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A density oscillator model
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We present a model equation describing the behavior of a density oscillator and a set of experiments to test the model. The system consists of
a cup containing salty water with an orifice in its base, partially submerged in an outer vessel filled with fresh water. Such a setup produces an
oscillatory flow of water through the orifice. The density oscillator is an oscillatory system that shares common features with more complex
systems with a stable limit cycle. Although a Rayleigh equation has been used as a model equation for these systems, we propose a different
approach based on the integration of the hydrodynamic equations on a streamline. The model reproduces the experimental oscillation and
predicts the period as a function of the physical parameters. Phase resetting curves observed in experiments under external biphasic excitatior
can be reproduced by the model.
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1. Introduction Nevertheless, existing models for the density oscillator
behavior based on the Rayleigh equation [17] are not easily
There are plenty of systems in nature whose behavior resemqgified to include physical parameters describing perturba-
bles that of a non-linear oscillator with a limit cycle, such astjons. In this work we derive a model equation based on the
electrochemical reactions [1], electromechanical devices [2]gler equations for an inviscid flow and compare its predic-
animal and plant populations, and physiological systems [3kjons for a perturbed density oscillator. First, the experimen-

Non-linear oscillator models have been applied to locomota) setup is presented. The model derivation follows, results
tion [4], genetic networks [5] and biochemical reactions [6]. and comparisons are discussed at the end.

The application of periodic perturbations represents a way of
studying and controlling such systems. In some cases, t .
effect of a single perturbation delivered at different phasehé' Experimental setup
is studied and summarized as the “Phase Transition CurveThe saline oscillatar The experimental set-up has been re-
(PTC) [7]. Heart-cell behavior has been characterized wittported previously [9]. An inner container with an aqueous
this procedure [8]. sodium chloride solution is partially immersed in an outer
The density oscillator is a relatively simple experimentalcontainer containing fresh water (see Fig. 1). The outer con-
device with an oscillatory behavior showing a stable limit cy-tainer has 3.1 L of deionized water, with the water depth be-
cle, a feature shared with many other non-linear oscillatorsing 7.5 cm. The inner one contains 90 mL of 3M NaCl, with
Its study will allow us to gain insight in the behavior and pro- its bottom lying 4.1 cm above the bottom of the outer con-
cedures applicable to more complex systems as cardiac anginer. There is a pinhole in the center of the bottom of the
neural pacemakers and circadian rhythms [9]. The densitinner container of 0.9 mm diameter and 2.2 mm depth. An
oscillator is easy and inexpensive to build and has typicallyacrylic plate with a hole in its center is placed across the top
an oscillation period of tens of seconds that remains practief the outer container to hold the inner container in place.
cally constant for hours, allowing easy manipulation. A wooden plug, placed in the pinhole to prevent flow, is re-
This simple setup has been the subject of many studiesnoved at the start of the experiment. The salty water initially
from the basic characterization of the oscillation [10,11] andflows downward through the pinhole, but after a few minutes
its relation with the evolution of the electrical potential be- the flow reverses, so that fresh water from the outer container
tween the fresh and salty water or the inner and outer corflows upward through the pinhole. After several tens of sec-
tainers [12], to the coupled oscillation between two, threeonds this upward flow stops, and the salty water begins to
and many salty water cups in the same fresh water corflow downward. This cycle repeats thousands of times over
tainer [13-16]. Recently, the system behavior under singlenany hours until the oscillation stops. When there is flow,
and periodic biphasic perturbations (pulses) has been rex voltage difference is generated between the two liquids
ported, showing that the “Phase Transition Curve” can pref12,18,16,19]. This is recorded using two Ag/Aglec-
dict the phase-locking rhythms seen with periodic perturbatrodes, one placed in the salt water and the other placed in
tions in experiments [9]. the fresh water.
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FIGURE 1. Experimental setup. Two pumps working in parallel
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are needed to infuse water swiftly.

FIGURE 2. Diagram showing the line of integration when the salty
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water jet flows down inside the fresh water reservoir.
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we used Acquire-5.0.1, Review-5.0.1, and DataAccess-7.0.2
(Bruxton Corp.), as well as custom-written MATLAB pro-
grams.

Phase-resetting curveds in our earlier study [9] we use
the response of the oscillator to a single biphasic pulse, the
phase-resetting response, to characterize the system behav
ior. The start of the cycle is taken to be the moment when the
downwards flow of salty water initiates. In a phase-resetting
run, a single biphasic volume pulse is delivered at a coupling
time (I.), defined as the time from the start of the cycle to
the start of the pulse. The effect of this pulse is generally
to change the duration of the cycle in which it is embedded
(T1). The duration of the following cycle]s, is typicaly
unchanged from the control cycle length. The phase at
which the pulse is delivered is termed the old phé&seand
is defined to bd. /Ty, while the new phas@’ is defined as
o' =1-T,/Ty+T./Tp (modulo 1) [21]. The plot ofp’ vs.
® is called the phase transition curve (PTC). Figure 6 shows
PTCs obtained with different volumes. At each volume, three
PTCs are shown, using data collected on three different days.
For each PTC, there were 50 pulses delivered. The oscilla-
tor was allowed to recover for five cycles between successive
perturbations.

3. The Model

As has been done before [10-17], we will split the problem

in two. We will separately study the fresh water jet ascend-
ing through salty water and the salty jet descending through
fresh water. We will not attempt to describe what is happen-
ing during the time when a jet vanishes and the opposing jet
develops.

Consider first the descending jet. We have fixed the ori-

gin of the coordinate system at the center of the inner vessel
hole. If axial symmetry of the setup and flow is assumed, the

Volume pulse protocolThe oscillator is perturbed by in-
fusing a fixed volume (1-4 mL) of fresh water into the bot-
tom of the outer container and then withdrawing that same
volume, using one or two syringe pumps driving two 60
mL syringes in parallel (WPI SP210iw Pump). This vol-
ume represents less thanl5% of the total volume in the
outer container. The flow rate in the pumps was adjusted by a
computer-controlled interface so that the injection and with-
drawal times are a small fraction of the natural period of the
oscillation, 4% of ~ 35 s (Ip). A biphasic pulse is used to "
prevent a long-lasting, cumulative effect on the volume - and
thus the height - of the fluid.

Data recording and analysis Both the voltage gener-
ated by the saline oscillator and a TTL signal that indicates
when the pump was infusing were conditioned (InstruTech
VR-10B; 47.2 kHz, 14-bit resolution) and recorded as a file
with a PC data interface board (InstruTech VR-111, decima-
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tion factor of 128 leading to an effective sampling interval gigure 3. The evolution in time of the dimensionless salty wa-
of 2.71 ms). The data was further decimated by a factoker free surface height. The inset shows a close look at the height

of 3 and passed through a Gaussian digital low-pass filtesscillation. Model parameters correspond to Yoshikatval. ex-
with ¢ = 0.05 [20]. To display, measure, and plot the data, periments [17].
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gravitational acceleration ang, is the salty water density,
since the line in the axis of symmetry remains inside the salty
water region.

Although we have not measured the flow field, direct ob-
servation suggests an apparent unidirectional flow below a
certain depth from the hole. Right below the hole, the jet
must drag down the surrounding fresh water producing a lo-
cal converging flow of fresh water outside the jet, but without
contracting the jet as happens in the problem of the empty-
ing tank, the “vena contracta” effect. Downstream, the jet
has no apparent change in radius and there is no perceptible
external flow except in the vertical direction. Flow incom-
pressibility tells us that pressure inside and outside the jet at
this depth will be a function of only, but there could be a
pressure jump when crossing radially the jet boundary, due

0.0004
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-0.0002

-0.0004

0.0004 | | to the abrupt change of density. If pressure outside the jet is
- . z dependent and flow is neglegible as we move away from
) the jet radialy, then it may be approximated by its hydrostatic
0.0002 | 1 value.
Therefore, by integrating on a streamline starting some-
H 0 | - where below the hole{z,), in the center line of the jet, the
/ pressure at that point can be estimated by the external hy-
drostatic pressure of fresh water at the same depth and its
-0.0002 evolution in time. We take(—zo) = pam + prg(he + 20)
—q(pf — ps), Where the termpam + prg(he + 20) Stands for
-0.0004 | the external hydrostatic pressure of fresh water of density
at a depthh, + zo, whereh, represents the level of the fresh
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FIGURE 4. Top, a typical phase diagram of the movement of the i, pressure jump between points right inside and outside the

dimensionless salty water free surface height for different initial . . -

conditions. Bottom, the phase diagram corresponding to Fig. 3,Jet’ atthe samg dePth’ taken to be prqpor'FlonaI, W'th_ Cohstant

showing a fast convergence to the limit cycle. q, to th_e density dlffere_zncg_ and cons[dermg that_ this d|_ffer-
ence will not change significantly during the period of time

vessel hole is a streamline (a curve tangent to the velocitywhen the jet is fully developed. This appears to be the case

field) and the velocity of the fluid elements on this axis will as the interface that allows direct visual observation of the jet

have only vertical component. This is a simplifying assump-remains fixed and does not blur during the lifespan of the jet.

tion that will provide an estimate of the pressure in the jet, theConservation of volum&” = Bh, + Ah will, in turn, make

flow passing through the orifice and forming a jet may not bethis pressure proportional tg ash. = (V — Ah)/B, where

axis symmetrical. A and B are, respectively, the areas of the salty and fresh
One can integrate the Euler equations for the vewater free surfaces. Hence
locity v and the pressurg fields on an inviscid flow 1
(p(ov/Oot + v - Vv) = —Vp + pg), projected 0 (p gy =PI V — Ah
along the axis of symmetry:®, from a point—z, below the / 9z (ps + gz) = *gg ( B " ZO)
inner vessel pinhole up to the salty water free surfa¢see —%0
Fig. 2). This will provide a relation for the time evolution of of
the free surfacé(t) as long as it goes down. +q (ps - 1) +9(h+2). ()
i o, 0 [v? Notice that we are assuming that this all happens far from
/ [ Ot + oz <2>} d the bottom of the fresh water reservoir. Aside from the bot-
—20 tom region, fresh water movement far from the salty jet ap-
h pears to be negligible if compared with the jet speed.
_ / 9 (P Jrgz) & B The integral of the inertial terrlv, /9t in Eq. (1) can be
0z \ ps ’ estimated considering that a fluid element traveling down the
o streamline will accelerate from approximatélyto h' A/«

wherev,(z,t) andp(z,t) are the vertical component of the inside the jet when crossing the pinhole, whéreis the
velocity field and the pressure at the symmetry axis, the  speed of the salty water free surface anstands for the area

Rev. Mex. Fis58 (2012) 438-444



A DENSITY OSCILLATOR MODEL 441

of the pinhole. Hence the acceleration along the streamlindensity ratiod = py/ps. These model equations have two
will change fromh” above the hole té” A/« inside the jet. free parameters given by the dimensionless distance from
This change happens over a distance that scalesitand

should represent the main contribution to the integral, this

suggests that the inertial term scales as 1200 T T .
h
dv. A, 1000
5t dl = Eh (z0 + Va). 3) 800 L
We have neglected the contribution to the integral coming T 600
from z = /a to z = h as it should scale withh”, a much
smaller contribution given that /. >> 1 typically. 400 -
Finally, as the salty jet has roughly a fixed width, the ve- 200 L
locity v, atz = —z is given byh’A/«. Therefore, having
scaled all terms in Eq. (1) by and its derivatives, we arrive L L .
at a model equation for the descending salty jet given by 2000 6000 10000

12

A h
Eh” (20 + V) + 5

2
- (3)
@ 200 .

:%g (V BAh+ZO> —-q <Zl> =g (h+z20), (4 150 R _
as long ag’ < 0. T

Similarly, for the ascending fresh jet the Euler equations 100 | T
are integrated on a streamline starting from a poibelow
the hole deep enough to consider the fluid at rest, up along 50 F -
the symmetry axis to a point, above the hole, inside the jet. k

The same arguments lead to a similar equationhfevhen

K’ > 0 given by 0 0 '2 I6 1'0
A B2 (AN? ) b
—h" (20 +Va —|—<> =2g(z0—h
o ( ’ ) 2 o pr ( ’ ) 800 T T T T
V — Ah Ps 700
+ +q ( — 1) + g20. 5
g ( B ) os gz O 600
To get dimensionless equations we scale distances with 500
the characteristic heighity = V/(A + B) (typically the ini- T 400
tial inner and outer height) and time witjih, /g to arrive at 300
two equations for the dimensionless height= h/hg as a
function of 7 = t+/g/ho, 200
LH = dc— H (1+ bd) 108

—Q(l—d)+e(d—1)—%HQ(l—aQ), (6)

wheneverH < 0, and - . .
FIGURE 5. Dependence of the oscillating period on dimensionless

LEH—c—H <1 n 1) parameters, b andd, py = 1 for all curves. Top, the period as a
d function of the ratio of areas = A/« for different values of,
(1.01, 1.06, 1.11, 1.15 and1.2), from p, = 1.01, the lower curve,
-Q <1 - 1) +e (1 . 1) . 1H2a2 @) to ps = 1.2, the upper curve. Middle, the period as a function of
k) .
d d 2 the ratio of areas = A/B for the same values ¢f;, lower curve
. correspond tps = 1.01. Bottom, the period as a function of the
whenever! > 0. density ratiod = pq/ps, for different values of: (418, 625, 1033,
The dimensionless parameters representing the setup ges2s and5625), from a = 418, the lower curve, ta = 5625, the
ometry ares = A/a, b = A/B andc = V/(Bhy), and the  upper curve.
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(a) 1t ml

FIGURE 6. Comparison of the experimental PTC and the model predictions (continous line) for different pulse volumes.

the hole needed to have a unidirectional flow around the jeTherefore, the free parametewill allow us to adjust the am-
€ = zp/ho and the constant of proportionality between pres-plitude of oscillation while the parameté} will determine
sure and density gradiers= —q/(gho). The characteristic the height of the oscillation mid point relative Ag.
length of the inertial effects is given by = a(e + v/a/hy). Notice that the parameterappears to be redundant as it
Typically, experiments are performed starting with theis equal tol + b if volume V remains constant and the in-
free surface of the salty and fresh water at the same leveternal and external starting heights are equal. Nevertheless,
which produces a descending salty jet first. This corresponds order to reproduce experiments in which the system is per-
to the initial conditiongd” = 0 and a prescribed initial height turbed by including and removing small amounts of fresh wa-
H for the model Eq. (6). Whet{’ changes sign, the as- ter in the external reservoir, as the volume changes in time,
cending fresh water jet model Eq. (7) comes into play withthe parametec = V (t)/(Bho) will be prescribed accord-
initial conditions given byH’ = 0 and the last value off  ingly to account for these variations. Equations (6) and (7)
computed with Eq. (6). In this way, Egs. (6) and (7) are al-remain unchanged if volume changes as its effect is still cap-
ternated wheneveH’ changes sign to mimic the oscillation tured by the dependence of the hydrostatic fresh water pres-

of the system. sure onV by ¢, only the characteristic height must be related
Equations (6) and (7) have, respectively, an equilibriumto the initial volume corresponding to the unperturbed situa-
points given by tion (ho = Vo /(A + B)).
cd—Q(1 —d) — e(1 — d) Equations (6) and (7) can be integrated once to obtain
Heq = ) (8)
1+db (H/)Z — Ke26MH _ % (H _ %) ’ (11)
and
cd—Q(1 —d) + e(1 —d) where the constanit’ is determined by the initial conditions
Heq = 1+ db : () and the various parameters and functions are defined as
Hence, the amplitude of oscillation is given roughly by the M H de+ (Q+e)(d—-1)
difference - 1+ bd )
e(1—d) 1+bd
A ) (10) T
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In order to further test the model, we compared with ex-

2
B = 1—a , periments in which the oscillator is perturbed by adding and
2L subtracting a small amount of fresh water in the external
whenH’ < 0, and reservoir at different times during an oscillating period,,

the phase reseting experiments previously described. Model
de+(Q —€)(d—1) P g &b P Y

H=H-— parameters:, b, ¢ andd were taken from the experimental
14 bd 7 setup, the free parametepsande were taken from the fitting
b+1/d with Okamura’s experiments [17], the only available data that
- follow the free surface height with time.
2 Figure 6 shows a comparison of the PTC behavior of the
8= oL model against experimental data for different values of the
fresh water added volume. To compare with the modelled re-
whenH’ > 0. sults, the parameterwas increased by an amoufitduring

These model equations for the oscillating height may bea lapse of time oft% of the original modeled periodry),
solved and compared to experiments by fitting the free paas in the experiments. Comparison with the experiments of
rametersy) ande. In the following section, the behavior of added volumes of 1, 2, 3 and 4 ml was made with parameter
the model equation and its comparison with experiments isalueséc = 0.0035,0.007,0.0105, 0.014 respectively. This

discussed. shows the model exhibits the right trend, which is not sur-
prising as the volume dependence of Egs. (7) and (6) comes
4. Results from mass conservation, the least dubious of the assumptions

made. These comparisons also show experimental PTC data
In order to model the density oscillator, Egs. (6) and (7) arg€ach a minimum at values &f barely below0.5, while the
numerically integrated, alternating one after the other everynodel predicts a minimum ak a little bigger thar0.5. The
time H' changes sign. A typical result is shown in Fig. 3 in reason of this discrepancy is the fact that the model predicts a
which the model parameters have been chosen to reprodugé@scending jet that lasts longer than the ascending one, while
the Okamuraet al. experimental measurements of the heightexperiments show the opposite behavior. It should be men-
evolution [17]. Notice that, after an initial long discharge, tioned that the chosen values @f to make comparison do
oscillations occur arountd = 0.9146, this is the equilibrium  not correspond to the experimentally added volumes, these
hydrostatic state, an unstable equilibria as the inital densityalues correspond to approximately three times those chosen
distribution will not comply with hydrostatic conditions de- and overestimate the PTC behavior.
manding a density profile vertically stratified. In this par-
ticular case, when the parametewas chosen to adjust the 5.
oscillation amplitude to that observed by Okametal, the
oscillating period predicted by the model was half the peNotice that equations (6) and (7) are of the form
riod reported in the experiments. Paradoxically, full Navier-
Stokes simulations performed by Okamuataal. predicted H=MH?+wH +1, (12)
twice the observed period. Okamuwetal. argued that the
oscillating period was sensitive to the shape of the orificethe coefficient\ is (1/2)(a® — 1)/L > 1 while H <0, and
In our case this could also be the reason, as viscous effects/2)a?/L < —1 while H > 0. Therefore the term\H>
are not included and must be responsible for the sensitivityorks as a damper as long as the right equation is chosen
to the boundary conditions and a dampening effect that mustepending on the sign df. But the origin of this term is in-
lead to longer jet lifespans. As can be seen in Fig. 4, the beertial, comes from the kinetic term in the Bernoulli equation.
havior of the model in phase space resembles that of a limit must be noticed that neither of the model Egs. (6) and (7)
cycle exhibited also by the Rayleigh equation. Additionally, show an oscillatory behavior by themselves, it is the alternate
the model suggests the behavior of the period of oscillatioruse of them that mimics the oscillation. By themselves they
as a function of the physical parameters shown in Fig. 5do not include a dissipative mechanism that produce a limit
In particular, dependence on the area ratghows the same cycle and Eq. (12) can not be regarded as a damped oscillator
trend observed in the experiments by Alfredsson and Lagerfor a fixed value of\.
stedt [22], the period increases as the orifice area decreases. Notice that the system can not stop until all salty water
The dependence of the period @shows that it increases as has left the inner cup and is replaced by fresh water, as hy-
the fresh water free surface is made bigger, as it takes mowdrostatic conditions are always unstable while there is salty
time for the salty jet to discharge enough mass and elevate th{@eavier) water in the inner cup above fresh lighter water. The
fresh water free surface and build enough hydrostatic presnodel suggests that jets originate as buoyancy driven insta-
sure to stop the jet. Last figure shows that the period growsilities and are stopped by the hydrostatic pressure building
as the salty water gets denser, suggesting that a heavier saltp around them. The system seems to oscillate between un-
water jet needs more pressure to stop. stable equilibrium states.

Discussion
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The inhomogeneous forcing teriequal to 6. Conclusions

A system of model equations for the density oscillator based
on the inviscid hydrodynamical equations was developed.
The model predictions compare reasonably well with the ob-
served behavior of the free surface evolution and PTC ex-
periments. The model shows the same features that led pre-
dL vious investigators to use Rayleigh equations to model this

include the two fitting parameter@ ande. Although they — System [17], which is basically having a limit cycle, with the

were included to model the pressure jump at the jet boundar§enefit of a physical representation of the model parameters
and the distance from the orifice needed to observe a unid@nd a better adjustment to the PTC behavior and height oscil-

%[dc— (Q+e)(1—d)] when H <0

and to
1

[de — (Q — €)(1 —d)] when H > 0,

rectional flow around the jet, the role they play in the modellation behavior.
equations is related to their unstable equilibrium point. Every
time the equation is switched, the equilibrium point changesacknowledgements
For practical purposes, the free paramet@rand ¢ adjust
the amplitude and midpoint of the oscillation. It must be ac-We want to thank Michel Guevara for his revision and valu-
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to their physical origins, speciallythat determines the end perimental setup; Alicia Fatm and Araceli Torres for their
of the streamline, where the assumption of axial symmetnhelp with data acquisition. This work was partially funded by
should give a good estimate of the pressure in the jet. A betPAPIIT-UNAM IN118611.

ter understanding of the flow in the jet and its possible helical
modes could provide a way of relatimgvith the experimen-

tal parameters.
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