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Scattering of a ball by a bat in the limit of small deformation
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The problem of the mechanical evolution of a shock between a cylindrically symmetric object and a spherical one is solved in the strict rigid
(small deformations) approximation for arbitrary values of the initial conditions. The friction during the impact is assumed to satisfy the
standard rules. Firstly, when it is assumed that the only source of energy dissipation is friction, the problem is fully solved by determining
the conditions at the separation point between the two bodies. A relation determining whether the contact points of the two bodies slides
between them or become at rest (tojhere rotation state) at the end of the impact, is determined for this case of the purely frictional
energy dissipation. In second place, the solution is generalized to include losses in addition to the frictional ones. It follows that, whatever
the mechanism of the additional form of dissipation is, assumed that it did not affects the usual forms of the laws of friction, the comple-
mentary losses only can change the ending value of the impudeme by the normal force of the bat on the ball at separation. Then, the
dynamical evolution of all the mechanical quantities with the valukdiiring the shock process remains invariable. Thus, under the adopter
assumptions of strict rigidity and validity of the standard rules for friction, the solution of the problem is also exactly found, whenever the
total amount of dissipated energy is considered as known (by example, measuring the ending mechanical energy of the system). The analys
allows to determine the values of the tangential and normal coefficients of restitution for the class of shocks examined. Finally, the results
are applied to the description of experimental measures of the slow motion scattering of a baseball by a bat. The evaluations satisfactorily
reproduce the measured curves for the output center of mass and angular velocities of the ball as functions of the scattering angle and th
impact parameter, respectively.
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1. Introduction sumed two dimensional character of the shock, and 2) the use
of particular models for the impulse forces appearing during
Classical Mechanic is an ancient field of Physics [1,7]. Anthe impact. The work presented in Ref. 12 is devoted to in-
innumerable amount of problems had been already solvedestigate the influences of the lack of rigidity of the bat and
which by now constitute a main database for technologithe ball, and the dynamical evolution of the ball in the air on
cal applications. In particular, the scattering problem in thethe bating process results. In these cited works references to
framework of Particle, Nuclear and Atomic Physics has beera number of additional studies stimulated by the relevance of
the subject of intense investigation along centuries of remechanical processes in sports can be found.
search [8-10]. On another hand, as stated in Ref. 11, at
difference with the situation in microscopic Physics, the scat- In the present study we investigate the problem of the
tering between macroscopic bodies, had not been a similarlghock between a rigid and spherical object (to be called as
attended area of study. However, in relatively recent timesthe “ball”) and an also rigid body (to be nhamed as the “bat”)
and as motivated by the relevance within the baseball of thehowing a cylindrical symmetry axis. The general motiva-
shocking process between the bat and the ball in the bas&en of the work is to clarify up to what extent the assumption
ball sport, a research activity on the theme had been stimwf rigidity of the bodies, when taken in conjunction with the
lated [11-14]. An extended study of the physical process irsatisfaction of the usual laws for static and dynamic friction
impact mechanics can be found in Ref. 13. References 1@ould allow for a full solution of the problem. When consid-
and 14 presented detailed studies of the shock problem of ered for possible practical applications, it can be noted that
bat and a ball directed to investigate the optimal batting conthe strict rigidity approximation adopted determines that the
figurations and the scattering results of the impact processesults might be of use to study real shock events for which
at low velocities. The solution of the shock process giventhe ball and the bat are not appreciable deformed. This is
in those works were found under the restrictions of: 1) an asthe case of impacts occurring at small velocities in baseball,
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for slow direct normal relative velocities at the contact pointstwo contact points between the bodies at an intermediate in-
between the bat and the ball, with possible higher values aftant of the shocking interval. In general, at this time instant
the relative tangential velocity. Such a study is done in the,,, in which the sliding between surfaces ends, the normal
last section of the work. In the case of billiard balls the rigid- force is not yet vanishing. This means that a finite portion
ity approximation seems to be obeyed for most of the shocksf the initial mechanical energy of the system is yet stored
occurring in normal playing. in the form ofelastic deformation energy. Therefore, after

The initial conditions for the shock in this work also gen- the attaining of theure rotation state, the system, which
eralize the ones employed in Ref. 11 and 14, by includings yet within the shocking process, evolves in an alternative
arbitrary starting data for the center of mass and angular vevay than in the previousliding period. In this second in-
locities. In addition the values of the normal and tangentiakerval, the evolution becomes conservative, and the equations
coefficients of restitution are predicted. The results are alsare similar but not identical to the ones corresponding to the
applied to describe the experimental measures of the sloiviction less conservative problem solved in the Appendix A.
motion scattering of a ball by a bat presented in Ref. 11Their difference rests in that within this period, a static kind
For bookkeeping purposes, the simpler explicit solution ofof frictional force can contribute to the conservative mutual
the conservative and friction less impact is also presented iimpulses between the bodies.
an appenfjlx. . - . . As it was remarked before, in order to make the solu-

The discussion starts by considering the case in which : L . ; .

- o ) . . tion applicable to the realistic cases (in which there exist ap-

sliding frictional forces in the contact points develops in the

: L . reciable energy losses due heat, deformations, sound, etc.,
assumed strictly rigid bat and ball. As mentioned above, th(% addition to the frictional one), the solution of the prob-

situation generalizes the one studied in Refs. 11 and 14, b . o L T )
: . . o . m allowing only frictional dissipation is here generalized
removing their two main assumptions: 1) The shock will con-,_~". . o
. ) . : . - to include alternative energy losses. The generalization was
sidered as fully three dimensional with arbitrary initial con- ) o
o i . . suggested and helped by two factors: a) The possibility of
ditions, and the bat form is only restricted to be a solid of . o ! .
properly identifying the amount of stored elastic energy in

rotation showing a cylindrical symmetry axis, 2) No model the svstem at anv moment when the enerav losses are purel
about the nature of the normal impact force will be adopted. y y 9y purely

. - - ue to friction; b) The helpful technical fact that due to the as-
Only the standard connection between the sliding friction an . L .
. : sumed extreme rigidity approximation, the exact evolution of
the normal force will be assumed. That is, the modulus of th

L . ; _ . ethe system, no matter the nature of the energy losses, only de-
sliding friction force will be equal to the friction coefficient . . ) . .
. . : ends on one single variable: the net impul&g transmitted
1 times the magnitude of the instantaneous normal force

the contact point. As usual, the friction force over one of P to a given instant by the normal force exerted by the bat

the bodies will be directed in the opposite sense to the ta on the ball [14]. It should be underlined, that the found so-

. . . lution for this general case of dissipation, can be considered
gent component for the relative velocity of the contact point s .
as an exact one, when one considers as a known quantity the

Eg;;at object with respect to the contact point on the OtheEiissipated mechanical energy at the end of the shock (by ex-

In addition, a criterium is found for deciding about ample by measuring the total energy at the end of the impacts

: . jn repeated experiments). Since all the components for the
whether the ending state of the shock corresponds to slidt P P ) ; . P
) ) relative normal and tangential velocities between the contact
ing tangent surfaces, or topaure rotation state. Thepure

rotation state will be called that one in which the tangent points are predicted for this general solution, it follows that

surfaces end the shocking process by showing null tanger%he values of important phenomenological quantities as the

. ; . : i ) tangential and normal coefficients of restitution are also pre-
tial relative velocity. Analytic and integral expressions of the angential and normal coefficients of restitution are also pre

. o dicted, assumed that the total energy loss is known. In the
ending values of the center of mass and angular velocities are

. . . ! : . case in that the friction is the only source of dissipation, the
given, in terms of the solution of a simple differential equa- . X .
? . - energy loss is also following and is not needed to be mea-
tion for the two components of the relative velocities between
. . . . .~ sured.
the tangent points. It is an interesting outcome that the im-
pulse done by the normal force of the bat on the ball can be The generalized analysis is then applied to the description
employed in place of the time in describing the dynamicalof the experiments on the scattering of a ball by a bat reported
evolution during the shock. This property was noted in thein Ref. 11. After phenomenologically fixing a single exper-
work [14]. imentally measured quantity: the value of the center of mass
The solution for the ending velocities of the ball and thevelocity of the ball at zero values of the impact parameter
bat presents two kinds of behavior: In one case, the frictiorand its initial angular velocity, the calculated results furnish
force is unable to reduce the tangential component of the rel satisfactory description of the reported measurements. In
ative velocity to zero during the small time interval of the particular, the curves for the ending velocity of the ball as
shock. In this option, the two bodies end the impact with afunctions of the scattering angle coincided with the measured
remaining sliding between their contact surfaces. ones within the range of the dispersion of the data, for each
In the alternative ending state, the frictional force be-of the three values of the initial angular velocity of the ball
comes able in reducing to zero the relative velocity of theemployed in the experiences.
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The exposition of the work proceeds as follows. In Sec. 2,
the starting equations for the shock problem are presentec Ball—-—-)
and the notation and basic definitions are given. Afterwards, ¥
the solution of the impact problem for the case in which the
ending state is assumed to correspond to sliding contact sur ’
facesis exposed. The Sec. 3 continues by presenting the solt r t_sj
tion for the situation in which the contact point of the ball and NP
the bat finish the shock process in there rotation state. l’
Section 4 exposes how the solution for the case in which the
losses are only due to friction can be readily generalized for
the more general situation including additional types of en-
ergy dissipation. Finally, in Sec. 5 the results of previous
sections are applied to solve the scattering problem of the ball
by the bat in the particular configuration considered in the ex-
periments reported in Ref. 11. The results for the description
of the measurement reported in that reference are presentec
Finally, in Sec. 5 a summary of the results is given.

Tangent Plane

FIGURE 1. The figure illustrate the defined systems of reference to

2. On|y frictional dissipative impact: the slid- be systematically employed along the work. The ball and the bat
ing final state are shown in the moment at which the impact starts.

val 6t.;,. Naturally, this lapse will be supposed as being ex-
This section will expose some basic considerations and defremely short. These assumptions will be reflected in the dis-
initions which will be of use along the presentation. Thecyssion to follow, in which the whole geometry of the ar-
Fig. 1, illustrates the shock process between the ball and th%ngement will be supposed to be invariable during the time
bat in the precise instant at which they become in contacntervalst.,. The only quantities that will allowed to change
The adopted laboratory system of reference (to be named &ge the linear and angular velocities of the two bodies.
the Lab system in what follows), will be situated on the cen- [ gt ys write the general equations of motions for the evo-
ter of mass of the bat and having itS(x:3) coordinate axis ytion of the center of mass linear momeiRtg, P;, and the
being collinear with the cylindrical symmetry axis of the bat. angular moment&,,, L;, of the ball and the bat, respectively,

The three unitary vectors of theab reference frame axes qyring the shocking intervat.,. They can be written as
will be {i,j,k}. In what follows, bold letters will indicate

vectors. The unit vectdk along thez axis, will point in the ipp(t) =F(t), (1)
direction of the barrel of the bat, and thus, the vectgysvill dt

be contained in a transversal section of the bat as illustrated d Py(t) = —F() @)
in Fig. 1, and they are chosen to form a direct triad viith a "N ’

The vectorr, depicted in Fig. 1, defines the position of the d

contact point of the two bodies in the above defined refer- 2 Lp(t) = (rc — remo) X F(2), 3)
ence frame. Note that the adoption of theb frame does d

not restrict the generality of the discussion. The veetgy, %Lb(t) =—r. x F(t), 4)

gives the position of the center of mass of the ball in tlag
coordinate system. The set of three unit vectgrs t,, t,}  in which F(¢) is the very rapidly varying impulsive force
are defined as followsts is normal to the common tangent Which is exerted by the bat on the ball. The definitions of
surface of both bodies at the contact point, and is directed d§€ momenta are

pointing outside the volume of the bat. Furthey,can be d
defined as a tangential unit vector being contained in a com- Py(t) = myVemb = mb@rcmb(t%
mon plane with the unit vectdr and having a positive scalar d
product with it. Finally,t; is defined as being orthogonal to P,(t) = mpvemp = mp%rcmp(t%

to andts by also forming with them a direct triad.

Let us specify now few physical assumptions that will be
adopted for the solution of the problem. Firstly, as it was al- L(t) =1 . " " . " 5
ready stated, it will be considered that the ball and the bat are p(t) =T - Wp(t) + Temp(t) X myp Vemp (1), (5)
ideally rigid bodies. That is, the elastic forces are supposeth whichm, andm, are the masses of the bate and the ball,
as being so strong, that the spacial forms of both objects raespectively. The angular momenta of the bat is defined with
main almost the same during the whole shocking time interrespect to thd.ab reference frame, and for the simplicity of
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the further discussion the angular momenta of the ball was v(tb)

defined with respect to its center of mass. Note that the an- "% dvemb(t) = (Nz()t) - 3) ar, (8)
gularimpulse in Eq. (3) is consistent with this definition. The | Vb |

inertia tensor of the ball,, is the identity matrix and the one v®

associated to the bd has cylindrical symmetry in théab I, dwp(t) = —pdI(re — remp) X %f), 9)
reference system. The explicit forms of the inertia tensor are | Vb |

t
N vz(,b) 1
dwy(t)=pdIT, " - r.x - pdlrexts,  (10)
t

1 00 v
I,=5,/ 010 2o
b 00 1 ’ where a new magnitude appearing is the differential impulse
dI = N,_,,dt done by the normal forcd/,_,, exerted by the
N I, 0 0 I, 0 0 ball on the bat. It allows to define the net impulse done by
I,=1 0 I, O =10 I O . (6) this force up to a given timeby
0 0 I3 0 0 I3

I(t) = / Ny_pdt. (11)
0

Note, that the vectorcmp(t) is the position of the center

of mass of the bat, which during the shocking interval, Another quantity appearing is the tangential component of

. . () .
remains to be very close to the origin of theb reference the relative velocityv,, _between the contact point of th_e
. . : X . . ball and the corresponding contact point of the bat (for which
frame depicted in Fig. 1, if the bodies are sufficiently rigid = () . X . .
| v, | means its modulus). As defined abopés the slid-

for the given initial relative velocities and angular momenta. S - . LT
T e ... ing friction coefficient and the inverse of the inertia moment
That is, in the here adopted strict rigidity approximation, in =~

—1 .. .
which the two bodies are assumed be completely invariabkt-:-ensor of the bal, * can be explicitly written as follows

S|

in form and position during the impact, it will assumed that R % 0 0
remo(t) = 0. L'=10 1 O1
In a first instance, we will include energy dissipation only 0.0 7
through the presence of sliding friction during the impact. % 0 0 00 0
The inclusion of additional sources of energy losses will be =1 o0 % o |+ o0 o0 o0
incorporated in last sections. As stated in the introduction 00 1 0 0 i -1

the usual laws of friction will be assumed. That is, we will

consider that the modulus of the sliding friction vector will 15 + (1 . 1> kk
be the sliding friction coefficient, times the modulus of the I I I ’
n_ormal force between the bodies. Furt.her, the directi_on of.the i=(1,0,0), j=(0,1,0) and k= (0,0,1), (12)
friction force over one of the two bodies contact point, will

be opposite to the relative velocity of this point with respectwherek k means the diadic tensrk =k; k;.

to the contact point of the other body. Let us define now a simplified notation for the tangential

, componentf(tb) (t) of the full relative velocityv,; (¢) between
Let us note that, because the normal force grows starting o contact 6oints of the ball the bat as follows

from zero at the beginning of the shocking period, in general

the first stage of the shock process should correspond to a sit- V;? (t) = v(t) = vi(t) t1 + va(t) to,
uation in which the contact points of the ball and the bat slide B 5 5
between them at the beginning of the process. Only in the [vI=0(t) = V(01)? + (1) (13)

particular situation in which the tangent velocity is already ~ Then,v,,;(t) can be written as follows
vanishing at the beginning of the impact, this period will not )
exist. In such a case the solution is directly given by the one Vpb(t) = Vi + (Vip(1) - £3)t5

presented in the next section. = 01 (t)ty + va()ta + (Vi) - tats

Then, consider the equations of motion as written for this
" ' . R = vemp(t) — v t) + w,(t
initial process. For an instantbeing inside the very small emp(t) — Vemb(t) + wp(t)
time intervaldt.;, during which the bodies are in contact, the X (re — remp) — Wp(t) X re, (14)

equations can be written in the form which allows to write for the variation of,,(t) in a time

intervaldt in the considering sliding interval the expression

0) (1)  dvar(t] — dver p
mpdvcmp<t>=<—uvfg+t3> a. vy (1) = AVemplt) — dvemn(t) + d(wy (1))
N X (x — Fomp) — d (Wy(£)) X T
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where, as described before, the geometry of the system h&e to determine a different instants in which separation (end

been assumed as invariant due to the perfect rigidity of thef the impact) will occur. This property will be employed in

ball and the bat. This assumption can be satisfied, in particdast sections to extend the solution to include non dissipation

lar, if all the velocities are chosen to be scaled to sufficientlyeffects.

small values producing small enough deformations. Employ- The solution of the above set of equations for the rela-

ing the equations of motion allows to express the above varitive velocities, after determining their initial values allows to

ation in terms of the differential impulse of the normal forcesdetermine the evolution with the impulgef all these veloc-

in the following linear form ities. As it will be verified in the particular examples solved
in next sections, the general behavior of the solutions is such

dvpp(t) = —p (ni + n;) Md_r + (1 + 1) t;dI  thatboth components evolve wiffin a continuous way up to
P

v(t) mp  Mp a critical value of the normal impulse, at which both compo-
L v(t) nents simultaneously tend to vanish. This point correspond to
- Tdf (re — remp) X ((l“c — Temp) X v(t)) the attainment of thpure rotation state. However, whether
b this critical situation would be approached or not depends on
e pd vie) 1 ., r. X t. (15) the dynamical equations of motion: they in fact should de-

o(t) I termine whether or not positive values of the normal force

After projecting the above relation over andt, , the done by th_e bat on the b_al_l can exist up to the arriving to the
following set of two differential equations for the variation "¢ ’fommof” state. \;erllfglr:jg the aEO\_/e remarks, the set 0;
of the relative tangential velocity components as functions of duations of motion (7-10) during the impact process can be

the impulse of the normal force of the bat on the ball can béNritten in terms of the most appropriate evolution parameter

obtained I as follows
dv, (I) v(])
1 WVempl!) _ (_
dvy(I) = —s1 U;( ) _dl, my — = ( ol +t5 ), (20)
V(Wi(1)? + (v2(1)) | (
dvemp(I v(I)
dvy(I) = —s3 ”Z( ) —dl +s0dl,  (16) (L (uv( ) ts) 7 (21)
V(Wi(1)? + (v2(1))
i i i dwy (1) v(I)
in which the parameters appearing depend on the system’s 1p g - (re — remp) X o)’ (22)
properties as follows
de(I) =_1q V(I) 1
2 — . _
51:M<1+1+(rc—rcmp) dIl KoLy Fe X U(I) I, re X t3. (23)
my My I,

) These equation clearly evidence that the evaluation of all
n (rc) n ( 11 > (t1 - (re x k))Q), 17)  the velocities is only determined by the value of the impulse

I Is I of the normal forcel being exerted by the bat on the ball.
1 1 (Te — Tomp)? This impulse is defined by Eq. (11). Since the solution of
Sy = M(m + — + [7‘) the differential Eqs. (16) determines the tangential velocity
P b p as a function of/, the Egs. (20)-(23) can be integrated to find
N (rIC)2 (re 'It2)2 >7 (18) out all the velocities in telrms df as follows
t t
vemp(d) = vemp(0) + — (=1 s (1) + It3), 24
o (5o ta) o ). 19 o) = Vemp(0) + = (~Tyo (1) + Its) (24)
At this point it can be underlined that the time had dis-  vemp(I) = vemb(0) + L(IfT(I) — It3), (25)
appeared form the equations of motion for the tangent ve- My
locities. That is, the time dependence is all embodied in the 1
) I) = — —(r.— I:.(1), 26
time dependence of net impulse of the normal force of the bat pl0) =w,(0) I, (re = remp) < L (1) (26)
on the balll(¢) defined by (11). This functional relation be- N 1
tween the impulsé and the timet will be assumed in what wi(I) = wp(0) + I, ' - (re x Iy (1)) — Tlrc X ta,
follows for studying the evolution of the system during the ¢ (27)

shock interval in terms the impuldein place of the time.

A very important consequence of the unique dependence ofhere the impulse done by the tangential frictional force is
the evolution on the net impulse is the fact the presence of defined as a function df by the following integral

any form of dissipation in addition to friction will not affect

the result of the evolution of all the properties up to a given f , v(I')
state with definite value of. Therefore, the only effect of Ly (1) = N/df o(I') (28)
the presence of such supplementary forms of dissipation will 0
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For a coming reference to them, let us define now the in-  In what follows, we will also consider also the existence
crements in the velocities with respect to their initial valuesof additional sources of dissipation, as the one associated
vk v wi™ andw(™ when the impulse rises to a defi- to the non complete elastic behavior of the ball and the bat.

nite valuel(t) by: Then, the total dissipative wo&’ (I) will be written as
A chp(I) = chp(I) - chp(o)v W(I) = Wfr(I) + Wadd(j)v (33)
A vemp(L) = vemb(L) — vemb(0), whereW,qq4(I) represents the amount of mechanical energy
_ dissipated in the system up to the instant in which the normal
Aw,(I) = I — 0
wpl) = wp (1) = wy(0), impulse takes the valué due to mechanisms additional to
Awy(I) = wy(I) — wy(0), (29)  the frictional one. It can be understood that the dependence
(in) (in) on I of Wagq (I) will depend on the concrete forms of the
vemp(0) = Vempy Vemb(0) = Vemps dissipation process acting in the bat at the ball. However, it
w,(0) = wS”), w,y(0) = wf(,i”). (30) is a remarkable property that, assumed that if the system be-

comes able to arrive to the pure rotation state, the velocities at

The above formulae indicate that the shock problem inthis ppint result to be (i.n the here cpnsidered perfect rigidity
this assumed initial sliding process, will become solved, af-S'tuatlon and only at this partlcular |_nstant_) comple_tel_y m_de—
ter finding a condition determining the final value of the tan_pendent_of the existence of non fr|_ct|onal kinds of d|35|pat|on.

gent velocity component at the moment of separation of th(;.rhe part|cu|ar cases of the expenmen_tal r(_asul_ts to pe consid-
bodies. Let us consider this point in what follows. éred in next sections belong to the situation in whygire

C . . . rotation is established.

In the assumed in this section case, in which the shock o . -
e . - The explicit form of the condition (31) determining the
is finalized when the contact points are yet sliding between : . L . ; :

: . . . separation point under sliding regime (in case that it effec-
them, the posed equations remain being valid along all th . -
. T . e ively occurs) is completed after defining the formula for the
shock interval. In this situation, the appropriate condition for.

. . . ; o increase in the total kinetic energy as a functionl oft fol-

fixing the ending value of the impuldgeis that total dissipa- : . .

. L : lows after expressing the values of the final lineal and angular

tive work W done (due to friction or non elastic processes) up L L -
) velocities in terms of their initial values plus their increment.

to the value of the impulsg, should be equal to the decrease Making use of the Eqs. (29) this quantity has the expression

of the total kinetic energyA Fyi, along the evolution up to the 9 as- q y P

same value of. The physical reason for this condition is that _ _my (in) 9

when the normal force vanishes, which defines the separation an (1) = (2chp~ AVemp(1) + (Avemp(])) )

of the bat and the ball, the conservation of energy implies that mp (in) 5

all the non already dissipated part of the mechanical energy T (2chb' Avemp(I) + (Avems(7)) )

should appear in the form of the translational and rotational I _

kinetic energies of the bat and the ball. + 51) <2W,(,'n) “Awy(I) + (AWp(I))Q)
Therefore, since as it has been concluded, the evolution 1 .

as a function off is completely independent of the nature of 4= (2W£'”> Iy Awy (1)

the dissipation, it follows that the solution of the problem in 2

this period is only depending of the fraction of the initial ki- + Awy(I) - I - AWbU)), (34)

netic energy of the two bodies which becomes dissipated in

the shocking process, a quantity which only will determinejn \which all the increments in the linear and angular velocities
the value of the impulse transmitted at separafigh This  are given by the formulae furnished by the integrated equa-
condition leads to the equation féy, tions of motion (24-27) and the solution of the differential
equations for the tangent velocity (16).

Therefore, the full solution of the problem in the assumed
situation in which along all the shock process the contact
points of the ball and bat slide between them, can be obtained
after finding the value of,; making equal to zero the func-

W (lout) = A Exin(Lout)- (31)

The part of the total dissipative work” which is done
by the friction up to the value of the timg for which the
impulse has the valuEt) can be calculated to be

tion
t S(Iout) = W(Iout) - AEkin (Iout)~ (35)
Wer(1(t)) = —/uNsz | v |dt It should be remarked that for the case in which all the
0 dissipation is determined by friction, the problem is com-
) pletely solved because the evaluation of the work of friction
as a function of, is completely defined by (32) in terms of
="K / | v(I) | dI. (32)  the found solutions of the tangential velocities as functions
0 of the impulsel. The case of additional sources of losses,
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for to be analogously solved needs for a definition of the sperotation state in which a portion of the total mechanical en-
cific mechanism leading to dissipation. A model for taking ergy is yet stored in the form of elastic deformation energy.
in consideration such a mechanism will be constructed in th@he value of the total kinetic energy at this pofit™) can
coming Sec. 4 in order to apply the results to the descriptiorbe calculated through the formula
of realistic experimental measures given in Ref. 11. m m

This completes the finding of the solution for the evolu-  E(?) = TP(chp(Irp>)2 + Tb(vcmb(Irp)F
tion of the impact process in this firstly assumed situation. It

- - I 1

can be helpfullto recgll that all the _shqckmg events in which + ip(wp(lrp))z + §Wb(Irp> Ty - wy(Lp).  (40)

the contact points slide at the beginning of the impact, start

evolving as guided by this just considergldding case. In As remarked before, the existence of deformation energy

the case that no solution exists for the above equation, thgt the transmitted impulsk,, is represented by the existence
situation should correspond to a problem in which the workgs g yet not vanishing normal force, which should tend to
which is done by the friction along the whole initial sliding zero in the new stage of evolution. In this second period of
period is not able to become equal to the decrease in the kine impact process, the stored elastic energy transforms in a
netic energy of the bat and the ball. Let us consider the findgontribution to the kinetic energy of the ball and the bat at
ing of the solution in this second regime. the real ending state of the shock, in which the normal force

tends to vanish. Deformation losses can occurs also in this
the  Process.

Therefore, after the instant at which the impulsd,is,
the system will be governed by a similar, but not identical,

As followed from the previous section, we will now consider set of equations valid for the conservative shock studied in

the situation in which the maximal work that can be done byappendix A.The diﬁerenge ?S related with the fact tha’F during
the friction up to the point in which the sliding between the this last interval, a&tatic frictional force can be dynamically

contact points vanish, is not able to dissipate the mechanic%fqu'red tof rtamalg acting. f'l;ms.possflb;:ny was exclgded n
energy down to the value needed to coincide with the tota% e case of the absence of friction of the conservative case,

3. Only frictional dissipative impact:
“pure rotation” final state

kinetic energy at this same sliding state. In other words, a ut here it can occurs due to the possible existence of a static

the instant.,,, (or the corresponding impulse of the bat on riction. Then, the increments of the center of mass veloci-
P ties and angular velocities up to the value of the impulse

the ballI,.,,) at which sliding stops, and theure rotation : At within this final i od b
state is attained, a portion of the total initial energy should pt any moment, within this finaf pure rotation period can be

yet stored in the form of deformation energy. In addition, theWrtten in the form

presence of deformation energies forces is represented in the

considered problem by a non vanishing normal force. mpAVGR (Ig) = Iy b + 177, (41)
Thus, the shock process is divided in two parts, each one mzAVéﬁfp)(If) = —Ipty — 1", (42)

being governed by different dynamical equations. The first

one was discussed in the past section, in which sliding occurs LAWYP) = (v, — 1) x 7, (43)

and stops at the impulse valiig, at which the slice between =~ . ,
the contact points of the ballg%d bat ends. At this value of the L - Awy P (Ip) = —ro x talp —re x U7, (44)
impulse the increments in the velocities are given by the for- | EAR S LY ¢ L (45)
mulae (24-27), in which the tangential sliding velocity van- fmp = =1 2
ishes. These linear and angular velocity increments have the 1o parameters;, I{T andI{T

o . are the impulses of the
explicit expressions

normal and frictional forces produced by the bat on the ball
starting from the time,., up to the instanty, and are defined

1
Vemp(Zrp) = Vemp(0) + (=T pr(Irp) + Lrpts),  (36) by the integrals
P

1 ty
I,) = — (X (Lrp) — I, 7
chb( rp) chb(o) + WLb( fr( Tp) rptS)a (3 ) If(tf) _ /Nb—>p(t) dt, (46)
1 trp
Wy (Lrp) = wp(0) — 7 (re —remp) X Ipr(Lrp),  (38)
P ty
wy(Irp) = wp(0) + T, 1+ (re x Tp(Lp)) 7 (ty) = / fro—p(t) dt, (47)
1 trp
- I I, re X ts, (39) .
fr —
These quantities fully determine the linear and angular I (ty) = /f?“b_m(t) dt. (48)
velocities of the ball and the bat in the next intermedijatee trp
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A complete set equations for determining the evolution of ~ Therefore, all the velocity increments in (36-39) can be
all the quantities can now be defined, after assuming that wexpressed as linear functions of the impulse done by the nor-
are effectively in thepure rotation regime occurring before mal force of the bat on the ball,. Note that this impulse is
the ending of the shock. The additional conditions for com-defined as the one transmitted after the instant in which the
pletely fixing the solution of the equations of motion are ba-system arrives to the pure rotation state up to any moinent
sically the vanishing of the two tangential components of then explicit form the values of the velocities as functions pf
relative velocities of the contact points at any moment duringare defined by Egs. (41-45) in the form
this ending process. This condition for the relative velocity

at the tangential point can be written as follows VR (1) = v (0)
0= AVER(Ip) -t = Avid (L) -t + Aw(P) (1)
i I
X (T — Temp) - bi — AwS P (If)xTe - t, (49) + mff t3+ Z Z Sijuiti |, (54)
P i=1,2j=1,2
i=1,2.
In these two equations, all the increments in the velocities vég’;} (Iy) = vé{n’g (0)
can be substituted in terms of the just defined three values of
the impulses. They in turns can be solved for the two values I
of the frictiongl impulses in terms of the unique values of the _f ts -+ Z Z Sijviti | (55)
normal force impulse as follows My i=1,2j=1,2
g =1; ) Sijuj, (50)
j=1,2 Wz()rp) (Iy) = Wz()rp)(o)
t; -ttt t;-totg -t
Sij = “—p >+ 2, (51) s
1 2 + I—f(rc — rp) X Z Z Sijvjti s (56)
1 1 (r.—rp)? P i=1,2 j=1,2
Dy = — — 4= 7 , )
my, My I,
(rp) (rp)
(rc)? 11 5 wy, " (Ip) =w, 7 (0)
— — — ) (kxr.)", 52
o (g ) o (52)
1 1 =~
D2 = — 4+ — 7IfIb L. I‘cXt3+I‘CX Z Z Sijvjti, . (57)
my My i=1,2 j=1,2

+ + — —(r. - t2)%. (53) In terms of these velocities, the total amount of kinetic
energyEy(Iy) at a fixed value of the impulsg; is defined
| by the formula

T m T T m T T
By(Iy) = BV + 22 (2Vemll1y) - AVGE (1) + (AVGR (1)) + T (2vemslLry) - AViR (L) + (AVER U)?)
I r r 1 = r T T T
+2 (2w (1) - AWTP ) HAWTD (1)) +5 (2 (WolLop) Ty Awi P (L) +Awy P (1) Ty Awf P (1) ) ) . (58)

This completes the solution for the evolution equations
for the second process in which pure rotation occurs. In ordétnf the total impulse done by the normal force of the bat on the
to fully define the solution it only rests to determine the sepaball at the just end of the whole impact. This strong property
ration point. The condition for determining it is presented inwill be used in next section to define a general solution of the
the next subsection for the case in which dissipation is onlyroblem in which additional sources of dissipation exist.
produced by friction.

3.1. Acriterium for determining the shock case from the

_ o initial conditions when dissipation is only frictional
However, it needs for a clear definition about the concrete

mechanisms of energy dissipation in the system. However, dset us consider in this subsection the condition allowing to
it was already remarked, one helpful outcome is that, undedetermine in advance which kind of state will show the ball
the assumed rigidity assumptions, no matter the form of thand the bat at the end of the shock event, by only knowing
existing dissipation mechanisms, their differences only canhe initial conditions. This completes the determination of
alter a single parameter of the problem: the particular value the solution for the case in which dissipation is only imple-
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mented by the friction and the bodies attain the pure rotatiomdopter assumptions of strict rigidity and validity of the stan-
state. It can be noticed that under the assumption of exigdard rules for friction, all the mechanical quantities of the
tence of additional non frictional sources of dissipation, suctproblem coincide with the ones in the case of the sole pres-
a criterium is expected to depend on the specific mechanismence of frictional dissipation, at any given instant before the
to be considered. However, assuming that we know the totadeparation between the bodies. Then, let us consider the exact
amount of energy dissipated in the shock, the solution of theeparation instant. It is clear that the condition of separation
mechanical problem will be also found in the next section. will be that the at this precise moment, the (already known)
In this case of the sole presence of frictional losses, thérictional dissipation energy, plus the additional energy lost

criterium is directly given by the sign of the quantity (by heat, sound, plastic deformations, ...) should be equal
. . to the difference between the initial value of the total me-
C (ngy vin wiin, wl()'”)) chanical energy (at the beginning of the shock) and the final

value of this same quantity at the separation instant. There-
—p(in) (Vgnq)m Vé'rf;)m wS”),wf,'”)) Wi (Ip)—E™, (59) fore, if we consider the amount of mechanical energy dissi-
pated during the shock (certainly a measurable quantity) as
a known value, then the full solution of the impact problem
locities v((:inrl)p’v(in)b’ Wz(gin)’wl(jin)' which were obtained in the |s.0bta|ned. That is, .aII the mechanical properties are deter-
cmb , . L o mined at all times. Since all the tangential and normal to the
course of the previous discussion. If the sigrCois positive, o .
) contact plane velocities can be calculated, it also follows that
then the total energy after the bat and the ball arrives to thé . . o .
ure rotation state results predicts the tangential and normal coefficients of resti-
P tution for the class of shocks studied. This analysis will be
employed in the next section to describe experimental data of
the slow motion impacts of a ball and a bat. Before, in the
. L . next subsection, let us present the explicit separation condi-
is larger than the kinetic energy of the two bodies in this same: o P P P
stateE("?). Therefore, at this moment the system has energy
stored in the form elastic deformations, and a non vanishing 1 - The condition for determining the separation point
normal force should remain existing. That is, the shock is
not yet ended and the second kind of the solution should bget us discuss now the explicit condition to be imposed for
considered. determining the moment in which the ball and the bat start to
In another hand, i€ is negative, it indicates that the total separate. It can be constructed in terms of the energy balance
energy of the system after attainipgre rotation results to  in the system. The separation point can be defined as that
be smaller than the kinetic energy in the samee rotation one at which the initial total mechanical energy minus all the
state. This means either, that energy is not being conservatdechanical energy lost up to this point, just becomes equal
in the process, or that the system could not in fact attains the the total kinetic energy of the ball and the bat. In explicit
pure rotation state, and the shock ended with sliding contactterms, it can be written in the form
points. In this case, the kind of solution to employ should be (in)
the one discussed in Sec. 2. The case- 0 indicates that E™ A+ Wir(Irp) + Waddrp + Tow) = Ef(low) ~ (60)

the shock ends precisely at the moment in which the systefyhere the total dissipative work of the frictiofiy,. is given
arrives to theoure rotation state. by the general expression (32) after substituting I,

wherel (0) and E("?) are implicit functions of the initial ve-

B (v vl wil wi) + Wy, (I

Iy
4. General dissipative impact “solution Wi (L) = —u/ v | dI, 61)
In this short section we describe how the solution found in 0

previous sections lend the basis for a more general solutioand the losses due to other sources of dissipation in addi-
in which losses in addition to the frictional ones are presention to friction up the total value of the impulse done by
in the process. Let us only assume that the new kind of lossebe normal force at the separation poiiy + Iou, is the

do not affects the rules governing the relations between theerm Waad(lip + owr). The right hand side of the equation
normal impact force and the tangential frictional one. Thenjs the total kinetic energy of the ball and the bat at the sep-
it can be observed that along the rapid mechanical evolutioaration instant. That is, the total kinetic energy at the point
during the impact process, all the equations of motions foin which pure rotation is established plus the increment due
the two bodies are exactly the same at any instant at whicto the changes in all the velocities during the pure rotation
the bodies are not yet separated. That is, the mechanical stageolution up to the separation point. This kinetic energy is
of the ball and the bat at any moment within the shock timedefined by Eq. (58) as evaluated at the impulse done by the
interval, is fully determined by the total amount of linear mo- normal forces at the separation point.

mentum which had been transmitted up to this moment by As it was remarked at the start of this section, without
the normal force of the ball on the bat. Therefore, under thespecifying the nature of the additional sources of dissipation
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in addition to the frictional one, is not possible to define the I, = 0.0460 kg n?,
separation point assumed that we only know the initial data.

_ —4
However, if we consider as a known quantity the total me- Iy =439 x 107" kg nv,

chanical energy after the shock (or alternatively, the amount =05 (62)
of energy lost in the impact, the problem can be considered
as solved in this section. The set of unit vectors sitting at the tangential point of the

Let us now consider again the simpler case in the onlyyodies were chosen in the following way
energy dissipating source is the friction. Then the additional

losses termWadd(lip + If) vanishes. In this case rela- t1 = cos(#) j — sin(0) i,

tion (60) becomes a simple quadratic equationZfgy after

substituting the expressions (54-57) for the velocity incre- ta =k,

ments, which all are ho_moge_neous linear functiondof ts = sin(0) j + cos(0) i,

In Eqg. (60) all the quantitie® ™, W;,.(0), E™ vemp(Iip),

Vemb(tp), Wy (Irp) andwy(Irp) are already known from the r. = 0.115 k + 0.03335 (sin(6) j + cos(#) i),  (63)

solutions just obtained in the previous stage of the shock.

Henceforth, the Comp|ete ana|ytic solution of the shock probWhiCh reflect the fact that the barrel of the bat has been fixed
lem follows in the considered case in whighre rotationis ~ @s a cylinder of radiu®.03335 cm and that the center of
attained and friction is the only source of energy losses. Th&ass of the bat has a minimum distance0dfl5 m from
application of the analysis to describe experiments in whictihe plane being transversal to the bat axis and contains the

additional sources of losses add to friction will be discussed@ontact point. The anglé is the one formed between a ra-
in next section. dius traced from the axis of the bat to the contact point. For

the experimental arrangement, the initial velocities of the ball
and the bat just an instant before the impact become

5. Description of experimental measures o) _
cmp ( 4? 07 0)7
In this section we will consider the application of the results (i (0,0,0)
presented before to the description of the measures relative Vemb = 1o
to the scattering of a ball by a bat in Ref. 11. The experi- (In) = (0,0, w,),
ment consisted in dropping a free falling ball at certain height
which determines a vertical velocity of 4.0 m/sec at the in- w™ = (0,0,0). (64)

stant in which it shocks with an horizontally oriented static
bat. Then, a high video recording of the free fall of the ball5.1. The solution of the shock problem for nearly van-
allowed the authors to determine all the kinematic parameters ishing impact parameter
before and after the impact. Experiments were done, in which
the ball was pitched a number of times with fixed values ofln starting, let us exemplify the solution of the impact prob-
the angular velocities along the symmetry axis of the bat. Extem for the situation in which the vertically falling ball makes
periences for three values of the angular velocitigs= 79,  contacts with the horizontally oriented bat at a very small
0, —72 rad/sec were done. The bat has a barrel diameter ofalue of the impact parameter. That is, when the vertical line
6.67 cm, a length of 84 cm and a mass of 0.989 kg. The ceref falling passes very close to the bat symmetry axis. For
ter of mass of the bat is situated at 26.5 cm of its barrel endconcreteness let us suppose that the impact occurs at the small
The ball for which measures were done landed on the bat aalue of the anglé = 7/400. This configuration will serve
distances along the bat axis ranging between 14-16 cm frortwo purposes of the presentation. In first place it will illus-
the barrel end. Then, we will describe the shocks by assuntrate the application of the formal solutions found in previous
ing that the ball impacted the bat at an axial distance of 15 crsections to a concrete shock process. In second hand this par-
from the barrel end. ticular solution for scattering at zero impact parameter case
The parameters of the bat and the ball considered in thawill serve for phenomenologically constructing a description
work determine the following values for the magnitudes de-of the experimental data presented in Ref. 11. Firstly, con-

fined in the previous sections sider the solution of the Egs. (16) for the evolution for the
tangential velocities in the firstly occurring sliding period.
my = 0.145 kg , The evaluation of the parametess, s, and s, defined in
my = 0.989 kg relations (17-19) leads to the explicit form of the equations
dvy (1 I
7p =/ (fe — Temp)® = 0.036 m ull) _ 1308 - o) —, (65)
vi (1) +v3(I)
r, = 0.03335 m
I I
, (D) _ qope ) 0833 (66)
= (2/5)(0.036)2 m,, kg NP, dI vi(l) +v3(I)
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meter

363

0

v1(0) = 0.0314 , (67)
sec
(% (0) =0. (68)
~0.00002
The employed initial values of the components of the tan- E 9
gent velocities; (0) andv-(0) (along the vectors; andt, “é‘_"’ 0 00004
respectively) were determined by projecting the relative ve- e
locity at the just beginning of the impact, which is defined &
by Eqg. (14), on each of these vectors. Note that the starting ¢
N . ~0.00006
value of the tangent velocity is small due to the assumptions
of vanishing angular velocity of the ball in common with the
very small selection of the impact parameter. 000008 e
The solutions of these equations foy(/), vo(I) and " 70,0000 0.0005 0.0010 0.0015 0.0020

modulus of the tangent velocity(I) = /v?(I) + vZ(I) are
depicted in the Figs. 2-4. Note that thecomponent is very

kg meter

sec

small, although non vanishing, which is consistent with theg . . 3 The figure shows the evolution with the impuls®f

fact that the shock is not strictly two dimensional, becausgne componen

b2 (1) of the relative velocity between the contact

the center of mass of the bat is out of the plane which is orpgints on the bat and the ball. It was evaluated by solving the cor-
thogonal to the symmetry axis of the bat and passes througfesponding differential equations.

the center of mass of the ball. The component, although
initially vanishing, develops values which grow up to a max-

imal one for tending to zero again. On another handuthe
component of velocity start decreasing from the start to van-

ish exactly at the same value of the impulsdor which the

ve component also becomes equal to zero. Therefore, the _
system of equations predict that both components simultane-§ | o
ously tend to approach a vanishing value. This property isé 5
exhibited by all the solutions of the scattering problem found
in this work to describe the experimental results in Ref. (11).
The Fig. 4 clearly illustrates the vanishing of the modulus of
the tangent velocity. From the Figs. 2-4 it can be seen that
the value of the impulsé;, of the normal force on the ball
for which the system arrives to pure rotation for this special
scattering configuration is

(1)

0.0000
0.0

the variation

1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | h
000 0.0005 0.0010 0.0015 0.0020
kg meter

sec

FIGURE 4. The figure shows the evolution with the impulsef
the modulusy (1
tact points in the bat and the ball. It was also evaluated by solving
the corresponding differential equations.

) of the tangent relative velocity between the con-

kg meter

1,,p—0.00224
sec

(69)

Having found the evolution of the tangent velocities with

of the impulse of the normal forcéswe be-

000 0.0005

000 L M T TS R
0.0 0.0010 0.0015 0.0020
kg meter
(———)
sec
FIGURE 2. The figure shows the evolution with the impulsef
the component- (I) of the tangent relative velocity between the

come able to check whether the shock process will end in
pure rotation state or in a sliding condition between the con-
tact points of the bat and the ball. For this purpose let us
evaluate the relation (35) by substituting the above defined
data for the velocities valid for the experiment and evaluat-
ing W (Irp) and E(P) through their respective formulae (61)
and (40). The evolution of the four velocities of the ball and

contact points on the bat and the ball. It was evaluated by solvingthe bat from the starting of the shock up to the moment in

the corresponding differential equations.

which the impulse at whichure rotation could be attained,
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was evaluated from the formulae (24-27) after determining 14;‘ ]
the impulse of the friction from its definition (28). Tr ]
The evaluation results in a positive value for thdunc- L2l
tion Tt
8. (Vé% Véir?,iy w](jin)7 Wl()in)) § 1.0:
g i
. . , . , S 08F
= B (v vl wi i) U
< 06 1
+ Wi (Irp) — E™ = 0.00896 Joules, (70) = | ]
) ) 04 i Corrected/Separation Poinl;
B (vl vimy wi wi¥) = 116, (71) “
EM™ —1.1510 Joules (72) 02r ]
— 00 7\ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1
W (Irp) = —0.0000176 Joules. (73) 00 o0 0a Y 08
Therefore, assumed that the only source of energy losse I (kg meter
is the friction dissipation, sinc€ results to be positive at the see

instant in which the transmitted impulseljg for whichpure  Ficure 5. The plot of the total kinetic energy of the bat and the
rotation is attained, the total mechanical energy is larger thaball E; as a function of the impulse of the normal force of the bat
the kinetic energyZ (™ of the two bodies. In addition the on the balll in the ending pure rotation process. The horizontal
values of the dissipated energy by the frictidfy, (1) re- line defines the conserved value of the total mechanical energy af-
sults to be very small whepure rotation is established. ter the pure rot_ation state is Qstablished. The difference between
Since the kinetic energE(’p) at pure rotation has a value Fhe horizontal line gn(Ef(z') gives the amount of energy stored
close to the total initial mechanical energy, it is clear that the the form O_f elastic deformfamon at any value of the lmpulse .
pure rotation state is attained just at the very beginning of th The ball depicted on the horizontal indicates the separation point

: This | il ith th i %etween the ball and the bat when the only source of dissipation
impact. is is compatible with the very small impulég is the friction. The similar ball laying on the curve &% indicates

(see 69) transmitted by the normal force in arriving to van-ye separation point to be defined by the model here constructed for

ishing sliding of the contact surfaces. evaluating the non frictional energy losses.
Having defined that the scattering situation corresponds

to a pure rotation final state, let us consider now the evolu-  The determination of ; finishes the solution of the shock
tion of the system after the impulse done by the normal forcgproblem in this case, since substituting this value in the ex-
continues to be growing under the pure rotation state. Theressions (54-57) determines all the center of mass and angu-
change of all the velocities of the bat and the ball in this newar velocities of the bat and the ball at the separation instant.
process are determined as simple linear functions of the im-
pulsel; by equations (54-57). o 5.1.1. Consideration of the losses due to inelastic processes
Let us consider first the case in which only friction is able
to dissipate energy. Then the condition for the separation of et us consider now the situation in which there exist energy
the ball and the bat (60) gives a simple quadratic equation fogiissipation sources in addition to the friction. For this pur-
the determination of the value @f at which the two bodies poses consider Fig. 5 which illustrates the solution the just
separate. The condition for separation and its explicit formdiscussed solution. The parabolic curve shows the depen-

are dence of the kinetic energ§/; as a function off;. The hor-
(in) izontal line indicates the value of the conserved mechanical
BT + Wi (Ip)=Ey (Iy) (74) energyE (™ + W (I,) in the considered pure rotation period.

1.159=1.15141; (—3.981+4.097 I;), (75) The figure shows how, as the system evolves from the instant
in which pure rotation was established, it accumulates en-
which give for the value of the impulse of the normal force ergy in elastic form as signaled by the difference between
during the pure rotation interval up to the separation pointthe kinetic energys and the conserved mechanical energy
assumed that the only existing energy losses are associatedf™ + W (Irp), up to a maximum value, which afterwards
friction, the result starts to decrease. This behavior will be taken into account
in what follows to construct a model for the non elastic dis-
(76)  sipation processes different from frictional one. The basic
sec purpose will be to apply the analysis to the description of the
This value compared with, = 0.00224 evidences that measures of scattering of a ball by a bat given in Ref. 11.
the pure rotation state was directly established at the begin- Assume that we are already in the pure rotation state, as
ning of the impact. the former evaluations in this section had stated. Then, let us

7D _ g g7zg KO Meter
(o) — o, :
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consider the more general condition (60) for determining the i) — \/W(rp) (I(out,Z)) W™ <I(out,2)) 81)

separation point between the ball and bat, in which the addi- p P f P f ’

tional losses .ternWadd(Irp + Iy) was introduced. It is clear Jlout2)

tha}t the funqtloWadd(Irp + I) depends on the t_ypes of ma- w(P <I(0ut2)) _ W(rp)(o) L (te — 1)

terials constituting the bat and the ball, in particular on their P f P I, b

properties under the large local deformations occurring near

the impact point. Therefore, we have not at hand well defined

information about how the non elastic dissipation is occurring X ,;2 ;:2 Sigvsti | (82)

as the impulse of the normal force is growing when the shock R

develops. Therefore, we will employ a global condition for

the determination of the amount of dissipation in addition to ~ These quantities were calculated for a set of values of the

the frictional ones. As remarked before, this condition wagmpact parameter defined as the minimal distance between

suggested by the data depicted in Fig. 5. vertical line along which the center of the ball was falling
The condition adopted an intuitively motivated notion: and the initially horizontally oriented symmetry axis of the

that the amount of non elastic losses in any type of shoclkat.

will be given by a fixed fractior? of the maximal amount The value of the constarf was determined by fixing

of elastic energy which is accumulated along the evolutiorthe measured value of the output center of mass velocity in

of the system, when dissipation is only given by friction. In Ref. 11, at the particular condition of scattering considered at

explicit terms the beginning of this section. That is when the angular veloc-
_ ity of the falling ball is zero and the center of mass velocity
Wadd (Irp + 1}0”22)> = —¢? (E('”) is 4.0 meter/sec at a nearly vanishing value of the impact pa-

rameter. The condition (78) for determining the separation in
+ Wi (Irp) — Ef(IfmaX))’ (77)  this case gets the form

That is, the additional energy losses at the value of the r1 4Ty e = s+ [}ﬁouﬂ) (ra + r5]](c°“m)) (83)
impulse at which the bodies separdﬁﬁm), will be chosen
to be a fractiore? of the difference between the total mechan- r = 1.159, (84)
ical energy after pure rotation is attain&d™ + Wy (I,,) (a 1y = 0.9761 (85)
guantity which is conserved in the assumed case in the above ’
definition of pure frictional losses) and the total kinetic en- rs = 1.151 (86)

ergy B¢ (1) at the value of the impulsg** . This value

Iy correspond to the impulse at which the stored elastic

energy(E™ + Wy (Ir,) — E¢(I5)) is maximal as a function rs = 4.097 (88)

of I; when pure frictional dissipation is assumed. Then the

condition for separation (60) gets the general form where the values of the impulse at the minimum value of

(out2) (in) the kinetic energyF; for the assumed set of initial data is

Ey (If ’ ) = E" + Wi (Inp) I'nax = (.4858 and the corresponding value of the kinetic

energy at this point i€ (1;"**) = 0.1838.

The fixation ofe? proceeded by assuming some trial val-
ues of this quantity and solving the equation 1§?*>) for
from which the value Ofﬁouw) can be directly obtained be- each one of them, by further evaluating the absolute value
causeEf([}OUm)) is a quadratic function oj}ouw) defined  of the final ball be velocity by using (79). The trials were
by (75). repeated after to arrive to a final output velocity of the ball

Once the value of ®*?) is at hand, its substitution in being around a value dfJ"| = 1.446 meter/sec, which is

(54) and (56) allows to evaluate for the absolute values O.ﬁlose to the one meaSUre.d in Ref. 11 for the assumed scatter-
the ball center of mass and angular velocities which are basi®d conditions. The resulting value ef was0.618.

ry = —3.981 (87)

— e (B™ + Wi(Ip) — Ef(I7™)) . (78)

guantities measured in Ref. 11, the expressions Once this parameter was determined, we performed eval-
uations of the output angular and center of mass veloci-
‘Vgin| — \/vé[ﬁz,(l}"m)) .ng’%([;"”m)’ (79) ties of the ball for'various values of the angle Diffgr-

ent sets of evaluations were done for these quantities, one

VP12 = vm)(0) for each of three values of the initial angular velocity of
the ball, for which measures were done in the experiments:

o2 w, = +79,0, —72 rad/sec. The results for the absolute val-

+ " t3 + Z Z Sijvjti | » (80)  yesofthe center mass velocities of the baf!"| were plotted

i=12j=12 as functions of the scattering angle(expressed in degrees)
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(meter/sec)

O\\\\\\\\\\\\\\\\
~100 ~50 0 50 100 E (inches)

a (degrees)

FIGURE 6. The figure show the calculated absolute value of the . . L . .
. . . FIGURE 8. The figure illustrate the variation with the impact pa-
center of mass velocity of the ball after the impact as a function of .
. ) rameter of three sets of values of the calculated angular velocity of
the scattering angle. The value atv = 0 was fixed to be close . S2
. : . the ball after the shock. The open circles correspond to an initial
to the measured one in Ref. 11, which determined the value of the .
o 4o L angular velocity equals tw,=+79 rad/sec . The squares show the
constang” defining the non-frictional energy losses. . ) ; -
evaluated angular velocities far, = 0. The filled circles indicate

the calculated angular velocities fat, =-72 rad/sec.

The results for the final absolute value of the ball veloc-
ity [v/"| as a function ofx when its initial angular velocity
is taken as vanishing are depicted in Fig. 6. As described
before the value of the final center of mass velocity of the
ball was phenomenologically fixed to approximately repro-
duce the measured value néa meter/sec atv = 0 for the
zero initial angular momentum of the ball experiment. No
other parameter fixation was additionally done. Therefore all
the shown data for the values of the ball velocities in depen-
dence the scattering anglaepresent predictions of the anal-
ysis done here. The comparison of the results with the ones
plotted in the corresponding Fig. 2 (top) of Ref. 11 permits
. P L to conclude that the model solution found here satisfactorily
-100 -50 0 50 100

reproduces the measured data.

a (degrees)

(meter/sec)

fin

|Vp
—

FIGURE 7. The figure shows two sets of calculated absolute values 1 he predicted values for the final center of mass veloci-
of the center of mass velocity of the ball after the impact as func- ties of the ball for the cases in which it shocks with a 4.0 me-

tions of the scattering angte. The open circles depict the velocity ter/sec center of mass velocity with the static and horizon-

values when the initial angular velocity of the ball is +79 rad/sec. tal bat, and having angular velocities of value§9 and

The filled ones indicate the velocities for an initial angular velocity —72 rad/sec, are presented in Fig. 7. These results again

of -72 rad/sec satisfactorily match the corresponding measurements shown
) ) o in Fig. 3 (top) in Ref. 11. It can be noted that the same, nat-

formed by the output ball velocity and its corresponding input, 5| 1o pe expected, asymmetry of the velocities with respect

value. This angle is defined by to the change of the sign of the scattering angis exhibited
180 k- viin x i and the quantitative values also approach the measured ones
a = —ArcSin (— Z}in - ) . (89)  within the experimental errors. Finally, the ending angular
T k- v x| velocities of the ball for each of the three values of the ini-

We also evaluated the ending angular velocity of the balfial angular velocities are plotted in Fig. 8. In this case the

as functions in this case of the impact paramét¢expressed nearly linear dependence for the three experiments measured
in inches) defined by in Ref. 11 and shown in Fig. 5 of that work, are satisfactorily

reproduced in slope and values within the precision allowed
E = (rp + 1) cos(6). (90) by the degree of dispersion of the measured values.
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6. Summary the initial angular velocity of the ball are also appropriately
described.

The work firstly presented a solution of the general proble . . .
of the scattering between a spherical object and a cylindri- * The rigid and frictionless shock solution

cally symmetnc one, when bOt.h (.)f thgm are assumed as PE[A this appendix, we will consider the solution of the shock
fectly rigid systems and the friction is defined by the stan- roblem for the case in which the interaction force between

dard rules and is the only source of energy dissipation. | he bodied'(¢) during the impact is conservative and normal.

is perhaps useful to underline that the adopted rigidity asp g (g jt impact nature, let us consider the force as given by
sumption corresponds to assume that the bodies are not dg'Dirac delta distribution’

formed during the short time interval of the impact. This is

clearly occurring in situations in which the relative velocities F(t) = Iimpd(t — to),

are sufficiently small. The yet wide character of this class

of problems confers interest to the study. A simple criteriumin Which Iim, is the total impulse vector transmitted by the
is determined allowing to decide from the beginning whetheiforce. Then, the Newton equations for the problem can be
the final states of the bodies will correspond or not to slidingwritten as follows

contact surfaces or to the contact points being at rest at the d
end of the shocking process. My 7 Vemp(t) = Timpd (t — o),
Further, the exact solution for the evolution of all the d

physical quantities during the shock is also found, when other mb%chb(t) = —Timpd (t — o),
types of energy dissipation in addition to the frictional one

. . : i ~ d
are present. In this case, it follows that the dynamical evo L, —wy(t) = (rc — remp) X Timpd(t — to),

lution of all the mechanical quantities along all the time in dt

which the two bodies remain in contact, fully coincide with 0 d N L5t —1 o1
the one associated to the pure frictional case. This follows b @W*’( ) = e x Timpd(t — to). (91)

under the unique assumption about that the additional dissi-
pation mechanism do not alter the laws relating the frictional[

force with normal one at the contact point. Then, if we onIy.i.hiS was done by using the definition (5) of the angular mo-

consider the standard initial data as known, the only laCkin%entum of the ball respect to the reference frame sitting at
information in the solution is the concrete value of the nEtthe center of mass of the bat, and the first of the equations

|mpulse done by the b_all on th(_e bat_at the precise se_para_noin (91). Integrating the above equations over time, it follows
point. The determination of this point needs of detailed in-

Note that the third equation was expressed in terms of
he angular impulse respect to the center of mass of the ball.

formation on the additional sources of dissipation if only the (ouy (M) _ 1.
s Mp \ Vemp Vemp) = I|mp7
initial data are assumed as known.
However, in an alternative way, we can consider that a me (V(oui;) _ (in)b) = —Timp
full solution of the general problem is found, after assuming em em
that the total final energy of the system is known. This not an 1. (W, out) W/(in)) = (re — remp) X Timp,
impractical supposition, because the total mechanical energy P P P

at the end is certainly a measurable property in experiments T (w(out) B W(in)) - XL
that can be repeated. Thus, we interpret that a full solution of b b ¢ 7 ome

the mechanical problem is determined in the general problemhere the superindices (in) and (out), indicate the values of
including other kind of losses by assuming the final energy ag,e magnitudes at an instant before and after the start of the
a known quantity. shock, respectively.

Afterwards, the mentioned general method of solutionis | et us consider now the condition satisfied by the impulse
applied to the description of the experimental measurementsf the interaction force in order to implement our two suppo-
of the slow motion scattering of a ball by a bat presented insjtions: conservation of energy and the absence of friction
Ref. 11. These experiences show dissipation mechanisms agletween the contact surfaces. Its is clear that if there is no
ditional to the frictional one, and basically consisted in meariction between the contact planes there will be no projection

suring a vertically falling ball which impacts at 4.0 meter/secof the forces in the tangent planes and therefore:
an horizontally laying and non rotating static bat. The so-

lution of the problem satisfactorily reproduced the measured t; - Tin, = 0 = m,, (véﬁi”g) — vg'nqg)) by, i=1,2,
dependence of the final velocity of the ball as a function of

the scattering angle. This happens for each of the three val- ¢, . Ty, = 0 = m, (véﬁiui? _ Vé'ﬂ'%) t;, i=1,2. (93)

ues of the initial angular velocity of the ball employed in the

experiments. The behavior of the final angular velocity ofthe  Thus, the tangent components of the center of mass veloc-
ball on the impact parameter for each of the cited values oities after the shock are exactly the same as themselves before

(92)
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the impact. Therefore, these two quantities are already deter-

mined. For the normal to the tangent plane of the center of
mass components it follows,

My (v Vé'r%) “t3 = —my (v

which coincides in form with the usual result for the simple
collinear and conservative shock between two bodies.

For the ball, the simplification is stronger, because the im-

(ou)

(out)
cmb

cmp

vinb) - ts, (94)

pact force, as having no tangent component, has a vanishing my

angular impulse

[p <W1(70ut) — W]()out)) = —(I'c - I'cmp) X Iimpa =0, (95)
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3 2 I 3
5 () S5 o)
i=1 =1
3
my (out) 2 1 (out) 2
+ > Z (chb ti) + B I; ( b : ti)
=1 =1
3
TS (vimt) + ) (wim -,)
9 2 cmp 2 pat P
3 3

(99)

2 Z( Vemb t)

i=1

330 (7 )

After using the known information about the variables

which have been already determined, all the quantities en-

tering these relation can be expressed as functions of the only
which directly implies that the angular velocity vector of the three remaining unknown quantities in the following way:

ball is conserved during the shock:

A%

WZ(}OUO _ w}(}in), (96)

furnishing the solution for these variables after the shock is
finished.

Further, the normal direction of the conservative impul- chp

sive force implies that its angular impulse on the bat is di-
rected in thet, direction. This property, then implies the
conservation of the components of the initial angular veloc-
ity along thet, and t3 spacial directions:

(wl()om) — Wl()in)) <t =0,

(w,()om) — w,()in)) -t3 = 0.

The remaining two integrated Newton equations, con-

(97)

(98)

(in)

Vemb

((v
5 (vim-

i=1

(out)

t') t; + (( Vemb
Sr?m)b> ) ts,
(e ) )
cmp cmp

gr?])p) t ) ts,

(in)

cmb) : tB) t3

-V

(out) i
out) (

cmb
i=

vim

(outy
Vemb +

Vemb

)«

— vim+ ((vim

OUI

W(out) — W(in),

W (out) Z( (in) 'ti> t; + ((Wl()out)

- Wl(yin)> 't1> tq
=1

= Wéin) + ((Wl()out) — W(m)) t1) ti.

Henceforth, the equations for the three remaining vari-

(100)

stitute a set of two equations for the yet undeterminecbles to be determined, take the forms

(out)

variables ( Vemb

—vim) - ta, (Wi = wi™) - & and
(out)

(vcmp — vé',ﬂ%,) - t3, that can be written in the forms

(out)
—Mb { Vemb

(Wl()out)

= Vi) s =y (VR —vim) -6,
- wfj”)) by = —my(ty X by - t3)

(out)
Vemp

X (rcmp . tg) ( V((:m%J) - t3.

These equations state that the discontinuities in the nor-
mal and angular velocities of the bat, are both expressed in
terms of the discontinuity of the normal velocity of the ball.
Thus, after finding another equation being able in determin-
ing this unique ball velocity discontinuity, the problem will
become solved.

This additional condition, should correspond to impose
the conservation of the energy after the end of the shock. Its
expression is

my (V5 — V) =y (v

(in)
- chb) N,

/ (W}()out) _ W}()in)>.t1:_mp(rcmp-t2) (V§°m“r§)_v§'r%) t3,

Oim? <( (out) t ) 7( (|n) tg) >
o () ()
+%I ((wgouo t )2 ( l§°”°~t1)2). (101)
After defining the three quantities

(out)

(in)

Tr = (chp — chp> -t3,
t
y= (vOD V) -t
= (ng <'”>) t1, (102)
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the equations get the simple forms

369

which after eliminatingy andz give the following quadratic

my equation forr
r=——y,
myp
3
m, m, I /my\2 :
z = —Tp(rcmp- tQ)Z‘; T {( 2p 2m2_|_2 ( IP) (rcmp't2)2> x—&—mpvg%' t3
_ M (in) ) 2)
0= 2 (2 (chp ty)ztx (|n) (in) B
mp mb cmbt — My ( tl) (rcmp'tz) =0. (104)
FT (2 (v )y 07)
1 (in) 9 After solving the equation for, the solutions for the
+ §I (2 (Wb 'tl) it ) ’ (103) three remaining quantities can be explicitly obtained in the
|  forms
2 (V<(:Ir[r1133 ts — —Vém t; — (w, o “t1) (Temp t2)) (105)
= — 9
(T 5 (72 )* (remp- t2)2)
mp 2 <V((:Inr:|])p t3 - mib ((Ell"r:\%.) t - ( (m) tl)(rcmp tQ)) (106)
y=— m m3 m ’
" (717 Tamz t 5 ()2 (Cemp 't2)2)
my 2 (vé',% ts — o élr?]z) t; — (wy o ~t1)(Temp - t2)>
2= 2 (romp ) : (107)

(5

Finally, the searched final state quantities become ex-

pressed in terms of the initial ones by the formulae

(out) (|n)

cmb = Vemb T 7 t3, v(gqu;) - v((:lrﬂ)p+ Y ta,
WZ()out) _ W;E)in)7 WZ()out) _ W}()m) + 2 tq, (108)

(") (xomp- £2)?)

2

to added a dissipation term to the energy conservation
Eq. (99).
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