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At present, several models for quantum computation have been proposed. Adiabatic quantum computation scheme particularly offers this
possibility and is based on a slow enough time evolution of the system, where no transitions take place. In this work, a new strategy for
guantum computation is provided from the opposite point of view. The objective is to control the non-adiabatic transitions between some
states in order to produce the desired exit states after the evolution. The model is introduced by means of an analogy between the adiabatic
quantum computation and an inelastic atomic collision. By means of a simple two-state model, several quantum gates are reproduced,
concluding the possibility of diabatic universal fault-tolerant quantum computation. Going a step further, a new quantum diabatic computation
model is glimpsed, where a carefully chosen Hamiltonian could carry out a hon-adiabatic transition between the initial and the sought final
state.
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En la actualidad se han propuesto varios modelos de compotadintica. Concretamente, se ha introducido el esquema de congputaci
cuantica adiahtica, basado en una lenta evolutiemporal del sistema empleado, lo que impide la afaride transiciones entre estados.

En este trabajo, se propone una nueva estrategia para la coroputeaitica, basada en el punto de vista opuesto. El objetivo es controlar
las transiciones no-adiabicas entre estados que den lugar a la evotudeseada. Se introduce el modelo por medio de una daaoge la
computacdbn adialatica y una coligin inebstica. Mediante un simple modelo con dos estados, es posible reproducir varias paetteagu
concluyendo la posibilidad de una computacciantica dialatica universal tolerante a fallos. Dando un passnse vislumbra un nuevo
modelo de computagh clantica diafatico, en el que las transiciones entre el estado inicial y final deseado, se controlan mediante una
adecuada eleatn del Hamiltoniano.

Descriptores: Puertas canticas; tolerancia a fallos; computagicltantica adiahtica.

PACS: 03.67.Lx; 03.67.Pp; 03.67.Hk

1. Introduction main close to the state,(t = T)) at the end of the process.
Starting in the ground staté (¢=0)) , the adiabatic evolution

The adiabatic theorem has a long history in quantum mewill guarantee that the system will be (with a great probabil-

chanics [1]. It was Farhét al.,[2] who applied it to quan- ity) in the same state at the end. More precisely, defining the

tum computation by suggesting a new way of solving classigninimum gap between the lowest two energy eigenvalues as:

problems, such as SAT, by means of an algorithm based on

adiabatic quantum computation (AQC). After the first specu- ABuin = min (E1(t) — Eo(t)) 1)

lation about the promising power of this novel way of com- T

putation [3], finally demonstrated its polynomial equivalence@nd the maximum value of the operati (¢)/d¢ between

with the conventional circuit model [4]. In spite of that, it these two states

has some advantages such as an inherent robustness to some dH

kinds of noise. AQC is robust against dephasing in the ground Do = oA, {0 (t)|ﬁ|¢1(t)> @)

state or thermal errors [5,6]. Several error correction strate- o o _ N

gies have also been proposed [7]. From the experimentd the initial state isjy,(0)), provided the condition

point of view, some quantum adiabatic algorithms have al- Dinax

ready been implemented experimentally by means of NMR AE2.

techniques [8]. , . -

In the following, the adiabatic quantum computation 'S fulfilled, then

model is briefly described, and the details may be re- (o (T) (T2 > 1 — 2 (4)

viewed elsewhere [9]. Consider a state evolving according -

the Schodinger equation and a time-depending Hamiltonian  If H(T) = H(0), then the final stat@) (7)) is 2-close

H(t) (t € [0,T], T being the total computation time), having (according (4)) to thdyy(T)) state, except for an overall

a set of eigenstates and eigenvalges.(t)), Ex(t)}. The phase. Roughly speaking, the meaning of this statement is:

adiabatic theorem states that if the initial state is the kththe state of the system will be kept close to the instanta-

eigenvector|yy(t=0)) and H (t) varies slowly enough, the neous statéyy(t)) if it is weakly coupled with the remain-

instantaneous state(0< ¢t < T)) of the system will re- ing states (smalD.,.x) and is kept well separated in energy

<e ©))



DIABATIC QUANTUM GATES 429

from them (largeAFE,,.;,). In this situation, there are nei- used in atomic collisions, although not exactly with the same
ther crossings nor avoided-crossings between the consideretkeaning. In this context, the word diabatic refers to a new
states and, consequently, the transition probabilities to the exet of basis states providing smaller coupling values. This
cited states are very small. new basis includes states that go smoothly across an avoided-
Despite the above criterion not actually being necessargrossing and are more suitable to describe inelastic processes
nor sufficient in general, it has been widely used because ait medium and higher energies.
its simplicity. Work has recently been carried out in order  As a result of the above ideas on non-adiabatic transitions
to study the consistency of the theorem [10], and replace thgdiabatic behaviour) between quantum states, the construc-
previous formulation with a rigorous statement [11], even in-tion of quantum diabatic gates will be established. The main
cluding noise [12]. framework of AQC can be used but with some new charac-
The adiabatic theorem can be used to design a neweristics. In the AQC, by choosing the ending Hamiltonian
paradigm of quantum computation. The model is specifiegroperly, the final correct state is identified with the ground
by two Hamiltonians (in the simplest case), the inifii) and  state. Now, in the diabatic behaviour, the correct state will
final H,. The initial state is the ground state of khat is re-  pe the first excited one of a suitable Hamiltonian. In order
quired to be an-easy-to-prepare state whereas the solution @f get this diabatic evolution, the speed of the computation
the computation is the ground state/df. The problem could s not restricted to being a sufficiently small evolution speed
be to work out the structure éf, andH;. The time evolution  as in AQC. In contrast, the final state will be reached with
is controlled by means of the total Hamiltoniaki)prepared  high probability if the computation speed is high enough.
as the interpolation of the previous Hamiltonians, dependinghis diabatic behaviour will not limit the computation time
on a parametes(t): H(t) = f(s(t))Ho + g(s(t))H1, with  as in AQC. Another advantage of the diabatic computation
s €[0,1]and s #/T', T  being the total computation time. The is its robustness against errors shown as an intrinsic fault-
local condition is usually necessary for the Hamiltonian (re-tolerance, as established in Sec. 3.1. In addition, the concept
quiring that its implementation only involve a constant num-of diabatic computation as a sequence of diabatic gates is
ber of particles), in order to be realistically implemented.  suitable to be extended to a full diabatic computation, un-
Initially, the system is synthesized in the ground state ofderstood as a single evolution carried out by means of an ap-
Hy, |¥0(0)), and then evolves according (). If the evo-  propriate Hamiltonian. The only remaining work is to char-
lution rate {s(t)/dt) is slow enough (adiabatic evolution), the acterise the physical processes by implementing this evolu-
intermediate statg(¢))) will not produce any transition to tion. These Hamiltonians could involve non-local interac-
(possible) higher energy states, and will end in the groundions of more than two or three qubits. This could be seen as
state ofH,, that has been chosen as the solution of the proba heavy restriction nowadays, but is not forbidden by the laws
lem. of Quantum Mechanics. Providing suitable quantum systems
The question addressed in this work is: could the mairas well as general non-local Hamiltonians is not the scope of
framework of AQC be used to reach the solution of a problenthe paper.
by taking advantage of the possible transitions between the The paper is structured as follows. In Sec. 2 the main
states? In fact, this is what is happening in the well-knowndeas about inelastic atomic collisions are reviewed and are
context of quantum chemistry when two atoms come closge|ated to the diabatic computation model. In Sec. 3, a sim-
to form a molecule, if the Born-Oppenheimer approxima-pje two-state model will be used to implement several dia-
tion [13] is not fulfilled. This behaviour is crucial in the con- patic quantum gates, demonstrating its general intrinsic fault-
text of inelastic atomic collisions [14], where the studied pro-tolerance and estimating the error gate probability for each
cesses are, specifically, those producing outgoing states difme.
ferent from the ingoing ones. The transitions are produced by
the breakdown of the Born-Oppenheimer approximation, in-
volving states whose energies cross or pseudocrosse (avoided . . .
crossing). The molecular Hamiltonian depends on the atomig- Diabatic quantum computation model
separatiorR(t) that can be seen as a time-dependent param-
eter of the total Hamiltonian. The starting point for study- The adiabatic computation involves the slow enough evolu-
ing these systems is to find the instantaneous foton-  tion of a time-dependent Hamiltonian, this fact ensures the
stant) adiabatic states and then solving the time-independelck of transitions. The opposite behaviour is sought in the
Schibdinger equation. The dynamic is included by expandingPresent method. The goal is to develop the model through a
the total collision state in the adiabatic basis set. If, througtParallelism with an inelastic atomic collision.
the evolution, a transition probability from the initial state Consider an inelastic atomic collision where an atom A
to some of the final states is not negligible, it is said that acrosses an interaction region occupied by another atom B or
non-adiabatic transition may have occurred. In this work, thea field. The collision frame is shown in Fig. 1. The incoming
strongly non-adiabatic behaviour of the states is proposed agtom comes from,,,;, — —oo (equivalentlyt — —oo, be-
a possible mechanism for quantum computation, calling it dicause the time origin is situated on the coordinate 0) to
abatic quantum computation (as opposed to adiabatic); a term,.x — +oo (ort — +o0). If the atomic speed is large
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y eter [16] is interesting in classifying the processes accord-
A Collision trajectory ing the transition probabilities. It comes from very general
—————— v -> considerations. The non-adiabatic behaviour (large transition
-7 probability) between two states is expected to be important
-, I when the typical collision frequency written as the inverse
4 of the collision time ¢ = 1/7.), matches the frequency of
the energy splittingA E/(h/27). Taking into account that
T. ~ a/v (a being a characteristic z-region of interaction),
FIGURE 1. Reference framework to describe an atomic collision the constrain = aAE /v ~ 1 (with h/27 = 1) is obtained.
between two atoms A and B. In the process, the ingoing atom AThe condition of adiabaticity comes from a small coupling
goes fromz — —oo to z — +oo through a straight line trajectory. (low transition probability), implying a large value &{E
and smallv, then¢ > 1. The speed for the maximum tran-

enough, the trajectories can be taken as straight lines ansdt'on probability can be estimated be means of this Massey

. . aramete€. The previous behaviour is closely related to the

characterized by an impact paramétemhese are (roughly) P : ) 4 )
the assumptions made in the Impact Parameter Method [15 ,oupleq _system (6), if the following chang_e in the var-|able
= vt is introduced, and an energy phase is extracted:

used to describe atomic collisions in the medium energ

b

([TTEpe———

Z i >~ B Z pax—>+0

range. Notice that the paramet&(t) provides a radial oz

speed ask(t) = zv/R, with z = ot fulfilling the equation an(2) = be(2) exp | - / Ev(R(2))d' v

vt W) =bu(@exp | 5 [ E(R() 7)
The total Hamiltoniand describing the collision, as well -

as the states are time-dependent through the im@ticit pa- The new system of equations is:
rameter dependence. To describe the dynamic, the collisiondb » 5
state|+(¢)) is developed in a basis sflu; (R(¢))) }: k\Z) _ 1.0
dz ;@bn(z)v<¢k|at|¢n>
[0(1) = an(t) |k (R(1)) (5)
k 4

¢ / ’ /

It is evident that in the case of a “real” atomic collision, Xexp =0 / [En(R(2'))~Er(R(2"))d="] | (8)
all of the states must depend on the electronic coordinates; -0
however these are not shown in the equations in order to in-
troduce a closer notation to that used below.

The HamiltonianH is not (in general) diagonal in the ba-
sis set{|ux)}, then, in the Molecular Model of atomic col-
lisions [14,15], a new and more appropriate adiabatic (or
thonormal) basis seff|¢x(R))} is provided as the instanta-
neous eigenvectors éf. This process is static since the diag-
onalizing processi{ ;. (R)) = Ex(R)|¢r(R))) is carried out
for each constank value. The dynamic is included by solv-
ing the standard time-dependent Sidinger equation for the
collision state of the systef(¢)) expanded in the adiabatic
basis set. Introducing)(¢)) into the Schadinger equation,
the following (general) differential coupled equation system

is obtained: tion probability will depend on how quickly the phase os-
day(t 0 . cillates. An estimation of this phase could be done through
dt( ) _ > an(t) [<¢k|at|¢n> +i(pr|H|pn) | (6) the ¢ parameter. The coefficiemt,, .o(+oc) will be small

" if £ > 1[17] and the behaviour is adiabatic. In the case

The system involves the dynamic couplifw, |0/0t| ¢y, ) of ¢ ~ 1, a large value ob,,,.o(+o0) is expected, and the

and the electrostatic couplings|H|¢,). The indexk  behaviour is non-adiabatic.
runs over the coupled states. Two properties simplify the In principle, the most appropriate choice as a basis set to
aforementioned equations: using an adiabatic basis sedgvelop the collision state is the adiabatic one. To describe
(ox|H |prn) = Ey dkn, and the matrix elementgy |0/0t|py) an inelastic collision adequately, all coupled states must be
= [(O¢rlOt|dr) + (br|010t|pr))2 = (LI2) O{px|pr)/Ot = 0  included in order to account for the possible transitions. Un-
(bearing in mind that the statés; ) are real functions). Tak- fortunately, in some cases, when the states are highly coupled
ing into account the relationship= vt, the above system of or when the speed of the colliding systems is high enough,
equations can be transformed into another equivalent depenthe couplings are very active to produce transitions. In this
ing on thez coordinate. In this context, the Massey param-case the number of states to be included in the system (8)

The coupling{¢|0/0t|¢,,) should be expressed in terms
of z, with two new couplings appearing: the radial coupling
(¢r|0IOR| b, ) and a rotational one. The radial coupling orig-
inates in the case of dealing with states of the same molecular
symmetry and appears, for example, in an avoided-crossing.
The rotational coupling comes out between the states of dif-
ferent molecular symmetry and will not be taken into account
in the following, because the states considered will have the
same symmetry and display an avoided-crossing.

The system of equations has, in general, to be solved
numerically. The behaviour of the adiabaticity follows the
tracks of the Massey parameter. If the initial conditions are
br(0) = 0o, @ simple first order estimation for the transi-
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is so huge that it makes it impossible to carry out the deset{|¢x), k = 1,..,n > 2}, but, with an adequate choice of
scription. In this situation, a new (and smaller) set of statesthe Hamiltonian and the parametets¥), only a two-state
called diabatic, could help to decrease the dimension of thenodel could be enough. This would be case if the two cou-
problem. Diabatic states were introduced in the early 60’s byled states considered are far separated in energy from the
Lichten [18] and generalized by Smith [19]. Roughly speak-remaining excited states or if they are not coupled by sym-
ing, they have the property of running smoothly through anmetry considerations. In this case the process of computation
avoided-crossing, having smaller couplings. Intensive worknvolves only two eigenstateSxo), |x1)} of the Hamilto-
has been carried out in the past on the adequate definition ofan Hy:
diabatic states (see [14] and references therein).

Trying to introduce the flavour of an atomic collision in Ho|xo0) =€0 [x0) Holx1) =€1 |x1) (12)
the present computation model, a parametey similar to with Hy providing the coupling between them. These

R(t), is included, allowing the computation to be seen as a . : L
kind of “collision”. Defining T as the total computation time states are not (in general) eigenstates of the total Hamiltonian

the parametes is defined as(t) = t/T. The states for the go:sf S.;ng;ﬁ ('sn) PII—|Wn ?rc])etrt])zenergmsl ar;dneg ng!g_
incoming particle (for R large in the atomic collision model), bati b 1ag lzing H In- bt f‘:’i%w’r'ﬁm} wadi |
would now correspond te = 1 and the closest atomic dis- o ¢ DasIs set|¢o), [¢1)} is obtained whose new eigenval-

tance (equivalent t& small), tos = 0. Suppose the searched ues Eo,1(s)) could show an avoided crossing (pseudocross-

for state is one of the eigenstategs,) of a non-degenerate Lﬂ?e)io-tre:}itaa?;a\?s&c batS'S_ is used to develop the evolution of
Hamiltonian Hy. The diabatic quantum computation would qe (t)):

be like a kind of “collision” depending on thet) parameter. ) = an(t ) + aq (¢ ¢ 13
By keeping the same framework as in the AQC scheme, two ) = ao(®)ldo(s(E)) Tar(B)ler(s(e) - (A3)
time-independent Hamiltonians are taken into accouf: The coefficientay(t), a1(t)} are provided by the gen-

(carrying out the information of the initial and/or final possi- eral equation system (6). Changing to the z variable through
ble states) andly, (including a coupling). Thély, includes = = vt, the two-state coupled equation system is:

a coupling between the basis eigenstateH gfallowing the dao (=)
aplz

possibility of transitions between them. The evolution of the = —iag(2) Eo(s(2)) _ ay(2)—— W (s(2))
system is produced according the Hamiltonian: dz s(2)
H(s(t)) = f(s(t))Ho + g(s(t))H,, 9) Cm;i(z) - _ml(z)w _ ao(z)iW(s(z)) (14)
The functionsf(s) andg(s) are chosen to fulfil the gen- “ v s(2)
eral properties: W (s(2)) = (¢o(s)|0/0s|p1(s)) being a kind of “radial cou-
020 1£(s)| szl pling” in the parameter (having considered the property
(60(5)[010s|61 (5)) = — (1 ()|010s| b0 (s))). The first terms
1520 lg(s)| =l (10) on the right hand side of (14) describe the adiabatic evolution

(keeping the populations and, perhaps, changing the phases)
“and, the second terms include the non-adiabatic transitions by
means of thél” coupling. The integration of this system is

The behaviour reflects the introduction of the perturba
tion Hy,, whens goes from 1 to 0. The state vector of this
“collision” is expanded in the adiabatic basis states (eigenf:arried out according to take= 1: from 2y, = (1 — b2)1/2

vectors){|¢x(s)) } of H(s): t0 Zmax = (1—0%)'/2, b being the impact parameter, seen now
[(t)) = Z ap(t)|ér(s(t))) (11)  asaparameter to be adjusted.
k

The time-evolution is controlled by a system of coupled3, Djabatic gates
equations similar to (6) or (8) if the variable is taken. The
diabatic computation is seen as a process in which the syrFhe first step in reaching quantum computation is to describe
thesis of the appropriate ingoing state (expanded in the adthe quantum diabatic gates. Each gate can be seen as a black
abatic basis offH,), is introduced for thes(0) = 1 black  box inside which a quantum evolution, according to a Hamil-
box wire, and then the “collision” run evolving forward and tonian, takes place in some ingoing state in order to produce
backward froms = 1 — 0 — 1, and get the outgoing state an outgoing one. Unlike the adiabatic computation, some
|pou(s — 1)). Fors — 1, the coupling goes to 0 because transitions are required and, to reach them, two parameters
g(s — 1) — 0, then|gpou(s — 1)) could be very close to (v, b) are free to be adjusted.
the sought eigenvectdy,,,) of Hy (or perhaps some linear Working in the computation basis sdixo) = |0),
combination of them), if values of the parametersbf are  |x1) = |1)}, the initial (s = 1) state is introduced into the

carefully chosen. black-box-gate. The whole evolution as a “collision” varying
s =1 — 0 — 1, is described through an evolution operator
2.1. Two-state model U(t, —t) (remember the time origih= 0 is in = = 0) from

. . . . t = —T'tot =T in the adiabatic basis set [20]:
In general, the diabatic quantum computation could involve

ingoing and outgoing states developed in the adiabatic basis
Rev. Mex. Fis58(2012) 428—-437
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U(T,-T) = (15)

( (1 — p)et2@00 4 pei2an —2i+/(1 — p)psin(ago — @o1) )
—2i4/(1 — p)psin(agy — @o1) (1 — p)e~12200 4 pe—i2ao01

p being the probability of a non-adiabatic transition through
the avoided-crossing and;; some phases, both depending lparametersd, b) selected experimentally. Calling’) the

on the ¢, b) values. The probability that the system exits initial vector state, the gate error probabiliti.(¥)) asso-
through a particular outgoing channel can be calculated bgiated is defined as the orthogonal component of the vector
applying the evolution operatd/ (T, —T) to the incoming  |&y) = (Uy-Uy)|¥) = D|¥):

state. The different quantum diabatic gates can be repre-

sented by choosing the values of the parameters) @de- Po(¥) = (3| &o) (16)
guately as will be shown throughout paragraphs 3.2-3.5. First
of all the fault tolerance of the diabatic gates (15) will be con-
sidered.

The error probability for the gate is defined as:
Pe = Pe v 17
‘ gg(( ) 17)
3.1. Fault-tolerance of diabatic gates

and fulfils the condition:
The features providing the power to quantum computers are elyely < _
parallelism and interference, which are intrinsically quantum Pe(¥) = (Gul&w) < (Coltw) = rlpa P) (18)

properties. The implementation of a quantum algorithm re-p peing the positive and hermitian operatér*D and

quires a quantum computer to keep working on the qubits,, — |u)(w|. By diagonalizingP and taking into account
for a long time. The computation requires the creation angpat tr{ py P} is upper bounded by, = max{d;, eigenvalues
manipulation of entangled states involving large ensemblegt p) for every state vectdi’), the error probability for the

of qubits. Unfortunately the quantum states are necessafate isP, < d,,,. As the P operator is positive, the condition
ily coupled with the environment producing the qubit deco- < tr{ P} is also fulfilled, then:

herence. This process introduces errors into the computa-
tion, making it useless. To fight against error accumulation, P. <d,, <tr(P) (29)
Shor [21,22] and Steane [23] introduced in the mid 90’s, the
concept of quantum error correcting codes, capable of keep- In some cases the{tP} is much easier to be calculated
ing the quantum decoherence under control. Unfortunateljfhand., and it will be used as an upper boundzf
error-correcting methods are not strong enough to achieve a The next step will be to check the error propagation when
total control of error spreading through a quantum algorithmthe gate is described by the evolution operaf¢r’, — 7). As
In trying to solve this problem, Shor introduced fault-tolerantwas mentioned before, the error affecting the operatpr
methods [24] in quantum computation. There are severggomes from an error in the (b) parameters. If the target evo-
basic ideas involved in it: applying quantum gates directlylution operator corresponds to the (bo) values, the,, will
to the encoded qubits, correcting the errors periodically, anclude some small error and it will correspond tg ¢ dv,
carefully designed encoded gates in order to avoid the errdi + 6b). Assuming the errorév anddb are small enough,
spreading and the use of a concatenated quantum code strigeir effect onU(T', —T') could be considered as lineal (by
ture with a hierarchical encoding [25]. Roughly speaking, ameans ot) in the phases and the probability p. Tigcould
fault-tolerant recovery method would introduce fewer errorsbe written as:
than those it is able to eliminate. The fusion of fault-tolerant .
encoded quantum gates and concatenated codes has estab- [Ua(T, =T)loo = [Ua(T. =T)]1y
lished the existence of an error threshold. If the evolution
and gate errors are below this threshold, quantum states will
remain stabilized for a time long enough to carry out the com- + pet?(aoites)
putation. Several estimations for the value of this threshold
have been published [26-31]. From these works, it is possible Ua(T, =D)lor = [Ua(T: =T)]10
to establish an approximate error-gate-probability-threshold
(Perr) to carry out a long enough quantum computation, as
Per < 107,

Following the same argument used in Ref. 32, the gate
error probability is defined in the following way: consider c’s being real numbers.
the target unitary operation to be implemented as represented By means of thd/, (T, —T), the matrixP = (U,-U;)™
by the evolution operatdy; and the approximate one iy,. (U,-Uy) is calculated and its trace is developed isrpower
The error included or/, could come from an error in the series. For a small enoughthe error propagation provides a

iQ(aoo +Co€)

=1 —-p+cpe)e

:—%¢ﬂ—p+%@@+%@

X Sin(OéOO + CcoE — o1 — C1€) (20)
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gate error probability behaviour as R O(g?), showing the  |0)«|1), meaning that if the ingoing state|i$), the outgoing
intrinsic fault-tolerance of the diabatic gates built. The coef-must be|1) and vice versa, both with certainty.
ficient of 2 is complicated and depends on p and the phases Suppose the initial{= 1) state|y,) = |0) is introduced
«;;, and will be shown for each particular gate. into the NOT-gate black box, after the evolution as a “col-
In the following, the set of one-qubit Pauli gates lision” varyings = 1 — 0 — 1, a probability of one is
{X=NOT, Z,Y =-iXZ}, T (calledn/8 gate),H (Hadamard), required for the processo) — |x1) = |1) (the same for
CNOT and Toffoli gate will be considered. Through a pos-the reverse process). Two Hamiltonians are introdudégl:
sible Hamiltonian, the parameters §) will be numerically  having the eigenstatelgxo) = |0), |x1)=|1)} and H with
estimated to implement the gates as well as the gate err@n adiabatic basi§|¢o), |¢1)}, fulfilling |¢o(s = 1)) = |0)

probabilities. and|¢1(s = 1)) =|1). The|0) state evolves in the NOT-gate
_ black box through the evolution operator (15), and the prob-
3.2. Pauli gates ability that the system exits through theé; (s = 1)) = |1)

channel (or vice versa) is:
Working in the computation basis sgb), |1)}, the looked ( )

for evolution inside the black box for the NOT gate is

1.0 @ s 4r o
.‘\\' /‘
5 0.5} o 3
4] e
)
By 0.0f 8 7|
: <
= :
=05t g Z 4l
0.0 02 04 0.6 08 1.0 02 04 06 08 1.0
S S
LOr 1.0 e )
2 0'8; @ 050 Cy
s = _
.§ 0.6f 0
o . g%
= » !
T 0.4} b5
S | S
0.2 Coo
0.0t _
02 04 06 0.8 1.0

02 04 06 08 1.0
S S

FIGURE 2. (a) Energy of adiabatic eigenstatfig), |¢1)} of the total Hamiltonian describing a NOT-gate versus the paramet&€he

initial states fors = 1 are shown on the right and the avoided-crossing will provide a radial coupling between them with a maximum at
s ~ 0.5. The possible paths interfering to produce the) = |1) state are shown. (b) Radial couplifif = (¢0|0/0s|#1). (c) and (d)
Coefficients for the adiabatic statls ) = c(iork),0(0) + C(iork),1]1)-
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Figure 2 shows the results for the eigenvalues, “radial”
) coupling and coefficient$c;,(s), i,j = 0,1}. The ingoing
Pioy— 1) = 4(1 = p)psin® (a0 — ao) (1) state of the system i|$/>o(f :j(l))> = |0), and}the objective is
To get the statél) with certainty, a probability ~ 0.5  to reach an appropriate evolution (by adjusting the parame-
andagy — a1 ~ mr/2 (M an integer), are needed. Notice tersv andb) to get a transition probability’ gy |4,y ~ 1 and
the probability p as well as the phase difference depends ol (T, —T") o< X. Optimizing the parameters (b), the condi-
the collision parameters(b), producing a structure of the tionago —ap1 = m#/2 (m an integer) is fulfilled and the gate
probability Pjgy... 1) similar to the well known Stckelberg  U(T, —T) = +i X can be reached, that is a NOT-gate except
oscillations [33] appearing in atomic collisions. The oscilla- an unimportant global phase. Carrying out the numerical cal-
tion came from the two-way interference, producing the exitculation, the optimized values are €& 0.2547, b = 0). Fig-
state as is shown in Fig. 2(a). ure 3 details the transition probabilifyy,_.|4,) versusv, for
The next step must be the estimation of thebf b = 0, showing aPgy_ |4,y = 0.99992 forv ~ 0.2547. The
parameters to produce this gate. The impact parametéequired value op ~ 0.5, reached for this speed, is shown
(0 < b < s =1)is related to how active the coupling in Fig. 4. In the same Fig. 3 the parameteis included to
W is in the collision, because it controls the minimum ap-appreciate its capability of estimating the speed-(0.249)
proach distance to the = 0 point. The valueb — 0 will for the maximum of the transition probability. For< 0.1,
be chosen to make the coupling completely active, and théypical Stickelberg oscillations appear as a consequence of a
most important parameter becomes the speelth the low-  two-path interference producing the same outgoing state (see
speed region, the adiabatic term in the system (14) will domFig. 2(a)). The envelope of the first oscillating part does
inate the non-adiabatic one and, the evolution will be mainlynot reach the valu®, .|4,, ~ 1 because of the probability
adiabatic. In this region the adiabatic behaviour for quanp < 0.5 for this speed.
tum computation is recovered, whereas in the higher speed Consequently, it is possible to get a high fidelity NOT-
range, the non-adiabatic transitions will take place, thus raisgate by means of this simple Hamiltonian involving only two
ing the diabatic behaviour. In order to estimate the speed foeoupled states. Because what is looked for is the transition
which the maximum o, _,|;, appears, the Massey param- between the adiabatic states (including the appropriate rel-
eter could be used. Instead of this, and supposing a first ordétive phases), the process could be called diabatic, and the
solution for the initial conditior; (0) = dy;, @ more accurate gate, quantum diabatic NOT-gate.

estimation comes from the parameter: The gate error probability, calculated by means ¢P}r
s 9 has the explicit structure:
max Z
) 2 2\ .2 3
’/](’U,b) —_ / erxp i / (El o Eo)dZ, (22) Pe(NOT) = (2((30 - C1) + 8Cp)8 + 0(5 ) (26)
S v
z . Z e The O(£?) behaviour forP. whenv or b are changed has

providing an approximation ti: (max) 2 been checked. For instance, if the collision speed is changed
1\#max .

A possible Hamiltonian describing the “collision” could
be as follows:

H = f(s)Ho + g(s)Hyw = s*(—]0)(0] + [1)(1]) 2.0
— (1= s)*(0)(1] + [1)(0]) (23)

The functionsf (s) = s* andg(s) = —(1—s)* are chosen
only as an example to reach the objectives. By diagonalizing 2
this Hamiltonian in the computation basis $é1), |1)}, the =
adiabatic basig|4o), |¢1)} is obtained, that will be usedto ‘&
expand the total state describing the dynamic: _g
c
S
a W

.LIIIIIIIIIIIIIII

1.0

[P0 (s)) = coo(s)[0) + cor(s)[1)
[91(s)) = c10(5)[0) + c11(s)[1) (24)

The coupling Hamiltonian introducedyy,, provides a ra-
dial coupling whose surface i8/4 and the adiabatic states V
comply with the asymptotic behaviour:

0.0

FIGURE 3. Continuous line: Transition probability)) — |1)

1 5—0 s—1 (Pyoy—1,)) in a two-state NOT-gate versus the speedhe maxi-
+) = ﬁ(m +11) |é0) 10) mum value of the vertical axis is 1. The impact parameter b is taken
1 as 0. Dashed liney(v, b = 0), parameter providing an estimation
—|-) = 7(_|0> + 1)) S0 1) szb 1) (25) of the maxima. In this case the vertical axis goes on to 2.5 arbitrary
2 units.
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S I -

FIGURE 4. Probability p versus andb. Several symbols represent
the values for the optimized parameterst{) used for the quantum
gates considered.

around the optimum valug, in somes = ¢,, the behaviour
is P, ~ 40¢&2. For (vg = 0.2547 b = 0), the gate error prob-
ability (Eq. (19)) given as the maximum eigenvalue of the
matrix, isd,, (NOT) = 8x107° > P..

A similar study can be carried out with the remain-
ing Pauli gates. For th& gate, the chosen parameters
(v = 0.051, b = 0.1094) fulfil the condition agg = 7/4
andagy = 57/4 andU(T, —T) = iZ with P.(Z) < d,,(Z)

= 5x1075. The general behaviour for the error gate proba-

bility is:

2
0

P.(Z)= 8(012, —p(cd —c3) +c)e? + 0(e?) (27)

In this case, if the«(, b) parameters are correctly tuned,;
the gate does not depend on the probability p, so the cond
tion p ~ 0.5 is not strictly needed, although the value/@f
depends on p. The value of p far £ 0.051, b = 0.1094) is

shown in Fig. 4. The behaviour fd?, whenwv is changed by

435

To obtain the gate, the conditiong, = 157/16 and
agr = —n/16 must be fulfilled by optimizing«, ). The
general error gate probability is given by:

P.(T) = (8¢ + 4c§ + 4c})e” + O(£°) (30)

If the values of ¢, b) are adequately tuned, the T-gate
does not depend on the probabiljty nor the value ofP..
The numerical calculation fow(= 0.0337, b = 0.2164) give
the valueP. < d,,(T) ~ 3x107% The behaviour forP,
whenv is changed by keeping= 0.2164 constant provides
an error dependencB. ~ 2x10°¢2, ¢, being the error for
the speed.

3.4. Hadamard gate

A Hadamard (in fact the gate iH) gate can be obtained by tun-
ing the @, b) parameters to fulfil the conditionsyy = 37/8
andag; = -77/8 andp ~ 0.5 (shown in Fig. 4). The numeri-
cal calculation providess(= 0.2249, b = 0.2677). For these
values, theP, < d,,(H) ~ 3.5x107°. The behaviour for

P. whenv is changed by keeping= 0.2677 constant gives

an error dependence. ~ 27 ¢2, ¢, being the error for the
speed.

P3.5. Control-Not and Toffoli gates

Surprisingly, the same kind of Hamiltonian can be used to im-
plement several other (more complicated) gates as the CNOT
gate. In this case the sought transitions g «— |11),
whereas the statdg80) and|01) should not be affected. A
Hamiltonian representing this behaviour could be:
H = s*(—|10)(10] + [11)(11])
— (1= 5)*(]10)(11] + [11)(10]) (31)

The same discussion is appropriate for the Toffoli-gate,
ir_1 this case, the total Hamiltonian could be:

H = s*(—[110)(110| + [111)(111])

— (1 —s)*(|110)(111| 4 [111)(110]) (32)

keepingb = 0.1094 constant provides an error dependence

P. ~ 4x10%<2, ¢, being the error for the speed.
The gate Y can be implemented by applying two succes
sive gates according Y = -i XZ.

3.3. Tagate

Another interesting one-qubit gate is tiegate defined as:

(3 )

This gate is also referred to a8 because, up to an unim-
portant /8 phase, it is equivalent to/8-gate-phase, with:

)

1
0

0

6i'n'/4 (28)

e—iﬂ/8
0

0

T — in/s ( e (29)

All the conclusions reached in the case of the NOT-gate
are completely valid. Although in the case of Toffoli gate the
Hamiltonian would involve three qubit interactions, there is
no fundamental reason to not be considered. In fact, to imple-
ment the gate only an eight state system is needed in which
the behaviour was according (32).

4. Is there a diabatic quantum computation

model?

Several one and two qubits gates have been represented as
diabatic gates, identifying a simple theoretical Hamiltonian
carrying out the work. In this situation, the concept of dia-
batic computation considered has been as a sequence of dia-
batic gates. Perhaps a further step could be made: could this
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diabatic gate model be extended to a full diabatic computafoli, the sets being CNOT, T, H} as well as{CNOT, H, Tof-
tion understood as single evolutiorcarried out by means of foli } universal. These gates have the advantage iteinsic
a suitable Hamiltonian? | guess the answer to this questiofault-tolerancebecause the error gate probability behaves as
is yes, because the general form of the evolution operator ino(s2), ¢ being some error with respect to the correct param-
volving two-states (Eq. (15)) is completely determined pro-eters {y, bg). For each gate considered, the parameters) (
viding three parameters (n(n+1)/2 with n=2), in our case phave been obtained in order to get an error gate probability
ago andag;. The only remaining (perhaps hard) work is to smaller than 104, this value is considered as the threshold
characterise the physical processes by implementing the réer doing fault-tolerant quantum computation. Evidently, if
quired Hamiltonian. These Hamiltonians could involve non-the experimental implementation is able to tune these param-
local interactions of more than two or three qubits, and thiseters with higher precision, the gate error will reach smaller
could be seen as a heavy restriction nowadays, but is not foxalues.
bidden at all by the laws of Quantum Mechanics. In addi- As the present strategy looks for large transition proba-
tion, and as a consequence of the previous sections, this quanilities, it could be calledliabatic quantum computatioimn-
tum diabatic computation should show some kinéhtfinsic ~ volving states going smoothly through an avoided-crossing.
fault-tolerance against noise. The conclusion is the possibility of doing universal diabatic
fault-tolerant quantum computation; opening up a new pos-
sibility of implementing quantum gates and quantum algo-
rithms experimentally.
A new model for quantum computation is provided based Finally, and going a step further, a new quantum dia-
on controlling the transition probabilities in a strong non- batic computation model is glimpsed, where a carefully cho-
adiabatic evolution represented by an avoiding crossing. Théen Hamiltonian could carry out a non-adiabatic transition
mode| iS introduced by means of the ana'ogy W|th an evobetWeen the |n|t|a| and the SOUght ﬁnal State. The problem
lution in an inelastic atomic collision and is described byWould be to get a physical system evolving according this
means of a Hamiltonian having an implicit time-dependencdighly non-local Hamiltonian.
through ans(¢) parameter closely related to the internuclear
atomic distance. A simple two-state model is enough to reAcknowledgment
produce the quantum gates. The evolution operator is char-
acterized by two parameters, the collision speeahd the  This work has been supported by the research project Quan-
impact parametel, that must be adjusted in order to repro- tum Information Technologies (QUITEMAD), P2009/ESP-
duce the desired quantum gate. 1594 of Comunidad Ad@noma de Madrid in Spain.

By using this method, several gates have been con-
structed, particularly the CNOT, Paduli, Hadamard and Tof-
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