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This paper reports on measurements of the resistive transition in polycrystalline Gd1−xCexBa2Cu3O7−δ samples (x = 0.000, 0.025 and
0.050). The samples were produced by a standard solid state reaction method and in two different thermal routes. The microstructure was
analyzed by X-ray diffraction. The samples were considered homogeneous since no extra peaks due to impurity phase were observed. To
identify power-law divergences in conductivity, the results were analyzed in terms of the temperature derivative of the resistivity and the
logarithmic temperature derivative of the conductivity (d ln (∆σ) /dT ). From the results, the occurrence of a two-stage transition besides
the pairing transition splitting for sample withx = 0.050 was observed. Such splitting was associated with Ce doping and related with
the occurrence of a phase separation. In the normal phase, Gaussian and critical fluctuations conductivity regimes were identified. On
approaching the zero resistance state, our results showed a power-law behavior that corresponds to a phase transition from a paracoherent to
a coherent state of the granular array.
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1. Introduction

The substitution of Y by trivalent rare earth (RE) elements
in YBa2Cu3O7−δ (YBCO) yields a superconducting phase
with a critical temperature (TC) identical to YBCO [1-2], ex-
cept for Ce, Tb and Pr. For higher concentrations, Ce and
Tb do not replace Y to form a single phase material from the
standard solid state reaction technique [3-4], leading to the
formation of multiphase samples, with BaCeO3 and BaCu2
always present [5-6]. PrBa2Cu3O7−δ (PBCO) is isostruc-
tural to YBa2Cu3O7−δ, but is still not superconducting [7].
However, there is also experimental evidence for supercon-
ductivity in PrBa2Cu3O7−δ. Blacksteadet al. reported su-
perconductivity in PBCO powders and thin films [8] while
Zhou et al. have reported bulk superconductivity in single
crystals [9].

In the system Y1−xPrxBa2Cu3O7−δ, TC decreases
monotonically with increasing Pr doping and vanishes at
x ∼= 0.56. In the case of Y1−xCexBa2Cu3O7−δ, in a study
on thin films, Fincher and Blanchet showed that the partial
substitution is possible, withTC decreasing from 90 K to
55 K for 30 % Ce [10]. It is important to point out that Ce,
Pr and Tb have in common the possibility of existing in a
tetravalent state, and in that order, are the three rare earth el-
ements most easily ionized to the +4 state [11]. The suppres-
sion ofTC with Pr doping for several RE1−xPrxBa2Cu3O7−δ

compounds has been systematically studied [12-13]. A rare-
earth ion size effect onTC has been observed in these com-

pounds, withTC decreasing approximately linear when the
RE-site ions radius is increased [12-13]. Also, the antiferro-
magnetic ordering temperatureTN of Pr ions in these com-
pounds decreases monotonically with increasing RE con-
centration. Gd has a high magnetic moment and as the Pr
concentration is increased in Gd1−xPrxBa2Cu3O7−δ com-
pound,TC decreases monotonically, with superconducting
state vanishing at a concentration ofx = 0.45 [14]. For
Gd1−xCexBa2Cu3O7−δ, Mofakhamet al. observed in the
normal state a metal-insulator transition forx ∼= 0.12 and the
disappearance of the superconducting state forx ∼= 0.6 [15].

The aim of this work is to carefully study the resistive
transition of polycrystalline Gd1−xCexBa2Cu3O7−δ samples
(x = 0.000, 0.025 and0.050). An important point to study
is the influence of the Ce ion in the fluctuation regimes, es-
pecially in the critical regimes. The samples were examined
by X-ray diffraction and resistivity measurements. The sam-
ples were considered homogeneous, since no extra peaks due
to impurity phase were observed from the X-ray. The re-
sistivity measurements were analyzed in terms of the tem-
perature derivative of the resistivity (dρ/dT ) and also us-
ing the logarithmic temperature derivative of the conductiv-
ity (−d ln (∆σ) /dT ). The data revealed the occurrence of
a two-stage intragranular-intergranular transition besides the
pairing transition splitting, which was associated with Ce
doping. Near the zero-resistance temperature, a phase tran-
sition from a paracoherent to a coherent state of the granular
array was observed.
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2. Experimental Details

Polycrystalline samples of G d1−x C ex B a2 C u3 O7−δ

(x = 0.000, 0.025 and 0.050) were prepared by stan-
dard solid state reaction technique. Appropriate amounts of
Gd2O3, Ce2O3, BaCO3 and CuO were mixed and calci-
nated twice in an alumina crucible at 920◦C for 24 h in air.
Then, the calcinated powder was pressed into pellets and sin-
tered again at 920◦ C for 24 h in air. After that, the pel-
lets were slowly cooled to room temperature. Specifically for
Gd0.95Ce0.05Ba2Cu3O7−δ concentration, samples were also
produced by another thermal treatment. Now, appropriate
amounts were mixed, ground and heated at 850 and 880◦C in
air for 24 hours. Then, they were reground, pressed in pellets
and sintered at 920◦C for 24 hours and slowly cooled to room
temperature. Finally, all the samples were oxygenated under
flowing oxygen at 4000C for 48 h. The room temperature X-
ray diffraction patterns were collected using a Rigaku diffrac-
tometer with CuKα radiation andλ = 1.542Å. Data was
collected from 10 to 100◦ in the 2θ range with 0.02◦ steps
and 4 s counting time. The crystal structure analyses were
performed using the GSAS program [16] with the EXPGUI
interface [17]. All electrical resistivity measurements were
performed from 77 to 300 K by a standard of a four-probe
AC technique at the frequency of 37 Hz. The measuring cur-
rent was limited to 100 mA for bar-shaped samples which
were approximately 8×8×2 mm2. The temperature was de-
termined with an accuracy of 0.01 K by precisely measuring
the resistance of a Pt-100 sensor.

3. Results and Discussion

3.1. Characterization

The crystallographic quality of the samples used in this
work was checked by x-ray diffraction shown in Fig. 1.
The patterns almost completely match the Gd-123 structure
(compared with JCPDS files) and belong to the orthorhom-
bic unit cell with symmetryPmmm. Also, they contain
no extra peaks, due to impurity phase, within the experi-
mental error. The lattice parametersa, b, c and V (vol-
ume) for Gd1−xCexBa2Cu3O7−δ (x = 0.00,x = 0.025 and
x =0.050) are shown in Table 1. The refinement in room
temperature for pure sample gave the following lattice param-
eters:a = 3.8528 (1)Å, b =3.8975 (1)Å, c = 11.7323 (1)Å
andV = 176.18 (1)Å3. Numbers in parentheses are stan-
dard deviations of the last significant digits. The values of
the lattice parametersa andc decreased to 3.8413 (2)Å and
11.702 (1)Å for x = 0.05 sample. On the other hand,b in-
creased to 3.8992 (4)̊A for x = 0.05 sample. The change
of the lattice parameters suggests the presence of Ce inside
the grains. Also, the system remains orthorhombic for allx
and the lattice constants for Gd1−xCexBa2Cu3O7−δ are con-
sistent with other published results [18]. And finally, theRp

(R−pattern),Rwp (R−weighted pattern) andχ2 (goodness-
of-fit) are compatible with the low count statistics of the mea-
sured profile.

TABLE I. Lattice parameters a, b, c and V for
Gd1−xCexBa2Cu3O7−δ (x = 0.00, x = 0.025 andx =0.050).

x = 0.00 x = 0.025 x = 0.050

a (Å) 3.8528 (1) 3.8414 (2) 3.8413 (2)

b (Å) 3.8975 (1) 3.8991(4) 3.8992 (4)

c (Å) 11.7323 (1) 11.703 (1) 11.702 (1)

V (Å3) 176.18 (1) 175.29 (2) 175.28 (1)

FIGURE 1. Representative X-ray diffraction patterns for
(a)x = 0.00, (b)x = 0.025 and (c)x =0.050 samples.

3.2. Method of Analysis

Our method of analysis is based on the numerical determina-
tion of the quantity

χσ ≡ − d

dT
ln (∆σ) , (1)

where the fluctuation conductivity is obtained from
∆σ = σ−σR. σ(T ) is the measured conductivity andσR(T )
is the one calculated from extrapolation of high-temperature
behavior:

σR =
1

ρR
(2)

and
ρR = ρ0 +

dρR

dT
T, (3)

whereρ0 anddρR/dT are constants.
Assuming that the fluctuation conductivity diverges as a

simple power-law,
∆σ = Aε−λ, (4)
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where

ε =
(T − TC)

TC
, (5)

in analogy with the Kouvel-Fisher method [19] for analyzing
critical phenomena, we obtain

χ−1
σ =

1
λ

(T − TC) . (6)

Thus, the identification of straight lines in plotsχ−1
σ (T )

allows us to obtain simultaneously the exponentλ and critical
temperatureTC [20].

3.3. Fluctuation Regimes

Measurement of electrical resistivityρ (T ) as a function
of temperature for GdBa2Cu3O7−δ sample is displayed in
Fig. 2(a). The plot is shown in a narrow temperature range
around the critical temperature. The curve is normalized to
unity at 100 K and exhibits metallic behavior in the normal
state. The measured value forρ(T=300 K) is 5.6 mΩ·cm and
is within the range of the reported values for REBa2Cu3O7−δ

samples. The transition width,∆T , defined between 5 % and
95 % of the transition height, is approximately 2 K, and with
the zero-resistance temperature aroundTC0

∼= 90.5 K.
In Fig. 2(b), a plot of derivativedρ/dT versus temper-

ature for GdBa2Cu3O7−δ sample is shown. The maximum
of dρ/dT , denoted byTP , corresponds approximately to the
bulk critical temperatureTC [20]. For Gd-123,TP is approx-
imately 92.7 K. AroundTP , a structure which corresponds
to two closely but well resolved maxima can be clearly ob-
served. The temperature splitting,∆ ∼= 0.5 K, between the
two dρ/dT peaks, is shown. This kind of structure was also
observed in other samples, such as in polycrystalline samples
YBa2Cu3O7−δ, in single crystal Bi2Sr2Ca2Cu3O10+x and
Bi2Sr2Ca1Cu2O8+x, and also in the simple binary compound
MgB2 [21-22]. For MgB2, the splitting was suppressed by
applying magnetic fields above 10 kOe parallel to the current
orientation [22].

Figure 2(c) shows variations ofχ−1
σ against temperature,

where the two-stage character of the transition, revealed in
this curve by a local minimum aroundTP can be observed.
Then, the temperature interval relevant for studying fluctua-
tions in the normal phase (aboveTP ) and the regimes domi-
nated by granularity effects (close to theR = 0 state) can be
identified [23]. We can fitχ−1

σ by three power-law regimes,
corresponding to three different exponents. These fits are la-
beled by the indicesλ(1)

c1 , λ
(2)
cr (all observed aboveTP ) and

s (observed betweenTC0 andTP ). Special attention is paid
aboveTP , where critical regimes are observed. Far fromTP ,
the critical exponentλ(2)

cr = 0.30 ± 0.02 can be observed,
which characterizes the asymptotic regime precursor of the
pairing transition. The obtained value of 0.30 is consistent
with the expectation from the 3D-XY model [24] and was
previously observed in several samples of the high-TC mate-
rials, including single crystals, thin films and ceramics [25].
Above TP , the exponent obtained wasλ(1)

cr = 0.18± 0.02.

FIGURE 2. Representative results of the resistive transition for
a sample of GdBa2Cu3O7−δ: (a) resistivity versus temperature,
(b) dρ/dT versus temperature and (c)χ−1

σ versus temperature.TP

is signaled. Straight lines are fits to Eq. (6).

This regime identifies a critical scaling beyond 3D-XY and
was first observed by Pureuret al., [26]. Pureur proposed
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FIGURE 3. Superconducting transition for Gd0.975Ce0.025Ba2Cu3

O7−δ sample: (a) resistivity versus temperature, (b)dρ/dT versus
T and (c) the inverse of the logarithmic derivative of the conduc-
tivity χ−1

σ versus T. TP is signaled.

that this new scaling is associated with a weak first-order
transition [26]. Close to the point where the resistivity van-

ishes,χ−1
σ versusT diverges with exponents=3.6±0.1. This

regime is interpreted as being intrinsically related to the su-
perconducting granularity from the mesoscopic/macroscopic
level. When the disorder at this level dominates, the fluctua-
tion conductivity near the zero-resistance state must diverge
with an exponents ∼= 3.0 [27]. The same exponent was also
observed in the resistive transition of YBCO ceramics [27].

Figure 3(a) shows the resistivity versus temperature plots
for Gd0.975Ce0.025Ba2Cu3O7−δ sample. The current den-
sity was 60 mA/cm2 at zero field. The transition width was
approximately 10 K and the absolute value of resistivity at
room temperature was 2.5 mΩ·cm. Also, the sample showed
metallic-like behavior in the normal state (not shown). It
can be observed from panel that the critical temperature de-
creased and that the transition width increased for this small
concentration. Figure 3(b) showsdρ/dT versusT . The
maximumdρ/dT , denoted byTP , corresponding to the bulk
critical temperature can be observed. For the sample with
x = 0.025, TP it is approximately 86.2 K. It could also be
seen that there is a pronounced peak in the temperature re-
gion belowTP . A peak or an asymmetry indρ/dT occurs
systematically in polycrystalline samples [20-23], indicating
that the transition is a two-step process. Figure 3(c) shows
that above, but close toTP , the variation ofχ−1

σ as a func-
tion of temperature may be fitted to one straight line. The
regime corresponding to the exponentλ3D

G
∼= 0.60 ± 0.02

is interpreted as resulting from three-dimensional (3D) Gaus-
sian fluctuations. This exponent has been previously reported
in YBa2Cu3O7−δ [20], Bi2Sr2CaCu2O8+x (Bi-2212) and
Bi2Sr2Ca2Cu3O10+x (Bi-2223) [23] systems. BetweenTC0

andTP , χ−1
σ is well described by a power law regime, given

by the equation∆σ ∝ (T − TC0)
−s, with s = 2.9 ± 0.2.

This power-law behavior is suggestive of a phase transition
phenomenon and related to the superconducting granularity
from the mesoscopic/macroscopic level [27]. The same ex-
ponent was also observed in the resistive transition of YBCO
ceramics [20].

Figure 4 shows the temperature dependence on the elec-
trical resistivity of Gd0.95Ce0.05Ba2Cu3O7−δ sample at zero
external magnetic field. The current density was 60 mA/cm2

at zero field. This sample was heated three times at 920◦C.
The measuredρ(T = 300 K) is 30 mΩ·cm and is within
the range of the reported values for REBa2Cu3O7−δ sam-
ples. The figure also shows that the superconducting tran-
sition temperature decreased with the increase the Ce dop-
ing value, but the transition width remained approximately
the same as that forx = 0.025, around 12.5 K. In the inset,
the temperature dependence of the electrical resistivity of an-
other Gd0.95Ce0.05Ba2Cu3O7−δ sample produced by another
thermal treatment to investigate its effect on the splitting of
the pairing transition is shown. In this case, the sample was
heated at 850 and 880◦C and then sintered at 920◦C in air
for 24 hours. It can clearly seen from the figure that only for
the sample heated three times at 920◦C the splitting of the
pairing transition is present.
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FIGURE 4. Resistivity versus temperature for Gd0.95Ce0.05Ba2Cu3

O7−δ sample. Inset: Electrical resistivityρ as a function of tem-
perature for one sample of Gd0.95Ce0.05Ba2Cu3O7−δ prepared by
another thermal route.

Figures 5 and 6 show the resistive transition for polycrys-
talline Gd0.95Ce0.05Ba2Cu3O7−δ sample. This sample was
heated three times at 920◦C. Panels (a) presentsdρ/dT ver-
sus temperature plot while panels (b) showsχ−1

σ versusT
around the critical temperature. The plot ofdρ/dT versus
temperature presents two maxima, denoted byTP1 5(a) and
TP2 6(a). Our results indicate clearly that the critical tran-
sition splits into two pairing transitions at temperaturesTP1

andTP2. These temperatures correspond approximately to
the pairing critical temperaturesTC1 and TC2 [28-30], re-
spectively. The temperature splitting∆ = TP1 − TP2 is
approximately 7 K. The same splitting of the pairing transi-
tion was also observed for other polycrystalline and single
crystals Pr- and Ce-doped samples [29-31]. The temperature
splitting∆ does not show changes upon variation of the field
and measuring current. BelowTP2 (panel 6(a)), an asym-
metry indρ/dT can be observed. A small peak or an asym-
metry occurs systematically in polycrystalline samples [20],
indicating that the transition is a two-step process [20,27].
The results can be described by an intragrain superconduc-
tive transition atTP1 (or TP2) and an intergrain coherence
transition at zero resistance temperatureTCO [27].

Figure 5(b) showsχ−1
σ versus T above TP1. One

regime dominated by Gaussian fluctuations given by expo-
nent λ3D

G
∼= 0.49 ± 0.02 can be observed. This regime

extends by approximately 3 K and corresponds to a regime
dominated by 3D Gaussian fluctuations [20]. This result is
consistent with those reported for YBa2Cu3O7−δ [20], Bi-
2212 [23] and Bi-2223 [23] ceramic samples. Still closer to
TP1, a critical scaling regime beyond 3D-XY is shown, la-
beled by the exponentλcr

∼= 0.08 ± 0.02. Such regime was
first noticed by Costaet al. and it was interpreted as reveal-
ing an ultimate first-order character of the superconducting
transition [26].

Figure 6(b) represents the inverse of the logarithmic
derivative of the conductivity for Gd0.95Ce0.05Ba2Cu3O7−δ

sample below and aboveTP2. AboveTP2 the regime domi-

FIGURE 5. (a) dρ/dT versusT and (b) the inverse of the log-
arithmic derivative of the conductivityχ−1

σ versus Tfor Gd0.95

Ce0.05Ba2Cu3O7−δ sample.TP1 is signaled.

nated by critical fluctuations given byλcr
∼= 0.20 ± 0.01

can be observed. As discussed above, this regime be-
yond 3D − XY , was first observed by Costaet al. in
YBa2Cu3O7−δ single crystals and interpreted as a precursor
to a weak first-order pairing transition [26]. BetweenTC0

andTP2, the variation ofχ−1
σ as a function of temperature

is better described by a power-law regime given by the equa-
tion ∆σ ∼ (T − TC0)

−s, with exponents = 2.5± 0.2. This
power-law behavior corresponds to a phase transition from a
paracoherent to a coherent state of the granular array. The
same power-law regime was also observed in the resistive
transition in other REBa2Cu3O7−δ ceramics nearTC0 [27].
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FIGURE 6. (a) dρ/dT versusT and (b) the inverse of the log-
arithmic derivative of the conductivityχ−1

σ versus Tfor Gd0.95

Ce0.05Ba2Cu3O7−δ sample.TP2 is signaled.

4. Conclusion

In conclusion, our conductivity experiments on granular
Gd1−xCexBa2Cu3O7−δ samples (x = 0.000, 0.025 and
0.050) revealed that the superconducting transition proceeds
in two stages: pairing and coherence transition. The results
were analyzed in terms of the temperature derivative of the
resistivity and of the logarithmic temperature derivative of
the conductivity, which allowed identifying power-law di-
vergences in the conductivity. From the analyses, it was
clearly observed a pairing transition splitting for sample with
x = 0.050. Such splitting was associated with Ce doping
and related with the occurrence of a phase separation. Close
to the zero resistance temperature, a power law regime was
found, which suggested the occurrence of a phase transition
from a paracoherent to a coherent state of the granular array.
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