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Magnetisation of red blood cells: a Brownian Dynamics Simulation
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A model to calculate the magnetisation of deoxyhemoglobin of human blood by means of Brownian dynamics simulations is presented. We
consider a system made up of dipolar magnetic spheres, which can interact but do not overlap. Particles are exposed to external magnetic fields
to compute the magnetisation curve, which exhibit a Langevin-like behaviour. The magnetic susceptibility of the erythrocytes and completely
deoxygenated whole blood areχp = 1.61 × 10−6(SI) andχWB = −4.46 × 10−6(SI), respectively, which are in good agreement to
experimental data and theoretical calculations. Moreover, we also compute the paramagnetic component of the susceptibility of erythrocytes
that in our simulations normal blood from beta thalassemia major samples could be differentiated.
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1. Introduction

The human adult hemoglobin (Hb) is a tetrameric protein
complex, which is to 97.5 % HbA1 with 2 alpha (α) and 2
beta (β) polypeptide chains and to 2.5 % HbA2 with 2 alpha
(α) and 2 delta (δ) polypeptide chains. Each chain contains
as prosthetic group a heme with iron as its central atom [1].
Heme is a plane porphyrin ring chelating with 4 nitrogens the
central Fe2+, which is additionally bond by a nitrogen from

a proximal histidine from the globin chain (Fig. 1a) and the
sixth coordinate bond is used to bind (reversible) the oxygen
(Fig. 1b) [2,3]. While the deoxygenated heme has a high
spin paramagnetic Fe2+ with 4 unpaired electrons, Pauling
and Coryell [4] postulated mayor changes in the electronic
structure of the oxygenated heme resulting in a distorted oc-
tahedral configuration showing a diamagnetic behaviour [5].
Similar, the iron of carbonmonoxy-heme has a distorted oc-
tahedral coordination and also diamagnetic properties [4,6].

FIGURE 1. Heme with Fe2+ coordinated square pyramidal by the porphyrin and the proximal histidine (a) and with additionally bound
oxygen, now coordinated distorted octahedral (b).
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The paramagnetic molar susceptibility of deoxy-
hemoglobine (HHb) is 3,000 mol/ml [7] and by deter-
mining a magnetisation curve for erythrocytes the mag-
netic dipole moment of HHb is estimated to be8 µB or
µHHb = 7.42×10−23 Am2 [8]. In a strong static magnetic
field an erythrocyte responds in such way that its disk plane
is oriented parallel to the direction of the magnetic field,
independently of the hemoglobin state,i.e., oxygenated (dia-
magnetic HbO2) or deoxygenated (paramagnetic HHb) [9].
It has also been observed that the blood viscosity increases
with the magnitude of the magnetic field [10]. These char-
acteristics can be used for separating erythrocytes from other
blood cells [11-13].

The magnetic susceptibility of fully deoxygenated ery-
throcytesχRBC has been measured directly or indirectly by
several authors employing very precise methods. Speeset
al. [14] determined a value of -6.1 ppm (SI) by using sepa-
rately Magnetic Resonance and a superquantum interferom-
eter device (SQUID), Zborowskiet al. obtained -5.72 ppm
(SI) [15] from a measurement of the magnetic migration with
an experimental set up for magnetophoresis, while Haiket
al. [16] measured +3.5 ppm (SI) in human whole blood by
using a SQUID and very high magnetic fields (around 5 T).
Nevertheless, the relative volumes of water and erythrocytes
under normal conditions are considered to be 0.52 and 0.48,
respectively [17], which implies a value ofχRBC=17.10 ppm
(SI). Also Melville [18] and Owen [19] determined values
of +3.88 ppm (SI) and +3.86 ppm (SI) respectively, in ex-
perimental arrays applying a very strong magnetic field gra-
dient, too. In summary, the value ofχRBC is reported in
the interval - 6.1 ppm≤ χRBC ≤ 17.10 ppm, exhibit-
ing discrepancies, which may have started with confusion
in the nomenclature:e.g. a value originally calculated as
“susceptibility” [18], based on results from [20], was later
cited as “relative susceptibility” [21,22]. In another case the
magnetic susceptibility of whole blood was not differentiated
from the one of erythrocytes, resulting in the maximum value
of χRBC = 17.10 ppm [16], although this was corrected in a
following publication [10].

On the other hand, in magnetophoretic experiments for
trapping erythrocytes is possible determine indirectly the
value of χRBC . Some models used the magnetic satura-
tion effect of HHb [18], while others only took into ac-
count the linear response of the magnetisation [10,15].
The quotient between the magnetic and thermal energies
Um/UT = µ

HHb
B/kBT , applying the effective magnetic

moment of HHb (21.84µB [4]) and the typical magnetic
fields for these kind of experiments (2-14 T [16]) at room
temperature, result in a range of 0.1 - 0.7 forUm/UT . This
may indicate a beginning of magnetic saturation of HHb,
i.e. the linear regime(Um/UT ¿ 1) would not be a good
approximation to determine the paramagnetic component of
χRBC.. In this scenario of non linear response of the mag-
netisation, the paramagnetic component could look like over
dominated for the diamagnetic component. Nevertheless, at
least the sign of the magnetic susceptibility of fully deoxy-

genated erythrocytes could be rapidly determined with an ex-
perimental setup, based on an analytical balance and a strong
magnet [23-25].

Recently we introduced a primitive model based on a
fluid of dipolar spheres that accounted for both, the mag-
netic susceptibility of human blood [26] and the superpara-
magnetic behaviour of synthetic eumelanin [27] by calculat-
ing their magnetisation curve. To carry out this mathematical
modelling it is necessary to introduce as input the magnetic
dipolar moment of a single cell or crystal (with the diame-
ter σ), which can be measured independently, for instance,
by electron paramagnetic resonance (EPR) [27]. Moreover,
this model can be used to highlight the dipolar contribution to
the magnetic susceptibility in other biological systems of in-
terest. Furthermore, for theoretical studies of biological sys-
tems and complex fluids it is important to determine the basic
molecular features that are necessary for a proper modelling
and since many years primitive models are very useful in sim-
ulating complex fluids [28]. Hence, in this work the mean
magnetisation and the magnetic susceptibility of a liquid con-
taining free HHb is estimated by using Brownian dynamics
(BD) simulations of dipolar magnetic spheres exposed to ex-
ternal magnetic fields. The HHb is modelled as soft-core
spheres (with a repulsive Yukawa-like potential at short dis-
tances) and the physical parameters such as solvent viscosity,
magnetic moment of the particles, density and sphere diam-
eter are taken from experiments carried out by other authors
[8,15]. Other necessary parameters such as temperature and
uniform magnetic field are varied in the same range than in
the reported experiments. Finally, the paramagnetic compo-
nent of erythrocytes for different blood samples,i.e., normal
and beta thalassaemia major, are reported and compared with
experimental data [29].

2. Model system and Brownian dynamics sim-
ulation

We perform Brownian dynamics simulations for a system
with N particles carrying effective magnetic dipole moments.
The particles are exposed to an uniform magnetic field and
move within a box of the lengthL. Periodic boundary condi-
tions in all directions are considered [30]. The particles move
according to the Ermak and McCammon algorithm [31,32]:

~ri(t + ∆t) = ~ri(t) +
Dt∆t

kBT

×



N∑

j=1

~Fij +∇V HSY


 + ~Ri(∆t), (1)

where~ri(t) is the particle position at the timet, Dt is the free-
particle translational diffusion coefficient,kB is the Boltz-
mann constant,T the absolute temperature,∆t is the time

step,
⇀

F ij is the force on theith particle due to dipole-dipole
interaction with thejth particle and~Ri(∆t) is the random
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displacement caused by the collisions with the solvent. Ac-
cording to the fluctuation-dissipation theorem this random
displacement has zero mean and covariance [31,32],

〈Ri(∆t)Rj(0)〉 = 2Dt∆tδij , (2)

whereδij is the Kronecker delta.
In our model we have introduced a short-range and con-

tinuous repulsion to avoid overlap between particles, which
is given by

~FHSY = −∇V HSY , (3)

where

V HSY (r) = V0
e−κ(r−σ)

r
is the so-called Yukawa potential [33],r is the distance be-
tween two particles,κ is the Debye screening parameter,σ
is the particle diameter andV0 is the amplitude of the po-
tential. The parametersκ andV0 were chosen to guarantee
both, the continuity of the force at short distance and the
avoidance of particle overlap. Similarly, other purely repul-
sive soft-sphere potentials have been employed by Bernu and
Miyagawa [34,35] .

Similar to (1), the dipole orientation is calculated accord-
ing to the equation:

~wi(t + ∆t) = ~wi(t) +
Dr∆t

kBT

×



N∑

j=1

~Tij + ~µi × ~B


 + ~Si(∆t), (4)

where~wi(t)is the orientation vector respect to the lab frame
of reference,~µi is the dipole moment,Dr is the rotational dif-
fusion coefficient of the free-particle,~Tij is the torque of the
ith particle due to interactions with thejth particle,~µi× ~B is
the torque induced by the external magnetic field~B = µ0

~H,
whereµ0 is the magnetic permeability of the vacuum, and
~Si(∆t) is the random angular displacement with zero mean
and variance,

〈Si(∆t)Sj(0)〉 = 2Dr∆t. (5)

The Stokes-Einstein relations define both, the transla-
tional and rotational diffusion coefficients, Eq. (6) and (7),
respectively:

Dt =
kBT

3πησ
, (6)

and
Dr =

2kBT

πησ3
, (7)

whereη is the viscosity of the solvent. The dipole-dipole
forces are given by the standard equation in spherical coordi-
nates [30],

~Fij =
3µ2

r4
ij

[
(cos γij − 5 cos θi cos θj)

(
~rij

rij

)

+ cos θjei + cos θiej

]
, (8)

whererij is the distance between the two particlesi andj,
θi andθj are the angles between the vector~rij and the unit
vectorsei andej , respectively, andγij is the angle between
the unit vectors themselves.

The internal torques between the dipolesi andj can be
expressed as follows [30]:

~Tij = −µ2

r3
ij

(
ei × ej − 3 cos θj

ei × ~rij

rij

)
, (9)

~Tji = −µ2

r3
ij

(
ej × ei − 3 cos θi

ej × ~rij

rij

)
, (10)

The mean magnetisation,i.e. the magnetic dipole mo-
ment per volume, is determined by the Eq. (1) considering
a spherical volume with a diameter ofL,

~M =
4π

3
(

L
2

)3

N∑

i=1

µei. (11)

In the case of soft homogeneous magnetic systems, the
magnetic susceptibility is given by the following expression,

M = χH. (12)

3. Modelling of Erythrocytes and Results

The magnetic properties of the blood can be described
as a flux of HHb with a magnetic dipole moment of
µHHb = 7.42×10−23A∗m2 [8], a diameter ofσHHb=6.4 nm
[15] and a density ofρ = 1.3×1018 Hb/ml [8], which corre-
sponds to 4.86×109 erythrocytes/ml. At room temperature
of T = 300 K the mean viscosity isηg = 0.96×10−3 kg/m*s
[15]. Thus both, the translational and the rotational diffusion
coefficients (see Eqs. (6) and (7)) can be directly computed.
These coefficients are explicitly used in the Eqs. (1) and (4)
to dynamically displace the particles and rotate the magnetic
dipole.

In our simulations, we use a time step of
∆t = 0.5 × 10−9 s. In order to reach the thermodynamic
equilibrium, 4×106 time steps are considered, but to get
good statistics and to reduce the associated uncertainties,
5×106 time steps are carried out.

Since the thermodynamic limit of the magnetisation is
reached making N−1 →0, we calculated the curveH vs M
employing N = 108, 256 and 500 particles with a magnetic
field ranging from−1T to +1T (Fig. 2). Our results exhibit
no significant differences between the magnetisation curves
employing 256 or 500 particles, in contrast to the one calcu-
lated with only 108 particles. The clear continuous magneti-
sation transition with an almost linear dependence at small
values ofH is remarkable. However, in general we observe
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FIGURE 2. Magnetisation curves of HHb obtained by BD simula-
tion model with N = 108, 256 and 500 particles, also the respective
data fits using equation (13).

that our data can be well described in terms of the Langevin
theory. Indeed, the simulation data can be fitted using the
Langevin expression for magnetisation,

M(H) = Msat tanh
(

µH

kBT

)
, (13)

whereMsat is the saturation magnetisation. Previous equa-
tion can be derived from the Brillouin equation by taking
J = 1/2 [36], beingJ the total spin.

A close inspection of the magnetisation behaviour for the
system of Fig. 2, is depicted in Fig. 3, withH ranging from
−1T to +1T . Additionally, we present results obtained in
Ref. 26 by means of Monte Carlo (MC) simulations and ex-
perimental data reported by Sakhnini [8]. We observe that
our BD data are quantitatively in good agreement with those
discussed in the literature [8,26]. Moreover, the following
features can be noticed: On one hand, our BD magnetisation
curve shows two outliers atH = 0.4 T andH = -0.4 T, similar
to the ones measured in the magnetisation curve determined
experimentally in Ref. 29. On the other hand, several outliers
of the MC simulation curve (NVT ensemble) [26] within the
range ofH = 0.2 T – 1T are clearly observed. Then, the dif-
ference between both simulation schemes could be related to
the fact that a short-range repulsive interaction and the vis-
cosity are not explicitly included in the MC simulations [26].

From the slope of the linear region of the magnetisation
curve displayed in Fig. 3 (thick line), the magnetic suscepti-
bility is found to beχp = 1.61×106 (SI). This value is less
than three times smaller than the experimentally obtained as
reported Ref. 17 and 18, but they use very strong gradients of
magnetic field; nevertheless, our result is in good agreement
with [8] from where our simulation was fed:χ = 1.1×10−17

(emu*Oe−1) per erythrocyte, this isχ = 1.57×10−6 (SI)
considering the measured mean volume of erythrocytes in
the experiment (87.9fL) and the conversion of units (in CGS
unitsχ (CGS) = 4π*χ (SI)). The obtained value ofχp is also

FIGURE 3. Magnetisation curve of HHb in the same units sys-
tem than [8], obtained by using our BD simulation model with
N=500 particles (closed black circles). Data taken from MC simu-
lations [26] (open rhombus) and experiments (EXP) [8] (open cir-
cles).

in good agreement with our result obtained by MC simula-
tions [26]; χ = 7.5×107 (SI). Furthermore, the initial para-
magnetic component of total magnetic susceptibility of HHb
can be calculated using the Langevin-Brillouin function for
the ideal case of punctual dipoles

χ =
Nµ2

3kBT
= 1.65× 10−6 (SI).

Additionally, the magnetic susceptibility of the whole
blood,χWB , can be expressed in terms of two main com-
ponents, namely the paramagnetic component of HHb and
a diamagnetic component, mainly due to water. Hence,χWB

can be expressed as

χWB = νpχp + νdχd, (14)

whereχp andχd are the paramagnetic and diamagnetic sus-
ceptibilities, respectively, andνp andνd are the relative vol-
umes. It is well-known that the diamagnetic susceptibility of
the plasma is the same of waterχd = 9.05×10−6 (SI) [37].
Thus, multiplying the mean corpuscular value of the erythro-
cytes with the cell number as measured in [8], the relative
volumes of the erythrocytes and plasma of the whole blood
is calculated to beνd ≈ 0.57 andνp = 1 - νd ≈ 0.43.
Thus, our value for the magnetic susceptibility of whole
blood isχW B = −4.46 × 10−6 (SI); a value very close to
χW B = −4.48× 10−6 (SI) as obtained in Ref. 8.

So far we have been focused on the magnetisation prop-
erties of erythrocytes under healthy conditions. However, it
is of our interest to determine the accurateness of our model
to account for the magnetic behaviour of human blood sus-
pensions under different conditions.

In Table I we show two blood indices: the Hb concentra-
tion and the mean corpuscular volume of fully deoxygenated
erythrocytes, as well as the values of the magnetic moment
of HHb obtained from a normal female volunteer (NF1) and
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TABLE I. Blood indices of erythrocytes of a normal female (NF1) and two with beta thalassemia major disease (TM1) and (TM2), also their
magnetic moments obtained from [29] and their paramagnetic susceptibilities.

Hemoglobin Mean Corpuscular Vulume χp

Sample Molecule/Erythrocyte (MCV)(fL) (emu/Oe)×1017 µeff(µs)

×106

NF1 259 88 1.03 7.6

TM1 248 86.0 0.95 7.4

TM2 257 84.0 1.10 7.9

FIGURE 4. Magnetisation in the same units system than [29] ob-
tained in the case of normal Hb (black rectangle) plus two cases of
abnormal Hb TM1 and TM2 (open circle and black triangle) and
their corresponding linear fit.

two volunteers suffering beta thalassemia major (TM1 and
TM2, respectively), taken from [29]. So these parameters
are introduced in our BD simulation model to determine the
paramagnetic component of both, the normal and the abnor-
mal HHb.

In the graphs displayed in Fig. 4, are shown three
magnetisation curves obtained from our BD simulation
model for the cases discussed in the previous paragraph.
The corresponding measured values ofχp per erythro-
cyte are shown in the fourth column of the Table I in
CGS units. We find that our predictions are very close
to those obtained using a vibrating sample magnetome-
ter. Particularly, for the normal state our prediction is with
χNF1 = 1.13 × 10−17 (emu*Oe−1) only 9 % bigger
than the experimental one and for the cases of beta tha-
lassemia majorχTM1 = 1.01 × 10−17 (emu*Oe−1) and

χTM2 = 1.18 × 10−17 (emu*Oe−1) exhibit differences of
6% and 7 %, respectively. Although only minor differences
betweenχNF1 andχTM2 can be observed (Fig. 4), due to
multiple blood transfusions that volunteer TM2 has received
just before (see explanation in Ref. 29), the differences be-
tweenχNF1 andχTM1, from the untreated volunteer TM1,
are significant.

4. Conclusion

In this work we have introduced a single approximation for
modelling the magnetic behaviour of the human blood as a
suspension made up of soft-core particles with a magnetic
dipole. The magnetisation curve and the magnetic suscepti-
bility were calculated and, in general, our results are in very
good agreement with those data obtained experimentally or
by means of Monte Carlo computer simulations. Further-
more, the value obtained for the magnetic susceptibility is in
the interval reported by several authors [14-18]. Moreover,
here we have shown that this simple model can be used to ac-
count quantitatively the magnetic properties of human blood
samples under different health conditions.

Finally, we should stress that our BD computer simula-
tion scheme for human blood can be easily used and extended
to study other magnetic properties of the blood, such as the
magnetic mobility or the magnetophoretic velocity when a
gradient of magnetic field is introduced. Work along these
lines is in process.
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