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The time evolution of the nonclassicality is found to have strong dependence on the driving frequency in a Duffing-type driven nonlinear
system with the Gaussian state as the initial Wigner function. Its frequency response curve has a remarkable peak, near which the nonclas
sicality of the state is enhanced. Furthermore, good correspondences are found between the frequency response curves of the time-avera
of the nonclassicality indicator and those of the classical mean square amplitude. Such correspondences can also be observed, when using
superposition of two coherent states as the initial Wigner function.

Keywords: Nonclassicality; frequency response; mean square amplitude; duffing system.

PACS: 03.65.-w; 03.65.5q; 42.65.Sf

1. Introduction classicality is measured by the indicator which is defined
based on the negativity of the Wigner function. When using
Nonclassicality is of fundamental importance in quantumthe Gaussian state as the initial Wigner function, the time evo-
physics. It is an essential ingredient in quantum-enhancefiition of the nonclassicality of the quantum state has signifi-
technologies. For instance, it is crucial for the generatiorcant driving frequency dependence. For more detailed com-
of entanglement [1-5]. In phase-space representation, noparison, the time-average of the nonclassicality indicator is
classicality is closely related to the negativity of the Wignerused to evaluate the frequency dependence of the time evolu-
function [6]. By means of the negative part of the Wignertion of the nonclassicality. Its frequency response curve has a
function in the phase space, indicators are proposed by Bengronounced peak, near which the nonclassicality of the state
dict et al. [7, 8] and Kenfacket al [9] to measure the de- s enhanced during the time evolution. This can be attributed
gree of the nonclassicality of a quantum state. They areo the influence of the external driving source on the energy
used, for example, to characterize the nonclassicality in optevels involved in the time evolution of the Wigner function
tomechanical systems [10, 11]. Indeed, the negativity of theind can be understood by means of the Floquet theories. Fur-
Wigner function is a also key resource in many fields ofthermore, for different centers of the initial Wigner function,
guantum physicse.g, in quantum optics [12] and in quan- good correspondences are observed between the frequency
tum computation [13-16]. It is proposed as a necessary rgesponse curves of the time-average of the nonclassicality
source of the quantum computation, which is closely relatedndicator and those of the classical mean square amplitude.
to the contextuality [13-15]. In addition, the negativity of This arises from the relation of the classical mean square
the Wigner function is also of special interest in mechanicalamplitude to the energy levels involved in the evolution of
systems [11,17-19]. the system. Similarly, the time evolution of the nonclassi-
During the past decade, mechanical systems are emergality indicator also has remarkable frequency response with
ing as good candidates for studying the quantum mechanical superposition of the coherent states as the initial Wigner
behavior and the nonclassical states at the mesoscopic afithction. Meanwhile, correspondences can be seen between
even macroscopic scales [17-24]. In the fields related to mehe frequency response curves of the nonclassicality indicator
chanical systems, driven nonlinear systems are of fundameiand those of the classical mean square amplitude, although
tal and technical interests [18,20-30]. They are key ingredisuperpositions of coherent states are usually regarded as typ-
ents in many fields such as optomechanical systems [18—-2(0Lal nonclassical states.
nanomechanical resonators [17,24-27] and Josephson bifur- The remainder of the paper is structured as follows. In
cation amplifiers [29, 30]. Generally, in driven nonlinear sys-Sec. 2, the nonclassicality indicator and the Duffing-type sys-
tems, the time evolution of the quantum state can be influtem used here are presented. In Sec. 3, the frequency re-
enced by the external driving source. Due to the potentiaéponse of the nonclassicality indicator during the quantum
applications of the nonclassicality and the driven nonlineagevolution is investigated with the Gaussian state as the ini-
system, it is necessary to explore the relations of the nonclasial Wigner function, after which its relation to the frequency
sicality to the driving frequency in driven nonlinear systemsresponse of the underlying classical dynamics is analyzed.
during the time evolution of the quantum state. This is alsaSection 4 is dedicated to investigate the frequency response
the interest of this paper. of the nonclassicality with a superposition of two coherent
The investigations are performed with a Duffing-type os-states as the initial Wigner function. Besides, Sec. 5 is de-
cillator, which is a typical driven nonlinear system. The non-voted to the conclusions.
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2. Nonclassicality indicator and the Duffing- where the arrows indicate in which direction the derivatives
type system act and thesin function can be expanded in a power expan-
sion in . In the classical limit, Eq. (5) corresponds to the
As mentioned above, the negativity of the Wigner functionclassical Liouville equation.
has potential appl?ca?ion.in quantum realm. It is usually re-  Following Egs. (1) to (5), the time evolution of the non-
garded as a good indication of a quantum state’s nonclassicgfassicality of the system (2) and its relations to the driving

character [6-9]. The nonclassicality indicator used here igequency are numerically investigated. For the sake of sim-
defined by Kenfack et al. [9] by means of the negativity of yjicity atomic units are used in the following sections with
the Wigner function. It reads

5(t) = / dg / dp[[W (¢, p: )| — W (. p:1)]

m=h=wy=1.

- /dq/dp\w(qm;t” 1, @) 3. Gaussian Wigner function

which equals to the doubled volume of the integrated negasz.1. Frequency response of the nonclassicality during
tive part of the Wigner function in the phase space. It equals the quantum evolution

to zero for coherent states, whose Wigner functions are non-
negative. A similar indicator is proposed by Beneditt

X i Gaussian states, also known as coherent states, are widely
al. [7, 8] based on the negative volume of the Wigner func-

’ ! . used in the theoretical and experimental works. They are con-
tion. It can be written ag = J/(6 + 1) with 0 < v < 1. gigered as being closest to the corresponding classical states,
Apart from the negativity of the Wigner function, nonclas- providing a way to compare the classical and quantum dy-

sicality can also be measured by, for example, the photof,mics [38]. In the Wigner representation, a Gaussian state
number [31], the interference in the phase space [32] and they, pe written as

Tsallis entropy [33]. The latter two have similar behavior to
the nonclassicality indicatarfor Wigner functions [32, 33]. . 5 5
The system used here is a Duffing-type oscillator. Its Wig,p) =7 exp [~(q = 40)° = (p—po)*]  (6)
Hamiltonian can be written as
with (g0, po) as its center. Its value of the nonclassicality in-

H(q,p;t) = Ho(q,p) + Sqcoswt (@) gicators — 0. This is consistent with the above descriptions

with of coherent states. However, the valug)afill no longer be
P> N equal to zero during the quantum evolution of a driven an-
Ho(q,p) = o + 5Mwod + 1 (3)  harmonic oscillator like (2). Furthermore, its value evolution

wherex: gives the strength of the nonlinearity arft cos wt can be influenced by the driving frequency during the quan-
tum evolution. These will be illustrated and discussed later.

stands for the external driving source. It is of both theoret- _ _ e : )
ical and experimental interests and is also often used in the With the Gaussian state (6) as the initial Wigner function,
studies related to optomechanical and nanomechanical dée numerically investigate the value of the nonclassicality

vices [25-29]. indicatord during the time evolution of the Wigner function
The state¥(t)) of the system at the timeis described in the Duffing-type system (2). The parameter values are
by the Wigner function x = 0.1 andS = 1. Without loss of generality, we consider
1 7 here the case of a stiffening nonlinearity with> 0. Both
W (q,p;t) = o dy en?Y values ofx and.S can influence the evolution of the Wigner

function. However, they are taken to be constants in order to
% <q _ g ’ q,(t)> <g,(t) ‘ g+ g> (4) i(;(ill:; on the driving frequency dependence of the nonclassi-
As a typical phase-space distribution function, the Wigner It is found from the numerical results that the value of

function provides a convenient framework to test thethe nonclassicality indicator, which is initially equal to zero,

quantum-classical correspondence and offers a way fOrqu‘"]"%i/olves with the time. Moreover, the time evolution of the

tum state reconstruction via quantum tomography [34, 35]nonclassicality indicator significantly depends on the fre-

The Wigner function and its negativity can also _be measureauency of the driving source. This can be observed in the
experimentally, for example, in quantum optics [36, 37]'main figure of Fig. 1. In the main figure of Fig. 1, we present

-Srhﬁ fi(rpe evolution of the Wigner function follows from the three typical plots of the time evolution of the nonclassicality
chodinger equation indicator for(qo, po) = (—1.5,0). From bottom to top, they
W (q,p;t) = EH(q’p; £) cprrespond taw = 0 (black sol?d line),w = 3 (blue dotted _
h line) andw = 1.5 (red dashed line). As can be seen the main
figure of Fig. 1, the increase 6fin the beginning is faster for

s (8‘181’ B 8p8q) Wig.pit), () w = 1.5 than those fow = 0 andw = 3.
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1, ' —0=0--- =15 0=3 | Moreover, after the initial increase the value ofs much
] Ao l i - oA larger forw = 1.5 than those fow = 0 andw = 3, though it

2.5 f :.‘ \l:/ I %"ﬂﬁmuf'm. " ﬂf"i"“ﬁ(‘.‘f\‘c“h\(“n"‘; ',53‘\9' R i osgillates with time. ’
: ¥ e i TN For more detailed comparison, further numerical investi-
.' ‘ gations are made with the driving frequency increasing from
; 0 to 3. The results for the nonclassicality indicatbrare
presented in Fig. 2(a). As can be found from Fig. 1, the
value of 0 oscillates around some mean value after the in-
crease at the beginning. Therefore, in Fig. 2(a), the frequency
dependence of the nonclassicality indicator is characterized
by its average over the timée. & = 7! [ 6(t)dt with
7 = 500. The results for(qo,po) = (—1.5,0) are marked
by red circles in Fig. 2(a). In Fig. 2(a), the value ®for
it gt (g0, p0) = (—1.5,0) varies significantly with the driving fre-

A A S S S guencyw and reach its maximum when= 1.5. Especially,
0 100 200 t 300 400 500 its frequency response curve has a pronounced response peak,
near which the nonclassicality is enhanced. For further con-
FIGURE 1. Nonclassicality indicatos versus the time with a  firmation, calculations are performed wit, po) = (—2,1)
Gaussian wave packet as the initial Wigner function. The Centerand(qo,po) = (17 2)_ The frequency response curvesdbr
of the initial Wigner function is(qo, po) = (~1.5,0). The values (/) = (=2, 1) and(qgo, po) = (1, 2) are also presented in
Qf the driving frequenue's aie (black solid Ilne),l..5 (red da.she.d Fig. 2(a). They are marked with black squares and blue tri-
line) and3 (blue dotted line). Inset: the same as in the main figure o, 105 “Ag displayed by Fig. 2(a), all the frequency response
but with a superposition of two coherent states as the initial Wigner = -
function, whose centergtqo, po) are(£1.5,0). The values of the curves of for dlﬁgrent(qmpo) ha\(e notable response peaks_,
driving frequencies in the inset figure aréblack solid line),1.35 although the positions and amplitudes of their peaks are dif-
(red dashed line) ari#l (blue dotted line). ferent from each other.

As shown by the definition of, the increase of the non-
classical indicatod arises from the enhancement of the neg-
ativity of the Wigner function in the phase space. The latter
can be directly seen from the snapshot of the Wigner func-
tion during the quantum evolution. As illustrative examples,
typical snapshots of the Wigner functions at 200 are pre-
sented in Fig. 3. They are obtained witfs, po) = (—1.5,0)
and correspond to the three curves in Fig. 1. Their driving fre-
guencies from (a) to (c) equal o= 0, w = 1.5 andw = 3
(w = 1.5 corresponds to the peak value of the frequency re-
sponse curve af for (¢o, po) = (—1.5,0) in Fig. 2(a)). From
Fig. 3, one can observe the variance of the negativity of the
Wigner function with the driving frequency. Especially, the
Wigner function at = 200 has much larger negative part for
w = 1.5 than forw = 0 andw = 3. Besides, it also has
more components and more fringes for= 1.5 than those
forw = 0 andw = 3. Indeed, as a result of the quantum
interference, the fringes of the Wigner function are closely
related to the negativity of the Wigner function. The latter
has been used to describe the interference effects in the quan-
tum domain [34, 39] and can also be regarded as an indicator
of the nonclassicality [32].
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FIGURE 2. Frequency response curves of (a) the time-average of of the nonclassicality

the nonclassicality indicatar, (b) the time-average of the disper- h b he i f th lassicali d
sion of the Wigner function in the Fourier domaiky and (c) As s _oyvn above, t € |ncrea§es of the nonclassicality an
negativity of the Wigner function are closely related to the

the classical mean square amplitudg,s. In each panel, the four : - St .
curves are obtained witfyo, po) equal to(—2, 1) (black squares), fringes of the Wigner function in the phase space. Itis known

(—1.5,0) (red circles) and1, 2) (blue triangles). The increments that the fringes of the Wigner function arise from the interfer-
of w are0.05 for the interval[1, 2] and0.1 for the other intervals. ence between the energy levels involved in the quantum evo-
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lution. The latter can be influenced by the driving source and
such influence is dependent on the driving frequency. This
can be understood from the Floquet theory.

According to the Floquet theory [40, 41], for a system
like (2), the quantum statpl(¢)) at the timet can be ex-
pressed as

Z’Yaei%gat la(t)) (7)

[e3

where the coefficients, = (¢4 (0) | ¥(0)). {|¢a(t))} are
the Floquet eigenstates of the system (2) with} as their
corresponding Floquet energies, satisfying

[W(t)) =

Ho(q,p) + Sqcoswt — zhaat] |0a(t)) = eal@alt)). (8)

Both |¢,(t)) ande,, are dependent on the driving fequency
[40,41]. In addition,|¢(t)) are periodic in time and obey
loa(t +T)) = |pal(t)) with T = 27/w. They can be ex-
panded in a Fourier serigsg.

|alt) Z |Ca ) €™, ©)
where

e~ Rt (10)

T
_ 7 / 0a(®))
0

In this view, |, (t)) can be regarded as a superposition
of stationary states with energies equat{g, = ¢, — kwh.

By means of the eigenbasis of the undriven Hamilto-
nian Hy, the Floquet eigenstates of the driven system can be
rewritten as

|<Poz Z elkWtCoc k,n |wn> (11)

k,n

Where|’¢n> SatiSfyHO |'(/)n> =E, |¢n> andca,k,n:<d)n|ca,k:>
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are time independent.

|¥(t)) (¥(t)| can be expressed as

(¢

W) =3 DD qanpe HlEen )t

a,B k,k' nn’

X Ca,k,ncz;’k/,n/ |'¢)n><'¢)n’ ‘

Its Wigner transform is

where

W (z,p;t
a,B k,k' n,n’

=333 qanpe flean—ean)t

*
X Co,k,nCB k! n'Wn,n' ((Lp)a

Wn, n/ (q p) Q_/dyehpy

(o=

)

2)
q+2.

(12)

(13)

(14)

Accordingly, the density operatoFIGURE 3. Plots of the Wigner functioriV (¢, p; ) at the time

t = 200 for (@ w = 0, () w = 1.5 and (C)w = 3 with

(g0, p0) = (—1.5,0). The values of the Wigner function are plot-
ted in reverse scale for the sake of comparing the negative part of
the Wigner functions.

As can be seen from Eg. (13), the time evolution of the
Wigner function of the system can be regarded as a combi-
nation of a set of components. These components are re-
lated to the Floquet energy levels of the driven system (for
simplicity, we shall use the term “energy levels” as “Floquet
energy levels”) and evolve like small packets, whose periods
depend offe, 1, —eg,k+) /R (Similar conclusions can be found
in Refs. [42—-45]).

As a coherent state closest to the corresponding classical
state, the Wigner function of the systdm(z, p;t) att = 0
is a smoothed Gaussian wave packet. The value of its non-
classicality indicatod = 0. However, the components of the
Wigner function with respect to different energy levels evolve
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with different periods for a driven nonlinear system like (2), nonclassicality indicator fow = 1.5 is much less obvious
as displayed in Eq. (13). They depart from and interfere withthan those fotw = 0 andw = 3.
each other during the quantum evolution. This results in the Furthermore, due to the interference between different
emergence and evolution of the interference fringes of thenergy levels, the increase of the energy levels involved in
Wigner function, and thus leads to the increase and evoluthe quantum evolution is accompanied with the increase of
tion of the nonclassicality indicator. In addition, as can bethe fringes of the Wigner function. The latter corresponds to
observed in the main figure of Fig. 1, the nonclassicality in-the increase of the negativity of the Wigner function and thus
dicator oscillates around some mean value for the same drite the enhancement of the nonclassicality [32,47]. This can
ing frequency after the growth at the beginning. This is be-also be confirmed by Fig. 3. In Fig. 3, the Wigner function
cause the quantum motion is quasi-periodic, since any conhas more interference fringes and larger negative volume for
ponent in the Wigner function (13) resumes its original formy = 1.5 than forw = 0 andw = 3.
after some period of time. However, its periodicity can be  |ndeed, the Wigner function discussed here can be re-
deceased as the number of the energy levels involved in ﬂ@arded as a two dimensional gray-scale image. According
time evolution of the Wigner function increases. to the image-processing theories, the fringes of the Wigner
The energy levels involved in the quantum evolution canfunction in the phase space (or the oscillations of the Wigner
be influenced by the external driving source and are deperfunction in the phase space) can be investigated by the
dent on the driving frequency [40,41]. This induces the driv-Fourier transform [48]. The increase of the interference
ing frequency dependence of the time evolution of the nonfringes of the Wigner function in the phase space corresponds
classicality indicator and can be seen by means of the Floques the increase of the dispersion of the Wigner function in the

equation (8). In terms dC’, ) and|¢,,), Eq. (8) reads Fourier domain. Thus, the dispersion of the Wigner function
_ in the Fourier domain can be used as an indicator of the in-

Z (cak—En) Ca,k,neﬂk”t terference fringes of the Wigner function in the phase space.

k It can be evaluated by the variance of the Wigner function in

S , , the Fourier domail\p = AqpApp, whereAgp andApp

=3 Y Quavcapn (7D LI BTDE) (15)  gre the variances along the andpy directions respectively
kyn (¢r and pp are the space frequencies correspond &nd

p). Similar toé, the time-average ol (i.e. Ar) is used

to compare the degree of the oscillations of the Wigner func-

tion in the phase space during the time evolution for different

driving frequencies. The frequency response curveA gf

for different (¢qo, po) are illustrated in Fig. 2(b). They have

good correspondences to the frequency response curves for

) the nonclassicality indicator in Fig. 2(a). This confirms the

T2 Z @ (Cartritin + Cat=t,n). (16) above conclusion that the driving source influences the non-

" classicality via influencing the energy levels involved in the

As can be seen from Eg. (16), only Floquet eigenstates witlguantum evolution and the interference fringes of the Wigner

the corresponding eigenvalueg; close toE,, will be effi- function.

ciently coupled. In other words, the energy-level transitions

can be enhanced, as,; — Ey, (1€, a1 — E, — 0). Thisis 33 correspondence between the frequency responses
similar to what happens in a classical driven system near the of the nonclassicality and the classical dynamics
region of the resonance.

Enhancement of the energy-level transitions results ils discussion above, the driving source influences the non-
more energy levels involved in the time evolution of the c|assicality of the quantum state via influencing the energy
Wigner function. In this case, the time evolution of the |evels involved in the quantum evolution. Moreover, in the
Wigner function involves more components, which are re<fyrther investigations, a good correspondence is found be-
lated to different energy levels. This can be seen from Fig. 3qyeen frequency response curve of the nonclassicality indi-

In Fig. 3, the Wigner function at = 200 has broken into  cator and that of the classical mean square amplitude.
small components. Especially, the Wigner function has much  The classical mean square amplitude reads

more small components for the peak frequesacy 1.5 than

for w = 0 andw = 3. This means the energy levels involved T
in the quantum evolution are greatly increased near the peak Aps =71 /qZ(t) dt, (17)
frequencyw = 1.5. As mentioned above, the increase of the

energy levels involved in the quantum evolution can decrease

the periodicity of the time evolution of the Wigner function. whereg(t) is obtained by classical Hamilton’s equations with
This is consistent with the main figure of Fig. 1. In the main (qq, po) as the initial condition. It is also an average over the
figure of Fig. 1, the periodicity of the time evolution of the time scale.

whereQ,, v = (¥n| q|¥n/) (similar results can be found in
Refs. [41, 46]). Multiplying withe=#“* and taking the time
average over one period of the driving, it becomes

(Ea,l - En) Ca,l,n

0
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The frequency response curves df,, for different  on the energy levels involved in the quantum evolution. In
(g0, p0) are presented in Fig. 2(c). They are obtained withthis view, the frequency dependence of the nonclassicality
(g0, p0) equal to(—2,1) (black squares),(—1.5,0) (red indicator during the time evolution should hold true to some
circles) and(1,2) (blue triangles). Comparing Figs. 2(a) extent by taking a superposition of two coherent states as the
and 3(c), clear correspondences can be seen between the fieitial Wigner function. The latter is constructed by choosing
guency response curves for the nonclassicality indicator antivo coherent stateg,. localized in two distant points of the
those for the classical mean square amplitude. Specificallgonfiguration spacétqq, po) [9, 32-34]. Its wave function
the response peak 6in Fig. 2(a) and that oft,,,, in Fig. 2(c)  reads

for the same(qo, po) reach their maximum near the same N

driving frequency. They are similar to each other in ampli- U(g) = V2 [¢7(a) + o (a)], (20)
tude, position and shape. Meanwhile, the frequency response

curves in Figs. 2(a) and 2(c) for differefio, po) are also  Where ¢*(q) = 7 /4 exp[—(q % q0)*/2 + ipo(q = qo)]

similar to each other in the relative position and height. Thes@nd IV is the normalization constant satisfying = [1 +
suggest the connections between the frequency response @#(2dopo) exp(—g3)]~'/* [9, 32, 33]. The Wigner function
the time evolution of the nonclassicality and that of the mearPf the wave function (20) can be written as

square amplitude of the underlying classical dynamics. W —w W W 21
Following the Parseval's theorem [49], for a large (a) +@,p) + W= (a.p) + Winla,p)- - (21)

. where
—1 2 N2 + 2 2
T / g~ (t)dt ~ / I(n)dn, (18) Wa(g,p) = %e_(q 90)"=(p=po) (22)
0 and
where 2

N —?—(p—
) Wint(q,p) = 7‘305(2%]9)6 Coem)t o (23)

centered at the phase space poiatgo, po) and Wiy (g, p)

represents the interference structure between the two peaks.
is the power spectral density of the classical trajectory and

7 denotes the angular frequency. According to the classical- 20
quantum theories [50-52](7) is closely related to the quan-
tum mechanical spectrum with the angular frequengiesr-
responding to the energy-level transitions. Thus, the inte-
gral of I(n) with respect ton can be used as an indicator
for the energy levels involved in the evolution of the sys-
tem. As discussion above, the energy levels involved in the
evolution of the system are responsible for the emergence
of the interference fringes of the Wigner function. Accord-
ingly, the variation ofA,,,; with the driving frequencw can
reveal the driving frequency dependence of the interference
fringes of the Wigner function during the quantum evolution.

I(n) = (2r7)~ 1 / q(t) exp(—int)dt (19) W4 (q,p) are two Gaussian wave packets (or Gaussian peaks)
0

This can be confirmed by the correspondence between the 107(C) :E_iffbo));
frequency response curves Afr in Fig. 2(b) and those of 2 —A—(150) ]

Anms in Fig. 2(c). The increase of the interference fringes of < 5] ]

the Wigner function can enhance the nonclassicality of the

Wigner function, as shown in the previous section. Thus, 0 20007 i
correspondences can also be found between the frequency 00 05 10 15 20 25 30
response curves of the time-average of the nonclassicality in- &

dicators and those of classical mean square amplitdgg, FIGURE 4. Frequency response curves of (a) the time-average of
as shown by Figs. 2(a) and 2(c). the nonclassicality indicatar and (b) the time-average of the dis-

persion of the Wigner function in the Fourier domaiy- with a

.. superposition of two coherent states as the initial Wigner func-
4. Superposition of two coherent states tion. The two peaks centers of the initial stateqo, po) for (a)

. . .. . . and(b)arg=£1.5,0). In (c), the curves marked by red circles and
Inthe Sec. 2, the time evolution of the nonclassicality indica-p|,e triangles denote the frequency response curves of the clas-

tor shows significant dependence on the driving frequencyical mean square amplitudé,,, for (¢0,p0) = (—1.5,0) and
when using Gaussian coherent states as the initial Wigneg,, po) = (1.5, 0) respectively, and their superposition (or sum) is
functions. This arises from the influence of the driving sourcemarked by black squares.
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2-5-(8) = (+12) and p_eak positiqn. This rev_eals the growth of the fringes of
2.0 ——(2,1) | the Wigner function and the increase of the energy levels near
b 1.5 the peak of the frequency response of
101 Furthermore, the Wigner function of the state (21) is a su-
0.51 perposition of two Gaussian coherent states. In this view, the
80‘(b) ) corre_spo_ndence between the fre_quency response of the non-
—e—(12.1) classicality and that of the classical dynamics for the Gaus-
‘<m60' —a— (+1.5,0)] sian coherent state could emerge to some extent in the evolu-

tion of the Wigner function with the state (21) as the initial
Wigner function. This can be seen by comparing Figs. 4(a)
and 4(c).

In Fig. 4(c), the curves marked by red circles and blue
diamonds denote the frequency responses of the classical
mean square amplitudd,, s for (¢o,po) = (—1.5,0) and
(g0,p0) = (1.5,0) respectively. By comparing Figs. 4(a)
and 4(c), one can see that the peak of the frequency re-
00 05 10 15 20 25 30 sponse curve ob occurs in the frequency interval where

0) the peaks of the frequency response curvesAgf, for
_ (qo,po) = (=1.5,0) and(qo,po) = (1.5,0) appear. This
FIGURE 5. Frequency response curves of (a) the time-average ofcgn be viewed as some kind of resonance and can be con-
the nonclassicality indicatar and (b) the time-average of the dis-  firmed by the superposition (or summation) of the two fre-
persion of the Wigner function in the Fourier domawy- for dif- quency response curves df,,, for (qo,po) = (—1.5,0)

ferent initial Wigner functions. Each initial Wigner function is a - o )
superposition of two coherent states. In (a) and (b), the peak cenfmd (¢0,p0) = (1.5,0). The superposition of the two fre

ters of the initial Wigner functiongtqo, po) are (+1,2) (black ~ dUENCY response curves df,, for (a0, P0) = (7_1'5’_0) and
squares)(+2,1) (red circles) and+1.5,0) (blue triangles). In (‘J(]1p0) = (1.5,0) !s.marked by blgck squaresin Fig. 4(c). It
(c), the curve for(+qo,po) denote the superposition of the two Varies with the driving frequency in a similar manner to the
frequency response curves of the classical mean square amplitudéequency response curve Afr in Fig. 4(b) and has a corre-
Ams for (qo, po) and(—qo, po) with (go, po) equal to(1, 2) (black spondence to the frequency response curveiofFig. 4(a).
squares)(2, 1) (red circles) and1.5, 0) (blue triangles). For further comparison, numerical calculations are per-
formed with (+1,2) and (+2,1) as the peak centers
As further investigation and confirmation, the state (21)(4qo, po). The frequency response curvesédir the peak
is taken as the initial Wigner function of the system in thiscenters(+1,2) (black squares){+2,1) (red circles) and
section. The values of and.S are the same as those in the (+1.5,0) (blue triangles) are all presented in Fig. 5(a). All
previous sections. The curves of the nonclassicality indicatoof them have remarkable response peaks and have clear cor-
d versus the time are displayed in the inset figure of Fig. 1. respondences to the frequency response curvel ;ofin
They are obtained witfi-1.5, 0) as the centers of the two co- Fig. 5(b). Besides, in Fig. 5(c), we presents the superposition
herent stateé+qo, pg). Their values of the driving frequen- of the two frequency response curves of the classical mean
cies ard) (black solid line),1.35 (red dashed line) argi(blue ~ square amplitude fofqg,po) = (£1,2) (black squares),
dotted line). From the inset figure of Fig. 1, it can be seenqp,po) = (£2,1) (red circles) and gy, po) = (£1.5,0)
that the time evolution of the nonclassicality indicatois  (blue triangles). Correspondences can be found between the
significantly dependent on the driving frequency, when usindgrequency response curves in Figs. 5(a), 5(b) and 5(c) for dif-
a superposition of two coherent states as the initial Wigneferent (+qo, po) in peak position and peak amplitude. This
function. This is the same to the case of the Gaussian state gonfirms the above conclusions that the driving frequency in-
the previous section. fluences the interference fringes and nonclassicality of the

Similarly, the time-averages af are calculated witho Wigner function via influencing the participation of the en-
increasing frond to 3. Their frequency response curves are€rgy levels in the quantum evolution.
displayed in Fig. 4(a)( = 500). In Fig. 4(a), the frequency
response curve af have a remarkable response peak, whichs5.  Conclusions and Discussions
occurs neaw = 1.35. As discussion in the previous section,
this arises from the influence of the driving source on the enThe frequency response of the nonclassicality is investigated
ergy levels involved in the quantum evolution, and can ben a driven nonlinear system by using the Gaussian state
confirmed by the frequency response curve\gf. The fre-  and the superposition of two coherent states as the initial
guency response curve o is displayed in Fig. 4(b). Itis Wigner functions. For different initial Wigner functions, the
obtained under the same conditions as in Fig. 4(a). Comparfrequency response of the nonclassicality during the quan-
son of Figs. 4(a) and 4(b) indicates a correspondence betwedémm evolution has significant response peak, near which the
the frequency response curvesdo@nd A in curve shape nonclassicality and the negativity of the Wigner function are
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greatly increased. This can be used for example to enhancelations of the energy-level transitions to the classical mean
the nonclassicality of the quantum state in driven nonlineasquare amplitude. In this view, the frequency response of the
systems. The latter is a key resource in quantum-enhancagassical mean amplitude suggests a simple way to indicate
technologies. Moreover, the frequency response of the northe driving frequency dependence of the nonclassicality in
classicality during the gquantum evolution has a good cordriven nonlinear systems, since it is easy to be calculated. Its
respondence to the frequency response curve of the classesponse peak can be used to predict the frequency interval
cal mean square amplitude. This is because the classicalhere the nonclassicality can be greatly enhanced by the ex-
mean square amplitude reveals the energy-level transitiongernal driving source. Besides, the frequency response of the
In other words, the frequency response of the classical meamonclassicality is investigated here by means of the negativity
square amplitude can be regarded as an indicator of the fr@f the Wigner function. As mentioned above, the negativity
guency response of the energy-level transitions in the classef the Wigner function has attracted particular attentions due
cal regime. The energy-level transitions involved in the quanto its potential applications in quantum optics and quantum
tum evolution are responsible for the increase of the interferecomputations. Thus, the investigations presented here may
ence fringes of the Wigner function as well as the increase ofhed some light on the applications of the negativity of the
the nonclassicality indicator, as discussed in Sec. 3B. AcWigner function.
cordingly, correspondence emerges between the frequency
responses of the nonclassicality indicator and the classical
mean square amplitude. Acknowledgments
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