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The time evolution of the nonclassicality is found to have strong dependence on the driving frequency in a Duffing-type driven nonlinear
system with the Gaussian state as the initial Wigner function. Its frequency response curve has a remarkable peak, near which the nonclas-
sicality of the state is enhanced. Furthermore, good correspondences are found between the frequency response curves of the time-average
of the nonclassicality indicator and those of the classical mean square amplitude. Such correspondences can also be observed, when using a
superposition of two coherent states as the initial Wigner function.
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1. Introduction

Nonclassicality is of fundamental importance in quantum
physics. It is an essential ingredient in quantum-enhanced
technologies. For instance, it is crucial for the generation
of entanglement [1–5]. In phase-space representation, non-
classicality is closely related to the negativity of the Wigner
function [6]. By means of the negative part of the Wigner
function in the phase space, indicators are proposed by Bene-
dict et al. [7, 8] and Kenfacket al. [9] to measure the de-
gree of the nonclassicality of a quantum state. They are
used, for example, to characterize the nonclassicality in op-
tomechanical systems [10, 11]. Indeed, the negativity of the
Wigner function is a also key resource in many fields of
quantum physics,e.g., in quantum optics [12] and in quan-
tum computation [13–16]. It is proposed as a necessary re-
source of the quantum computation, which is closely related
to the contextuality [13–15]. In addition, the negativity of
the Wigner function is also of special interest in mechanical
systems [11,17–19].

During the past decade, mechanical systems are emerg-
ing as good candidates for studying the quantum mechanical
behavior and the nonclassical states at the mesoscopic and
even macroscopic scales [17–24]. In the fields related to me-
chanical systems, driven nonlinear systems are of fundamen-
tal and technical interests [18, 20–30]. They are key ingredi-
ents in many fields such as optomechanical systems [18–20],
nanomechanical resonators [17, 24–27] and Josephson bifur-
cation amplifiers [29,30]. Generally, in driven nonlinear sys-
tems, the time evolution of the quantum state can be influ-
enced by the external driving source. Due to the potential
applications of the nonclassicality and the driven nonlinear
system, it is necessary to explore the relations of the nonclas-
sicality to the driving frequency in driven nonlinear systems
during the time evolution of the quantum state. This is also
the interest of this paper.

The investigations are performed with a Duffing-type os-
cillator, which is a typical driven nonlinear system. The non-

classicality is measured by the indicator which is defined
based on the negativity of the Wigner function. When using
the Gaussian state as the initial Wigner function, the time evo-
lution of the nonclassicality of the quantum state has signifi-
cant driving frequency dependence. For more detailed com-
parison, the time-average of the nonclassicality indicator is
used to evaluate the frequency dependence of the time evolu-
tion of the nonclassicality. Its frequency response curve has a
pronounced peak, near which the nonclassicality of the state
is enhanced during the time evolution. This can be attributed
to the influence of the external driving source on the energy
levels involved in the time evolution of the Wigner function
and can be understood by means of the Floquet theories. Fur-
thermore, for different centers of the initial Wigner function,
good correspondences are observed between the frequency
response curves of the time-average of the nonclassicality
indicator and those of the classical mean square amplitude.
This arises from the relation of the classical mean square
amplitude to the energy levels involved in the evolution of
the system. Similarly, the time evolution of the nonclassi-
cality indicator also has remarkable frequency response with
a superposition of the coherent states as the initial Wigner
function. Meanwhile, correspondences can be seen between
the frequency response curves of the nonclassicality indicator
and those of the classical mean square amplitude, although
superpositions of coherent states are usually regarded as typ-
ical nonclassical states.

The remainder of the paper is structured as follows. In
Sec. 2, the nonclassicality indicator and the Duffing-type sys-
tem used here are presented. In Sec. 3, the frequency re-
sponse of the nonclassicality indicator during the quantum
evolution is investigated with the Gaussian state as the ini-
tial Wigner function, after which its relation to the frequency
response of the underlying classical dynamics is analyzed.
Section 4 is dedicated to investigate the frequency response
of the nonclassicality with a superposition of two coherent
states as the initial Wigner function. Besides, Sec. 5 is de-
voted to the conclusions.
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2. Nonclassicality indicator and the Duffing-
type system

As mentioned above, the negativity of the Wigner function
has potential application in quantum realm. It is usually re-
garded as a good indication of a quantum state’s nonclassical
character [6–9]. The nonclassicality indicator used here is
defined by Kenfack et al. [9] by means of the negativity of
the Wigner function. It reads

δ(t) =
∫

dq

∫
dp [|W (q, p; t)| −W (q, p; t)]

=
∫

dq

∫
dp |W (q, p; t)| − 1, (1)

which equals to the doubled volume of the integrated nega-
tive part of the Wigner function in the phase space. It equals
to zero for coherent states, whose Wigner functions are non-
negative. A similar indicator is proposed by Benedictet
al. [7, 8] based on the negative volume of the Wigner func-
tion. It can be written asν = δ/(δ + 1) with 0 ≤ ν < 1.
Apart from the negativity of the Wigner function, nonclas-
sicality can also be measured by, for example, the photon
number [31], the interference in the phase space [32] and the
Tsallis entropy [33]. The latter two have similar behavior to
the nonclassicality indicatorδ for Wigner functions [32,33].

The system used here is a Duffing-type oscillator. Its
Hamiltonian can be written as

H(q, p; t) = H0(q, p) + Sq cos ωt (2)

with

H0(q, p) =
p2

2m
+

1
2
mω2

0q2 +
1
4
κq4, (3)

whereκ gives the strength of the nonlinearity andSq cosωt
stands for the external driving source. It is of both theoret-
ical and experimental interests and is also often used in the
studies related to optomechanical and nanomechanical de-
vices [25–29].

The state|Ψ(t)〉 of the system at the timet is described
by the Wigner function

W (q, p; t) =
1

2π~

∫
dy e

i
~py

×
〈
q − y

2

∣∣∣ Ψ(t)
〉〈

Ψ(t)
∣∣∣ q +

y

2

〉
. (4)

As a typical phase-space distribution function, the Wigner
function provides a convenient framework to test the
quantum-classical correspondence and offers a way for quan-
tum state reconstruction via quantum tomography [34, 35].
The Wigner function and its negativity can also be measured
experimentally, for example, in quantum optics [36, 37].
The time evolution of the Wigner function follows from the
Schr̈odinger equation

∂tW (q, p; t) =
2
~
H(q, p; t)

× sin
(←−
∂q
−→
∂p −←−∂p

−→
∂q

)
W (q, p; t), (5)

where the arrows indicate in which direction the derivatives
act and thesin function can be expanded in a power expan-
sion in ~. In the classical limit, Eq. (5) corresponds to the
classical Liouville equation.

Following Eqs. (1) to (5), the time evolution of the non-
classicality of the system (2) and its relations to the driving
frequency are numerically investigated. For the sake of sim-
plicity, atomic units are used in the following sections with
m = ~ = ω0 = 1.

3. Gaussian Wigner function

3.1. Frequency response of the nonclassicality during
the quantum evolution

Gaussian states, also known as coherent states, are widely
used in the theoretical and experimental works. They are con-
sidered as being closest to the corresponding classical states,
providing a way to compare the classical and quantum dy-
namics [38]. In the Wigner representation, a Gaussian state
can be written as

W (q, p) = π−1 exp
[−(q − q0)2 − (p− p0)2

]
(6)

with (q0, p0) as its center. Its value of the nonclassicality in-
dicatorδ = 0. This is consistent with the above descriptions
of coherent states. However, the value ofδ will no longer be
equal to zero during the quantum evolution of a driven an-
harmonic oscillator like (2). Furthermore, its value evolution
can be influenced by the driving frequency during the quan-
tum evolution. These will be illustrated and discussed later.

With the Gaussian state (6) as the initial Wigner function,
we numerically investigate the value of the nonclassicality
indicatorδ during the time evolution of the Wigner function
in the Duffing-type system (2). The parameter values are
κ = 0.1 andS = 1. Without loss of generality, we consider
here the case of a stiffening nonlinearity withκ > 0. Both
values ofκ andS can influence the evolution of the Wigner
function. However, they are taken to be constants in order to
focus on the driving frequency dependence of the nonclassi-
cality.

It is found from the numerical results that the value of
the nonclassicality indicator, which is initially equal to zero,
evolves with the time. Moreover, the time evolution of the
nonclassicality indicator significantly depends on the fre-
quency of the driving source. This can be observed in the
main figure of Fig. 1. In the main figure of Fig. 1, we present
three typical plots of the time evolution of the nonclassicality
indicator for(q0, p0) = (−1.5, 0). From bottom to top, they
correspond toω = 0 (black solid line),ω = 3 (blue dotted
line) andω = 1.5 (red dashed line). As can be seen the main
figure of Fig. 1, the increase ofδ in the beginning is faster for
ω = 1.5 than those forω = 0 andω = 3.

Rev. Mex. Fis.62 (2016) 549–557



FREQUENCY RESPONSE OF THE NONCLASSICALITY AND ITS CORRESPONDENCE TO THE CLASSICAL DYNAMICS 551

FIGURE 1. Nonclassicality indicatorδ versus the timet with a
Gaussian wave packet as the initial Wigner function. The center
of the initial Wigner function is(q0, p0) = (−1.5, 0). The values
of the driving frequencies are0 (black solid line),1.5 (red dashed
line) and3 (blue dotted line). Inset: the same as in the main figure
but with a superposition of two coherent states as the initial Wigner
function, whose centers(±q0, p0) are(±1.5, 0). The values of the
driving frequencies in the inset figure are0 (black solid line),1.35
(red dashed line) and3 (blue dotted line).

FIGURE 2. Frequency response curves of (a) the time-average of
the nonclassicality indicatorδ, (b) the time-average of the disper-
sion of the Wigner function in the Fourier domain∆F and (c)
the classical mean square amplitudeAms. In each panel, the four
curves are obtained with(q0, p0) equal to(−2, 1) (black squares),
(−1.5, 0) (red circles) and(1, 2) (blue triangles). The increments
of ω are0.05 for the interval[1, 2] and0.1 for the other intervals.

Moreover, after the initial increase the value ofδ is much
larger forω = 1.5 than those forω = 0 andω = 3, though it
oscillates with time.

For more detailed comparison, further numerical investi-
gations are made with the driving frequency increasing from
0 to 3. The results for the nonclassicality indicatorδ are
presented in Fig. 2(a). As can be found from Fig. 1, the
value of δ oscillates around some mean value after the in-
crease at the beginning. Therefore, in Fig. 2(a), the frequency
dependence of the nonclassicality indicator is characterized
by its average over the time,i.e. δ = τ−1

∫ τ

0
δ(t)dt with

τ = 500. The results for(q0, p0) = (−1.5, 0) are marked
by red circles in Fig. 2(a). In Fig. 2(a), the value ofδ for
(q0, p0) = (−1.5, 0) varies significantly with the driving fre-
quencyω and reach its maximum whenω = 1.5. Especially,
its frequency response curve has a pronounced response peak,
near which the nonclassicality is enhanced. For further con-
firmation, calculations are performed with(q0, p0) = (−2, 1)
and(q0, p0) = (1, 2). The frequency response curves ofδ for
(q0, p0) = (−2, 1) and(q0, p0) = (1, 2) are also presented in
Fig. 2(a). They are marked with black squares and blue tri-
angles. As displayed by Fig. 2(a), all the frequency response
curves ofδ for different(q0, p0) have notable response peaks,
although the positions and amplitudes of their peaks are dif-
ferent from each other.

As shown by the definition ofδ, the increase of the non-
classical indicatorδ arises from the enhancement of the neg-
ativity of the Wigner function in the phase space. The latter
can be directly seen from the snapshot of the Wigner func-
tion during the quantum evolution. As illustrative examples,
typical snapshots of the Wigner functions att = 200 are pre-
sented in Fig. 3. They are obtained with(q0, p0) = (−1.5, 0)
and correspond to the three curves in Fig. 1. Their driving fre-
quencies from (a) to (c) equal toω = 0, ω = 1.5 andω = 3
(ω = 1.5 corresponds to the peak value of the frequency re-
sponse curve ofδ for (q0, p0) = (−1.5, 0) in Fig. 2(a)). From
Fig. 3, one can observe the variance of the negativity of the
Wigner function with the driving frequency. Especially, the
Wigner function att = 200 has much larger negative part for
ω = 1.5 than forω = 0 andω = 3. Besides, it also has
more components and more fringes forω = 1.5 than those
for ω = 0 andω = 3. Indeed, as a result of the quantum
interference, the fringes of the Wigner function are closely
related to the negativity of the Wigner function. The latter
has been used to describe the interference effects in the quan-
tum domain [34,39] and can also be regarded as an indicator
of the nonclassicality [32].

3.2. Influences of the driving frequency on the evolution
of the nonclassicality

As shown above, the increases of the nonclassicality and
negativity of the Wigner function are closely related to the
fringes of the Wigner function in the phase space. It is known
that the fringes of the Wigner function arise from the interfer-
ence between the energy levels involved in the quantum evo-
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lution. The latter can be influenced by the driving source and
such influence is dependent on the driving frequency. This
can be understood from the Floquet theory.

According to the Floquet theory [40, 41], for a system
like (2), the quantum state|Ψ(t)〉 at the timet can be ex-
pressed as

|Ψ(t)〉 =
∑
α

γαe−
i
~ εαt |ϕα(t)〉, (7)

where the coefficientsγα = 〈ϕα(0) | Ψ(0)〉. {|ϕα(t)〉} are
the Floquet eigenstates of the system (2) with{εα} as their
corresponding Floquet energies, satisfying
[
H0(q, p) + Sq cos ωt− i~

∂

∂t

]
|ϕα(t)〉 = εα |ϕα(t)〉 . (8)

Both |ϕα(t)〉 andεα are dependent on the driving fequency
[40, 41]. In addition,|ϕα(t)〉 are periodic in time and obey
|ϕα(t + T )〉 = |ϕα(t)〉 with T = 2π/ω. They can be ex-
panded in a Fourier series,i.e.

|ϕα(t)〉 =
∑

k

|Cα,k〉 eikωt, (9)

where

|Cα,k〉 = T−1

T∫

0

|ϕα(t)〉 e−ikωtdt. (10)

In this view, |ϕα(t)〉 can be regarded as a superposition
of stationary states with energies equal toεα,k = εα − kω~.

By means of the eigenbasis of the undriven Hamilto-
nianH0, the Floquet eigenstates of the driven system can be
rewritten as

|ϕα(t)〉 =
∑

k,n

eikωtcα,k,n |ψn〉, (11)

where|ψn〉 satisfyH0 |ψn〉=En |ψn〉 andcα,k,n=〈ψn|Cα,k〉
are time independent. Accordingly, the density operator
|Ψ(t)〉 〈Ψ(t)| can be expressed as

|Ψ(t)〉 〈Ψ(t)| =
∑

α,β

∑

k,k′

∑

n,n′
γαγ∗βe−

i
~ (εα,k−εβ,k′)t

× cα,k,nc∗β,k′,n′ |ψn〉〈ψn′ |. (12)

Its Wigner transform is

W (x, p; t) =
∑

α,β

∑

k,k′

∑

n,n′
γαγ∗βe−

i
~ (εα,k−εβ,k′)t

× cα,k,nc∗β,k′,n′wn,n′(q, p), (13)

where

wn,n′ (q, p) =
1

2π~

∫
dy e

i
~py

×
〈
q − y

2

∣∣∣ψn

〉〈
ψn′

∣∣∣q +
y

2

〉
. (14)

FIGURE 3. Plots of the Wigner functionW (q, p; t) at the time
t = 200 for (a) ω = 0, (b) ω = 1.5 and (c) ω = 3 with
(q0, p0) = (−1.5, 0). The values of the Wigner function are plot-
ted in reverse scale for the sake of comparing the negative part of
the Wigner functions.

As can be seen from Eq. (13), the time evolution of the
Wigner function of the system can be regarded as a combi-
nation of a set of components. These components are re-
lated to the Floquet energy levels of the driven system (for
simplicity, we shall use the term “energy levels” as “Floquet
energy levels”) and evolve like small packets, whose periods
depend on(εα,k−εβ,k′)/~ (similar conclusions can be found
in Refs. [42–45]).

As a coherent state closest to the corresponding classical
state, the Wigner function of the systemW (x, p; t) at t = 0
is a smoothed Gaussian wave packet. The value of its non-
classicality indicatorδ = 0. However, the components of the
Wigner function with respect to different energy levels evolve
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with different periods for a driven nonlinear system like (2),
as displayed in Eq. (13). They depart from and interfere with
each other during the quantum evolution. This results in the
emergence and evolution of the interference fringes of the
Wigner function, and thus leads to the increase and evolu-
tion of the nonclassicality indicator. In addition, as can be
observed in the main figure of Fig. 1, the nonclassicality in-
dicator oscillates around some mean value for the same driv-
ing frequency after the growth at the beginning. This is be-
cause the quantum motion is quasi-periodic, since any com-
ponent in the Wigner function (13) resumes its original form
after some period of time. However, its periodicity can be
deceased as the number of the energy levels involved in the
time evolution of the Wigner function increases.

The energy levels involved in the quantum evolution can
be influenced by the external driving source and are depen-
dent on the driving frequency [40,41]. This induces the driv-
ing frequency dependence of the time evolution of the non-
classicality indicator and can be seen by means of the Floquet
equation (8). In terms of|Cα,k〉 and|ψn〉, Eq. (8) reads

∑

k

(εα,k−En) cα,k,ne−ikωt

=
S

2

∑

k,n′
Qn,n′cα,k,n′

(
e−i(k+1)ωt+e−i(k−1)ωt

)
, (15)

whereQn,n′ = 〈ψn| q |ψn′〉 (similar results can be found in
Refs. [41, 46]). Multiplying withe−ilωt and taking the time
average over one period of the driving, it becomes

(εα,l − En) cα,l,n

=
S

2

∑

n′
Qn,n′(cα,l+1,n′ + cα,l−1,n′). (16)

As can be seen from Eq. (16), only Floquet eigenstates with
the corresponding eigenvaluesεα,l close toEn will be effi-
ciently coupled. In other words, the energy-level transitions
can be enhanced, asεα,l → En (i.e., εα,l−En → 0). This is
similar to what happens in a classical driven system near the
region of the resonance.

Enhancement of the energy-level transitions results in
more energy levels involved in the time evolution of the
Wigner function. In this case, the time evolution of the
Wigner function involves more components, which are re-
lated to different energy levels. This can be seen from Fig. 3.
In Fig. 3, the Wigner function att = 200 has broken into
small components. Especially, the Wigner function has much
more small components for the peak frequencyω = 1.5 than
for ω = 0 andω = 3. This means the energy levels involved
in the quantum evolution are greatly increased near the peak
frequencyω = 1.5. As mentioned above, the increase of the
energy levels involved in the quantum evolution can decrease
the periodicity of the time evolution of the Wigner function.
This is consistent with the main figure of Fig. 1. In the main
figure of Fig. 1, the periodicity of the time evolution of the

nonclassicality indicator forω = 1.5 is much less obvious
than those forω = 0 andω = 3.

Furthermore, due to the interference between different
energy levels, the increase of the energy levels involved in
the quantum evolution is accompanied with the increase of
the fringes of the Wigner function. The latter corresponds to
the increase of the negativity of the Wigner function and thus
to the enhancement of the nonclassicality [32, 47]. This can
also be confirmed by Fig. 3. In Fig. 3, the Wigner function
has more interference fringes and larger negative volume for
ω = 1.5 than forω = 0 andω = 3.

Indeed, the Wigner function discussed here can be re-
garded as a two dimensional gray-scale image. According
to the image-processing theories, the fringes of the Wigner
function in the phase space (or the oscillations of the Wigner
function in the phase space) can be investigated by the
Fourier transform [48]. The increase of the interference
fringes of the Wigner function in the phase space corresponds
to the increase of the dispersion of the Wigner function in the
Fourier domain. Thus, the dispersion of the Wigner function
in the Fourier domain can be used as an indicator of the in-
terference fringes of the Wigner function in the phase space.
It can be evaluated by the variance of the Wigner function in
the Fourier domain∆F = ∆qF ∆pF , where∆qF and∆pF

are the variances along theqF andpF directions respectively
(qF and pF are the space frequencies correspond toq and
p). Similar to δ, the time-average of∆F (i.e. ∆F ) is used
to compare the degree of the oscillations of the Wigner func-
tion in the phase space during the time evolution for different
driving frequencies. The frequency response curves of∆F

for different (q0, p0) are illustrated in Fig. 2(b). They have
good correspondences to the frequency response curves for
the nonclassicality indicator in Fig. 2(a). This confirms the
above conclusion that the driving source influences the non-
classicality via influencing the energy levels involved in the
quantum evolution and the interference fringes of the Wigner
function.

3.3. Correspondence between the frequency responses
of the nonclassicality and the classical dynamics

As discussion above, the driving source influences the non-
classicality of the quantum state via influencing the energy
levels involved in the quantum evolution. Moreover, in the
further investigations, a good correspondence is found be-
tween frequency response curve of the nonclassicality indi-
cator and that of the classical mean square amplitude.

The classical mean square amplitude reads

Ams = τ−1

τ∫

0

q2(t) dt, (17)

whereq(t) is obtained by classical Hamilton’s equations with
(q0, p0) as the initial condition. It is also an average over the
time scale.
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The frequency response curves ofAms for different
(q0, p0) are presented in Fig. 2(c). They are obtained with
(q0, p0) equal to (−2, 1) (black squares),(−1.5, 0) (red
circles) and(1, 2) (blue triangles). Comparing Figs. 2(a)
and 3(c), clear correspondences can be seen between the fre-
quency response curves for the nonclassicality indicator and
those for the classical mean square amplitude. Specifically,
the response peak ofδ in Fig. 2(a) and that ofAms in Fig. 2(c)
for the same(q0, p0) reach their maximum near the same
driving frequency. They are similar to each other in ampli-
tude, position and shape. Meanwhile, the frequency response
curves in Figs. 2(a) and 2(c) for different(q0, p0) are also
similar to each other in the relative position and height. These
suggest the connections between the frequency response of
the time evolution of the nonclassicality and that of the mean
square amplitude of the underlying classical dynamics.

Following the Parseval’s theorem [49], for a largeτ ,

τ−1

τ∫

0

q2(t)dt '
∫

I(η)dη, (18)

where

I(η) = (2πτ)−1

∣∣∣∣∣∣

τ∫

0

q(t) exp(−iηt)dt

∣∣∣∣∣∣

2

(19)

is the power spectral density of the classical trajectory and
η denotes the angular frequency. According to the classical-
quantum theories [50–52],I(η) is closely related to the quan-
tum mechanical spectrum with the angular frequenciesη cor-
responding to the energy-level transitions. Thus, the inte-
gral of I(η) with respect toη can be used as an indicator
for the energy levels involved in the evolution of the sys-
tem. As discussion above, the energy levels involved in the
evolution of the system are responsible for the emergence
of the interference fringes of the Wigner function. Accord-
ingly, the variation ofAms with the driving frequencyω can
reveal the driving frequency dependence of the interference
fringes of the Wigner function during the quantum evolution.
This can be confirmed by the correspondence between the
frequency response curves of∆F in Fig. 2(b) and those of
Ams in Fig. 2(c). The increase of the interference fringes of
the Wigner function can enhance the nonclassicality of the
Wigner function, as shown in the previous section. Thus,
correspondences can also be found between the frequency
response curves of the time-average of the nonclassicality in-
dicatorδ and those of classical mean square amplitudeAms,
as shown by Figs. 2(a) and 2(c).

4. Superposition of two coherent states

In the Sec. 2, the time evolution of the nonclassicality indica-
tor shows significant dependence on the driving frequency
when using Gaussian coherent states as the initial Wigner
functions. This arises from the influence of the driving source

on the energy levels involved in the quantum evolution. In
this view, the frequency dependence of the nonclassicality
indicator during the time evolution should hold true to some
extent by taking a superposition of two coherent states as the
initial Wigner function. The latter is constructed by choosing
two coherent statesφ± localized in two distant points of the
configuration space(±q0, p0) [9, 32–34]. Its wave function
reads

Ψ(q) =
N√
2

[
φ+(q) + φ−(q)

]
, (20)

where φ±(q) = π−1/4 exp[−(q ± q0)
2
/2 + ip0(q ± q0)]

and N is the normalization constant satisfyingN = [1 +
cos(2q0p0) exp(−q2

0)]−1/2 [9, 32, 33]. The Wigner function
of the wave function (20) can be written as

W (q, p) = W+(q, p) + W−(q, p) + Wint(q, p). (21)

where

W±(q, p) =
N2

2π
e−(q±q0)

2−(p−p0)
2

(22)

and

Wint(q, p) =
N2

π
cos(2q0p)e−q2−(p−p0)

2
. (23)

W±(q, p) are two Gaussian wave packets (or Gaussian peaks)
centered at the phase space points(±q0, p0) andWint(q, p)
represents the interference structure between the two peaks.

FIGURE 4. Frequency response curves of (a) the time-average of
the nonclassicality indicatorδ and (b) the time-average of the dis-
persion of the Wigner function in the Fourier domain∆F with a
superposition of two coherent states as the initial Wigner func-
tion. The two peaks centers of the initial state(±q0, p0) for (a)
and (b) are(±1.5, 0). In (c), the curves marked by red circles and
blue triangles denote the frequency response curves of the clas-
sical mean square amplitudeAms for (q0, p0) = (−1.5, 0) and
(q0, p0) = (1.5, 0) respectively, and their superposition (or sum) is
marked by black squares.
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FIGURE 5. Frequency response curves of (a) the time-average of
the nonclassicality indicatorδ and (b) the time-average of the dis-
persion of the Wigner function in the Fourier domain∆F for dif-
ferent initial Wigner functions. Each initial Wigner function is a
superposition of two coherent states. In (a) and (b), the peak cen-
ters of the initial Wigner functions(±q0, p0) are (±1, 2) (black
squares),(±2, 1) (red circles) and(±1.5, 0) (blue triangles). In
(c), the curve for(±q0, p0) denote the superposition of the two
frequency response curves of the classical mean square amplitude
Ams for (q0, p0) and(−q0, p0) with (q0, p0) equal to(1, 2) (black
squares),(2, 1) (red circles) and(1.5, 0) (blue triangles).

As further investigation and confirmation, the state (21)
is taken as the initial Wigner function of the system in this
section. The values ofκ andS are the same as those in the
previous sections. The curves of the nonclassicality indicator
δ versus the timet are displayed in the inset figure of Fig. 1.
They are obtained with(±1.5, 0) as the centers of the two co-
herent states(±q0, p0). Their values of the driving frequen-
cies are0 (black solid line),1.35 (red dashed line) and3 (blue
dotted line). From the inset figure of Fig. 1, it can be seen
that the time evolution of the nonclassicality indicatorδ is
significantly dependent on the driving frequency, when using
a superposition of two coherent states as the initial Wigner
function. This is the same to the case of the Gaussian state in
the previous section.

Similarly, the time-averages ofδ are calculated withω
increasing from0 to 3. Their frequency response curves are
displayed in Fig. 4(a) (τ = 500). In Fig. 4(a), the frequency
response curve ofδ have a remarkable response peak, which
occurs nearω = 1.35. As discussion in the previous section,
this arises from the influence of the driving source on the en-
ergy levels involved in the quantum evolution, and can be
confirmed by the frequency response curve of∆F . The fre-
quency response curve of∆F is displayed in Fig. 4(b). It is
obtained under the same conditions as in Fig. 4(a). Compari-
son of Figs. 4(a) and 4(b) indicates a correspondence between
the frequency response curves ofδ and∆F in curve shape

and peak position. This reveals the growth of the fringes of
the Wigner function and the increase of the energy levels near
the peak of the frequency response ofδ.

Furthermore, the Wigner function of the state (21) is a su-
perposition of two Gaussian coherent states. In this view, the
correspondence between the frequency response of the non-
classicality and that of the classical dynamics for the Gaus-
sian coherent state could emerge to some extent in the evolu-
tion of the Wigner function with the state (21) as the initial
Wigner function. This can be seen by comparing Figs. 4(a)
and 4(c).

In Fig. 4(c), the curves marked by red circles and blue
diamonds denote the frequency responses of the classical
mean square amplitudeAms for (q0, p0) = (−1.5, 0) and
(q0, p0) = (1.5, 0) respectively. By comparing Figs. 4(a)
and 4(c), one can see that the peak of the frequency re-
sponse curve ofδ occurs in the frequency interval where
the peaks of the frequency response curves ofAms for
(q0, p0) = (−1.5, 0) and (q0, p0) = (1.5, 0) appear. This
can be viewed as some kind of resonance and can be con-
firmed by the superposition (or summation) of the two fre-
quency response curves ofAms for (q0, p0) = (−1.5, 0)
and (q0, p0) = (1.5, 0). The superposition of the two fre-
quency response curves ofAms for (q0, p0) = (−1.5, 0) and
(q0, p0) = (1.5, 0) is marked by black squares in Fig. 4(c). It
varies with the driving frequency in a similar manner to the
frequency response curve of∆F in Fig. 4(b) and has a corre-
spondence to the frequency response curve ofδ in Fig. 4(a).

For further comparison, numerical calculations are per-
formed with (±1, 2) and (±2, 1) as the peak centers
(±q0, p0). The frequency response curves ofδ for the peak
centers(±1, 2) (black squares),(±2, 1) (red circles) and
(±1.5, 0) (blue triangles) are all presented in Fig. 5(a). All
of them have remarkable response peaks and have clear cor-
respondences to the frequency response curves of∆F in
Fig. 5(b). Besides, in Fig. 5(c), we presents the superposition
of the two frequency response curves of the classical mean
square amplitude for(q0, p0) = (±1, 2) (black squares),
(q0, p0) = (±2, 1) (red circles) and(q0, p0) = (±1.5, 0)
(blue triangles). Correspondences can be found between the
frequency response curves in Figs. 5(a), 5(b) and 5(c) for dif-
ferent(±q0, p0) in peak position and peak amplitude. This
confirms the above conclusions that the driving frequency in-
fluences the interference fringes and nonclassicality of the
Wigner function via influencing the participation of the en-
ergy levels in the quantum evolution.

5. Conclusions and Discussions

The frequency response of the nonclassicality is investigated
in a driven nonlinear system by using the Gaussian state
and the superposition of two coherent states as the initial
Wigner functions. For different initial Wigner functions, the
frequency response of the nonclassicality during the quan-
tum evolution has significant response peak, near which the
nonclassicality and the negativity of the Wigner function are
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greatly increased. This can be used for example to enhance
the nonclassicality of the quantum state in driven nonlinear
systems. The latter is a key resource in quantum-enhanced
technologies. Moreover, the frequency response of the non-
classicality during the quantum evolution has a good cor-
respondence to the frequency response curve of the classi-
cal mean square amplitude. This is because the classical
mean square amplitude reveals the energy-level transitions.
In other words, the frequency response of the classical mean
square amplitude can be regarded as an indicator of the fre-
quency response of the energy-level transitions in the classi-
cal regime. The energy-level transitions involved in the quan-
tum evolution are responsible for the increase of the interfer-
ence fringes of the Wigner function as well as the increase of
the nonclassicality indicator, as discussed in Sec. 3B. Ac-
cordingly, correspondence emerges between the frequency
responses of the nonclassicality indicator and the classical
mean square amplitude.

The conclusions are obtained here with a model of the
Duffing-type oscillator. However, they should hold true to
some extant for other driven nonlinear systems, due to the

relations of the energy-level transitions to the classical mean
square amplitude. In this view, the frequency response of the
classical mean amplitude suggests a simple way to indicate
the driving frequency dependence of the nonclassicality in
driven nonlinear systems, since it is easy to be calculated. Its
response peak can be used to predict the frequency interval
where the nonclassicality can be greatly enhanced by the ex-
ternal driving source. Besides, the frequency response of the
nonclassicality is investigated here by means of the negativity
of the Wigner function. As mentioned above, the negativity
of the Wigner function has attracted particular attentions due
to its potential applications in quantum optics and quantum
computations. Thus, the investigations presented here may
shed some light on the applications of the negativity of the
Wigner function.
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press10 (2002) 376-381.
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