frac- . L L
tional derivative. In fact, the definition of the fractional Therefore, the Mittag-Leffler function is a generalization of

order derivative is not unique and there exist several defi'Ehe exponential fun(?tlon. . . . )
Now, we can write a fractional differential equation cor-

nitions, including: Giinwald-Letnikov, Riemann-Liouville, . ‘ - } '
Weyl, Riesz and the Caputo representation. In the Caputgaspondmg to the mechanical system, Fig. 1, in the following
case, the derivative of a constant is zero and we can defin&/aY
properly, the initial conditions for the fractional differential
equations which can be handled by using an analogy with
the classical case (ordinary derivative). Caputo derivative im-
plies a memory effect by means of a convolution between the 0<~v<1 (10)
integer order derivative and a power of time. For this reason,
in this paper we prefer to use the Caputo fractional derivativewherem is the mass, measured ifg, 3 is the damped co-
The Caputo fractional derivative for a function of time, efficient, measured ilN - s/m andk is the spring constant,
f(t), is defined as follows [5] measured iiN/m [5].

m  d*x(t) 8 dx(t)
o2(0=7) 2y ol=7 dtv

+ kx(t) =0,
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Then in the case = 1 the solution of the Eq. (13) is a peri-

X odic function given by

| Y'Y Y

x(t) = xgcoswpt. (18)

Expression (18) is the well known solution for the case of
m —» F(t) integer differential Eq. (11) with = 1.
Note that the parameter, which characterizes the frac-
tional order time derivative can be related to th@arame-
I ter, which characterizes the existence, in the system, of frac-
| tional structures (components that show an intermediate be-
havior between a system conservative (spring) and dissipa-

B tive (damper)). For example, for the system described by the
fractional equation (11), we can write the relation

FIGURE 1. Damped oscillator.

From Eg. (10) we obtain the particular cases: when v = Um = owy, 0<o< ,/%. (19)
3
1.3=0
m  d¥x(t) ;
o2(1=7)  de2y + k() =0, O<y=1 (1) .
and 0.6 B ittt T VS é...,_;
02r- ‘
ﬁ d’yx(t) _ % 0 \ l””"- ) Tnt k{1 et ~—~-';- LR R -
o + kx(t) =0, 0<vy <1, (12) T R
T ety =0 (13) i |7
— twx = - = =y=0.
dt2 ! _osl- B KRR =05 ||
----- =0.25
where o » . . . —
k - 0 5 10 15 20 25
W= = 2670, (14) j
m
is the angular frequency for different values ¢f and  F'GURE 2. Mass-Spring systemy = 1,y = 0.75, 7 = 0.5 and
wi=Fk/m is the fundamental frequency of the systeme,( 7~ 0.25.
when~ = 1). The solution for the Eq. (13) with(0) = x¢
andi(0) = 0 as the initial conditions, is given by !
2(t) = xOEQV{ - w2t2"’}, (15) oel 1A
A
L. fre : b .
where o4 s F N
n 02f- SO , " B AN A
o (—wzth) g o s I " ’
E { . 22‘:27} _ 7 16 \E: 0 - I _‘“--. - - ._ _.‘ B ey B
2y w T;) 7I‘(27n i 1) ( ) & ook B o e ‘\ 'j
‘s ‘. W N/
is the Mittag-Leffler function. OAp NS —
In the casey = 1 from (14) we have,? = w(Q) — k/m 08k ........... b R (N R = = =y=0.96 |
. . DAy B U D SR A IR v=0.92
and (15) becomes hyperbolic cosine e S0/ SRR Y [SURRURN WOY R 08
\/

|
-

k |k Ik : ' ' '
Eg{—ﬁ}:Ch( —t2> — h (2 t) 0 5 10 Z 15 20 25
m m m

FIGURE 3. Mass-Spring systemy, = 1, v = 0.96, v = 0.92 and
= ch(iwot) = coswpt. a7 ~=08. pring system K K
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! ! ' ' : damping of fractional oscillator is intrinsic to the equation of

09 : === yo07 ] motion and not by introducing an additional force as in the

T EREERE 7=05 || case of an ordinary damping harmonic oscillator. The frac-
tional oscillator should be considered as an ensemble average
o, : of harmonic oscillators.

s T N SRR U L] On the other hand, solution of the Eq. (12) is given by

[
U
ey
oo -,
-

#(t)/ o

F(t) = :ﬁOEW{ - k";v tv}, (21)

3t "’ ...... .......................................................... WhereE’y{} is the Mlttag_l_efﬂer function defined above.
: For the case = 1, the expression (21) becomes

T ) TITTISRE S i(t) = foe_%t, (22)

10 15 20 25 which is the well-known solution for the integer differential
Eqg. (12). In this case the relation betweerando is given
FIGURE 4. Damper-Spring system, = 1,y = 0.75,v = 0.5 and by

= 0.25.
! (23)

| =

¥ i 0<o<
= —0, o<
g

The solution (21) of the fractional Eq. (12), taking into ac-
count the relation (23), may be written as follows

#(f) = #o B, { — 210}, (24)

wheret = £t is a dimensionless parameter. Figures 4 and 5,
show the solution of (24) for different values pf

#(1)/ o

3. Conclusion

In this work we have proposed a new fractional differential
equation of ordef < ~ < 1 to describe the mechanical
oscillations of a simple system. In particular, we analyze

o5 the systems mass-spring and spring-damper. In order to be
consistent with the physical equation the new parameter
FIGURE 5. Damper-Spring system; = 1, v = 0.96, v = 0.92 is introduced. The proposed equation gives a new universal
andy = 0.8. behavior for the oscillating systems, Egs. (20) and (24), for

equal value of the magnitudé,= 1 — ~ characterizing the
Then, the magnitudé = 1 — ~ characterizes the exis- existence of the fractional structures on the system. We also
tence of fractional structures in the system. It is easy to segyund that there is a relation betweerando depending on
that, wheny = 1, equivalentlyc = 1/wg = /m/k, the  the system studied, see the Egs. (19) and (23). The analytical
value of4 is zero, which means that in the system there areolutions are given in terms of the Mittag-Leffler function.
no fractional structures. However, in the interlak v <1, They depend on the parameteand preserve physical units
¢ grows and tends to unity, fractional structures appear in thgh the system parameters. The classical cases are recovered

mechanical system. _ _ by taking the limit wheny = 1.
Taking into account the expression (19), the solution (15)  The general case of the Eqg. (10) with respect to the pa-
of the Eq. (11) can be rewritten througtby rametery and the classification of fractional systems depend-
D) = poEd — 2052 20 ing on the magnitudé will be made in a future paper.
#(t) = o QW{ 7 }’ (20) We hope that this way of dealing with fractional differen-

wheret = twy is a dimensionless parameter. Plots for differ-tial equations can help us to understand better the behavior of
ent values ofy are shown in the Fig. 2 and 3. the fractional order systems.
As we can see from (20), the displacement of the frac-
tiona! oscillator is essentially described by the Mittag'LefﬂerACknowledgments
function
Em{ - 72(1_”)527}- This research was supported by CONACYT and PROMEP
Also it is proved that, ify is less than 1 the displacement under the Grant: Fortalecimiento de CAs., 2011, UGTO-CA-

shows the behavior of a damped harmonic oscillator. The&7-
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