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We present a simple and general method to solve higher-power D’Alembert equation in (1+1) dimensions for a set of completely general
initial conditions. Explicit solutions are written down for the cases of¤2 and¤3 and the singularity structure is manifest through the
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sources which may suppress the non-physical modes introduced by the higher derivatives.
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1. Introduction

Usually, Lagrangeans are built from fields and their first
derivatives; but, in principle, one could propose actions based
on the presence of higher-derivative terms (such mathemati-
cal investigations are believed to have started with Ostrograd-
sky [1]). With the birth of Quantum Mechanics, Podolskyet
al [2-4] suggested higher derivatives as a mean to “generalize
Maxwell-Lorentz’s theory”. In the first few years of quantum
relativistic field theory (circa 1950), higher derivatives were
viewed as a fundamental tool to resolve the ultraviolet prob-
lem (e.g. [5,6]). Pais and Uhlenbeck [7] showed that such
solutions were not bound from below; later, Heisenberg [8]
showed that negative energies could be eliminated, but this
would result in negative-norm states, known as ghost states.

Ghost states were extensively discussed by Gavriedlies,
Kuo and Lee [9]. A big step towards the reassesment of theo-
ries involving higher derivatives was made by Narnhofer and
Thirring [10], in their study of the dipole. Their ideas were
carried on by Englert, Karkowski and Rayski [11].

An interesting discussion about the weak field limit of a
higher-dimensional Lagrangian in the gravitational context is
presented by Giambiagiet al [12].

Higher derivatives appeared in gravitation (e.g. [13-16])
and within the two-dimensional picture (e.g. [17-20]).

Higher derivatives were related to supergravity by Na-
mazie [21] and Krasnikovet al [22]. Most recently, Ovrut
et al [23-26] have studied gravitational theories of higher or-
der in a superstring scenario. As for branes, higher deriva-
tive terms were considered by Nojiri and Odintsov [27], Neu-
pane [28], Mukohyama [29] and Parryet al [30]. Nojiri [31]
and Berredo-Peixoto and Shapiro [32] also made contribu-
tions to the study of gravitation with higher derivative terms.
Nojiri et al [33] have studied particular solutions concerning
black holes.

Our main goal is to study higher order Lagrangeansper
se, investigating general analytical solutions for a mathemat-
ical equation and relating them to the physical reality. For
example, R. Farias [34] has shown the necessary and sufi-
cient conditions for the existence of a Lagrangean, in field
theory, with higher order derivatives. Pagani, Tecchiolli and
Zerbini [35] focused on another aspect of the problem: the
stability of such Lagrangeans. The canonical formalism was
studied by Nakamura and Hamamoto [36]; its simmetries
were addressed by Borneas and Damian [37] and again by
Damian [38]. Regularization was revisited by Bakeyev and
Slavnov [39] and again by Bakeyev [40].

In this paper we take the (1+1) dimensional limit
and build general analytical solutions for higher order La-
grangeans, represented by the higher order D’Alembert equa-
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tion (¤2 and¤3). In Sec. 2, we briefly discuss the general
solution to the homogeneous D’Alembert equation with¤2.
Next, in Sec. 3, we introduce an external source and the com-
plete solution to the¤2-equation is exhibited. Sec. 4 is de-
voted to the presentation of the general solution to the ho-
mogeneous¤3-equation. The plots of specific solutions are
collected in Sec. 5. Finally, in Sec. 6, we set up our Final
Discussions.

2. The Homogeneous¤2-Equation

In order to solve the second order D’Alembert equation,
¤2Φ(x; t) = 0 in (1+1) dimensions, we first take the fol-
lowing coordinate transformation:ξ = x− vt (right-movers)
andη = x+vt (left-movers), whereξ andη are the light-cone
coordinates.

Takingv = 1, we must solve, then, the following equa-
tion:

∂4Φ̃(ξ, η)
∂ξ2∂η2

= 0, (1)

The general solution is

Φ̃(ξ, η) = f(ξ) + g(η) + ξh(η) + ηr(ξ),

with the following initial conditions:

F (x) = Φ(x; 0), G(x) =
d

dt
Φ(x; 0),

H(x) =
d2

dt2
Φ(x; 0), R(x) =

d3

dt3
Φ(x; 0).

The solution of this equation is:

Φ(t; x) = Φ̃(ξ; η) =
1
2
F (ξ) +

1
2
F (η)

− 1
8
(ξ − η)F ′(ξ) +

1
8
(ξ − η)F ′(η)

+
1
8
(ξ − η)G(ξ) +

1
8
(ξ − η)G(η)

+
3
4

η∫

ξ

dyG(y)− 1
8
(ξ − η)

η∫

ξ

dyH(y)

+
1
8
(η − ξ)

[
Γ(η) + Γ(ξ)

]
− 1

4

η∫

ξ

Γ(y)dy, (2)

where

Γ(z) =
∫

Ω(z)dz and Ω(z) =
∫

R(z)dz.

In order to better compare such result with the usual wave
propagation (described by the D’Alembert equation), we take
H(x) = R(x) = 0. By doing so, our “general” solution is
now written:

Φ(x; t) =
1
2
F (x− t) +

1
2
F (x + t)− 1

4
tF ′(x− t)

+
1
4
tF ′(x + t) +

1
4
tG(x− t)

+
1
4
tG(x + t) +

3
4

x+t∫

x−t

dyG(y) (3)

The initial conditionsF and G could be any continu-
ous functions, and we takeG(x) = Φ′(x, 0) = 0 and
F (x) = Φ(x, 0) = e−x2

as an example:

Φ(x, t)=
1
2

{
e−(x−t)2+e−(x+t)2

−xt
[
e−(x−t)2−e−(x+t)2

]
+t2

[
e−(x−t)2−e−(x+t)2

]}
. (4)

This solution heavily contrasts with the usual D’Alembert
equation solution, which under the same initial conditions
would read:

Φ(x, t) =
1
2
e−(x−t)2 +

1
2
e−(x+t)2 . (5)

The second and third terms of the right side of Eq. 4
shows a clear pathological behavior for large values ofx
andt. Such behavior could be corrected by external sources,
as suggested by [10].

3. Solutions for External Sources

In solving the second order inhomogeneous D’Alembert
equation, we use a method that is very straightforward and
simple, heavily depending on the previous calculated solution
of the homogeneous equation shown in the previous section.

As an example of this method, we show the solution
of the inhomogeneous D’Alembert equation, which written
in the light-cone variables and unitary propagation velocity,
reads

∂2Φ̃
∂ξ∂η

= J̃(ξ, η).

The general solution of this equation can be written as a
superposition of two different functions,

Φ̃(η; ξ) = Φ̃h(η; ξ) + Φ̃J(η; ξ), (6)

where Φ̃h(η; ξ) is the usual homogeneous solution and
Φ̃J(η; ξ) is the particular solution and depends on the exter-
nal sourceJ . This latter function can be generally written
as

Φ̃J(ξ; η) =

ξ∫

0

dα

η∫

0

dβJ̃(α;β). (7)

The usual initial conditions still apply:

Φ(0; x) = F (x), Φ̇(0;x) = G(x).
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We can easily rearrange Eq. (6) and, together with Eq. (7),
write:

Φh(t; x) =Φ(t; x)− ΦJ(t; x)

Φh(0; x) =F (x)−
x∫

0

dα

x∫

0

dβJ̃(α;β)

Φh(0; x) =F(x).

Analogously,

Φ̇h(0;x) = G(x) +

x∫

0

dβJ̃(x; β)

−
x∫

0

dαJ̃(α;x) = G(x).

The problem of solving the inhomogeneous D’Alembert
equation is then reduced to the usual problem of solving the
homogeneous D’Alembert equation with new initial condi-
tionsF andG. The general solution turns out to be:

Φ(x; t) =
1
2
F(x− t) +

1
2
F(x + t)

+
1
2

x+t∫

x−t

dyG(y) +

x−t∫

0

dα

x+t∫

0

dβJ̃(α; β). (8)

Such method is easily extended to the second order case,
where the differential equation, written in the light-cone vari-
ables and with unitary propagation velocity, reads

∂4Φ̃
∂ξ2∂η2

= J̃(ξ, η).

The particular solution for the inhomogeneous part of this
equation is

Φ̃J(ξ, η) =

ξ∫

0

dα

α∫

0

dβ

η∫

0

dγ

γ∫

0

dδJ̃(β, δ).

The general solution can be written based on Eq. (2) and
the particular solution above:

Φ(t;x)=Φ̃(ξ; η)=
1
2
F(ξ)+

1
2
F(η)−1

8
(ξ − η)F ′(ξ)

+
1
8
(ξ − η)F ′(η)+

1
8
(ξ − η)G(ξ)+

1
8
(ξ − η)G(η)

+
1
8
(ξ − η)G(η)+

3
4

η∫

ξ

dyG(y)

−1
8
(ξ − η)

η∫

ξ

dyH(y)+
1
8
(η − ξ)

[
Γ(η) + Γ(ξ)

]

−1
4

η∫

ξ

Γ(y)dy+

ξ∫

0

dα

α∫

0

dβ

η∫

0

dγ

γ∫

0

dδJ̃(β, δ), (9)

where

Γ(z) =
∫

Ω(z)dz, Ω(z) =
∫
R(z)dz

and

F(x) = F (x)−
x∫

0

dα

α∫

0

dβ

x∫

0

dγ

γ∫

0

dδJ̃(β, δ)

G(x) = G(x) +

x∫

0

dβ

x∫

0

dγ

γ∫

0

dδJ̃(β, δ)

−
x∫

0

dα

α∫

0

dβ

x∫

0

dδJ̃(β, δ)

H(x) = H(x)−
x∫

0

dγ

γ∫

0

dδJ̃(x, δ)

+ 2

x∫

0

dβ

x∫

0

dδJ̃(β, δ)−
x∫

0

dα

α∫

0

dβJ̃(β, x)

R(x) = R(x)−
x∫

0

dγ

γ∫

0

dδ
∂

∂x
J̃(x, δ)− 3

x∫

0

dδJ̃(x, δ)

+ 3

x∫

0

dβJ̃(β, x)−
x∫

0

dα

α∫

0

dβ
∂

∂x
J̃(β, x).

In order to better compare this general solution with
Eq. (4), we takeF (x) = Φ(x, 0) = e−x2

and G(x) =
H(x) = R(x) = 0. The ensuing solution was computed
with the help of the MAPLE software and is too large to be
reproduced here.

4. The Homogeneous¤3-Equation

The differential equation, written in the light-cone variables
and with unitary propagation velocity, now reads

∂6Φ̃
∂ξ3∂η3

= 0,

with initial conditions given by

F (x) = Φ(x; 0) G(x) =
d

dt
Φ(x; 0)

H(x) =
d2

dt2
Φ(x; 0) R(x) =

d3

dt3
Φ(x; 0)

S(x) =
d4

dt4
Φ(x; 0) U(x) =

d5

dt5
Φ(x; 0).

The general solution can be written as
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Φ̃(ξ, η) = f(ξ) + g(η) + ξh(η) + ηr(ξ) + ξ2s(η) + η2u(ξ).

Solving for the six unknown functions,f, g, h, r, s andu, we get, forΦ̃:

Φ̃(ξ, η) = − 1
128

{
−100F (ξ)− 28F (η) + 48ξF ′(ξ)− 36ηF ′(ξ)− 12ξF ′(η)− 12ξ2F ′′(ξ)− 2η2F ′′(ξ) + 16ξηF ′′(ξ)

− 2ξ2F ′′(η) + 2ξ2(η − ξ)F ′′′(ξ) + 16ξG(ξ) + 4ηG(ξ)− 20ξG(η) + 16ξ(η − ξ)G′(ξ) + 2η2G(ξ)− 2ξ2G′(η)

+ 2ξ2(η − ξ)G′′(ξ) + 8ξ2H(ξ)− 16ξηH(ξ) + 4η2H(ξ) + 4ξ2H(η)− 4ξ2(η − ξ)H ′(ξ)− 4ξ2(η − ξ)R(ξ)

− 12(η − ξ)

ξ∫

a

zF ′′′(z)dz − 4ξ(η − ξ)

ξ∫

a

zF ′′′′(z)dz + 2(η − ξ)

ξ∫

a

z2F ′′′′(z)dz − 68

η∫

ξ

G(y)dy

− 20(η − ξ)

ξ∫

a

zG′′(z)dz − 4ξ(η − ξ)

ξ∫

a

zG′′′(z)dz − 2(η − ξ)

ξ∫

a

z2G′′′(z)dz + 8ξ

η∫

ξ

H(y)dy

+ 40(η − ξ)

ξ∫

a

H(z)dz + 8(η − ξ)

ξ∫

a

zH ′(z)dz + 8ξ(η − ξ)

ξ∫

a

zH ′′(z)dz − 4(η − ξ)

ξ∫

a

z2H ′′(z)dz

+ 4ξ2

η∫

a

R(y)dy − 4η2

ξ∫

a

R(y)dy − 16ξ(η − ξ)

ξ∫

a

R(y)dy + 24(η − ξ)

ξ∫

a

zR(z)dz + 8ξ(η − ξ)

ξ∫

a

zR′(z)dz

− 4(η − ξ)

ξ∫

a

z2R′(z)dz + 2ξ(3ξη − 2ξ2 − η2)

ξ∫

a

S(z)dz + 2(3ξ2 − 4ξη + η2)

ξ∫

a

zS(z)dz

+ 2(η − ξ)

ξ∫

a

z2S(z)dz + ξ2(η − ξ)2
ξ∫

a

U(z)dz − 2ξ(η − ξ)2
ξ∫

a

zU(z)dz + (η − ξ)2
ξ∫

a

z2U(z)dz

+ 12

η∫

ξ

y∫

a

zF ′′′(z)dzdy − 2

η∫

ξ

y∫

a

z2F ′′′′(z)dzdy + 4ξ

η∫

ξ

y∫

a

zF ′′′′(z)dzdy + 20

η∫

ξ

y∫

a

zG′′(z)dzdy

− 2

η∫

ξ

y∫

a

z2G′′′(z)dzdy + 4ξ

η∫

ξ

y∫

a

zG′′′(z)dzdy − 40

η∫

ξ

y∫

a

H(z)dzdy − 8

η∫

ξ

y∫

a

zH ′(z)dzdy

+ 4

η∫

ξ

y∫

a

z2H ′′(z)dzdy − 8ξ

η∫

ξ

y∫

a

zH ′(z)dzdy + 24ξ

η∫

ξ

y∫

a

R(z)dzdy − 24

η∫

ξ

y∫

a

zR(z)dzdy

− 8(η − ξ)

ξ∫

a

y∫

a

R(z)dzdy − 8ξ

η∫

ξ

y∫

a

zR′(z)dzdy + 4

η∫

ξ

y∫

a

z2R′(z)dzdy − 4ξ(η − ξ)

ξ∫

a

y∫

a

S(z)dzdy

− 2ξ2

η∫

ξ

y∫

a

S(z)dzdy + 4ξ

η∫

ξ

y∫

a

zS(z)dzdy + 4(η − ξ)

ξ∫

a

y∫

a

zS(z)dzdy − 2

η∫

ξ

y∫

a

z2S(z)dzdy

+ 2ξ2(η − ξ)

ξ∫

a

∫ y

a

U(z)dzdy − 4ξ(η − ξ)

ξ∫

a

y∫

a

zU(z)dzdy + 2(η − ξ)

ξ∫

a

y∫

a

z2U(z)dzdy
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+ 8

η∫

ξ

y∫

a

z∫

a

R(w)dwdzdy + 4ξ

η∫

ξ

y∫

a

z∫

a

S(w)dwdzdy − 4

η∫

ξ

y∫

a

z∫

a

wS(w)dwdzdy

− 2

η∫

ξ

y∫

a

z∫

a

w2U(w)dwdzdy + 4ξ

η∫

ξ

∫ y

a

∫ z

a

wU(w)dwdzdy − 2ξ2

η∫

ξ

y∫

a

z∫

a

U(w)dwdzdy

}
. (10)

There is an apparent dependence on a new parameter,a.
However, we actually show that, by differentiating the above
expression with respect toa, we get a trivial result. This can
be easily demonstrated with the help of MAPLE, for exam-
ple. We diferentiated Eq. (10) with respect toa obtaining a
vanishing result, proving it isa-independent.

Such a parameter appeared also in the solution of the sec-
ond order D’Alembertian, but it was easily removed through
a few algebraic steps. The sheer size of Eq. (10) makes this
procedure a little more complicated and we opted for a nu-
merical proof.

In order to better compare with previous results from
Sec. 2, we takeG(x) = H(x) = R(x) = U(x) = S(x) = 0
andF (x) = Φ(x, 0) = e−x2

, ending up with:

Φ(x, t) =
1
8

{
4e−(x−t)2 + 4e−(x+t)2

+ 5xt
[
−e−(x−t)2 + e−(x+t)2

]

+ 2x2t2
[
e−(x−t)2 + e−(x+t)2

]

+ 4t2
[
e−(x−t)2 + e−(x+t)2

]

+ 4xt3
[
−e−(x−t)2 + e−(x+t)2

]

+ 2t4
[
e−(x−t)2 + e−(x+t)2

]}
. (11)

By inspecting the explicit homogeneous solutions worked
out for¤2 and¤3, Eqs. (2) and (10) respectively, we see that
there appear derivative terms of the initial conditions (F ′,
in the case of¤2; F ′, F ′′, F ′′′, G′, G′′ andH ′, in the case
of ¤3).

These terms clearly suggest, already at the level of the
classical solutions, how these higher-derivative equations
are in trouble with the particle interpretation at the second-
quantised level. Actually, if we think of a classical pulse at
x0, described by

Φ(0;x) = F (x) = δ(x− x0),

the evolved solution,Φ(t; x), will be plagued with the illness
of the derivatives of the Dirac delta function.

Even classically, the derivatives ofδ(x) cannot be
interpreted as locally propagating excitations. Quantum-
mechanically, as already known, higher derivatives poten-
tially spoil the particle interpretation in that they introduce

negative-norm states (“ghosts”) in the spectrum, which ap-
pear as a consequence of aδ′(k2) present in the spectral func-
tion.

5. Some Plottings

All the following graphs were made with MAPLE.
We first plot the temporal evolution of a signal described

by the usual D’Alembert equation; using the initial condi-
tions described in Sec. 2, we plot Eq. (5) in several distinct
moments:

We obviously get the usual double-pulse propagation.
Doing the same thing for the second order D’Alembertian,
Eq. (4), we get:

The pathological behavior is evident as we see the signal
propagating both ways and getting stronger as time goes by.
The same behavior shows up when plotting the third order
D’Alembertian, Eq. (11):

Once again, the pathological behavior is evident.
As mentioned in Sec. 3, such odd behavior could be, in

principle, eliminated through the use of an external source.

FIGURE 1. Temporal evolution of Eq. (5).
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FIGURE 2. Temporal evolution of Eq. (4)

FIGURE 3. Temporal evolution of Eq. (11)

Such a general solution has been written, Eq. (9), but
so far we have not been able to pinpoint a useful source or
family of sources.

6. Final discussions

We have proposed a method to reduce the higher-order mass-
less D’Alembert equation in (1+1) dimensions to a system of
linear higher-order ordinary differential equations. The initial
conditions may be completely general and the method works
out if we adopt the light-cone coordinates. We have given
here the explicit solutions for¤nΦ = 0 with n = 2, 3.

The main idea behind our proposal was to have an explicit
form for the general solution in order to have a clear evalu-
ation of the pathologies that show up already at the classical
approach. For example, the derivatives (or higher derivatives)
of the functions describing the initial conditions already show
us the drawbacks of a higher-order D’Alembertian equation
to describe the propagation of sharp signals or localised par-
ticles. This becomes clear in our expression of¤3Φ = 0,
where a second derivative ofF completely spoils the propa-
gation of a pulse described att = 0 by Φ(0;x) = δ(x).

Also of interest is the case of an external source,J . The
solution we have found may shed some light on the ques-
tion related to the importance of this source to suppress the
spurious behavior of the quantum excitations whenever the
higher-derivative theory is quantised.

Now, we wish to go a step further and investigate the set
of higher-order Dirac-like equations in (1+1)-D and to under-
stand the interplay between algebraic chirality and the struc-
ture of left- and right-movers in the presence of higher deriva-
tives.

This issue is under consideration and we shall report on it
in a forthcoming publication.
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