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We present a model equation describing the behavior of a density oscillator and a set of experiments to test the model. The system consists of
a cup containing salty water with an orifice in its base, partially submerged in an outer vessel filled with fresh water. Such a setup produces an
oscillatory flow of water through the orifice. The density oscillator is an oscillatory system that shares common features with more complex
systems with a stable limit cycle. Although a Rayleigh equation has been used as a model equation for these systems, we propose a different
approach based on the integration of the hydrodynamic equations on a streamline. The model reproduces the experimental oscillation and
predicts the period as a function of the physical parameters. Phase resetting curves observed in experiments under external biphasic excitation
can be reproduced by the model.
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1. Introduction

There are plenty of systems in nature whose behavior resem-
bles that of a non-linear oscillator with a limit cycle, such as
electrochemical reactions [1], electromechanical devices [2],
animal and plant populations, and physiological systems [3].
Non-linear oscillator models have been applied to locomo-
tion [4], genetic networks [5] and biochemical reactions [6].
The application of periodic perturbations represents a way of
studying and controlling such systems. In some cases, the
effect of a single perturbation delivered at different phases
is studied and summarized as the “Phase Transition Curve”
(PTC) [7]. Heart-cell behavior has been characterized with
this procedure [8].

The density oscillator is a relatively simple experimental
device with an oscillatory behavior showing a stable limit cy-
cle, a feature shared with many other non-linear oscillators.
Its study will allow us to gain insight in the behavior and pro-
cedures applicable to more complex systems as cardiac and
neural pacemakers and circadian rhythms [9]. The density
oscillator is easy and inexpensive to build and has typically
an oscillation period of tens of seconds that remains practi-
cally constant for hours, allowing easy manipulation.

This simple setup has been the subject of many studies,
from the basic characterization of the oscillation [10,11] and
its relation with the evolution of the electrical potential be-
tween the fresh and salty water or the inner and outer con-
tainers [12], to the coupled oscillation between two, three
and many salty water cups in the same fresh water con-
tainer [13-16]. Recently, the system behavior under single
and periodic biphasic perturbations (pulses) has been re-
ported, showing that the “Phase Transition Curve” can pre-
dict the phase-locking rhythms seen with periodic perturba-
tions in experiments [9].

Nevertheless, existing models for the density oscillator
behavior based on the Rayleigh equation [17] are not easily
modified to include physical parameters describing perturba-
tions. In this work we derive a model equation based on the
Euler equations for an inviscid flow and compare its predic-
tions for a perturbed density oscillator. First, the experimen-
tal setup is presented. The model derivation follows, results
and comparisons are discussed at the end.

2. Experimental setup
The saline oscillator. The experimental set-up has been re-
ported previously [9]. An inner container with an aqueous
sodium chloride solution is partially immersed in an outer
container containing fresh water (see Fig. 1). The outer con-
tainer has 3.1 L of deionized water, with the water depth be-
ing 7.5 cm. The inner one contains 90 mL of 3M NaCl, with
its bottom lying 4.1 cm above the bottom of the outer con-
tainer. There is a pinhole in the center of the bottom of the
inner container of 0.9 mm diameter and 2.2 mm depth. An
acrylic plate with a hole in its center is placed across the top
of the outer container to hold the inner container in place.
A wooden plug, placed in the pinhole to prevent flow, is re-
moved at the start of the experiment. The salty water initially
flows downward through the pinhole, but after a few minutes
the flow reverses, so that fresh water from the outer container
flows upward through the pinhole. After several tens of sec-
onds this upward flow stops, and the salty water begins to
flow downward. This cycle repeats thousands of times over
many hours until the oscillation stops. When there is flow,
a voltage difference is generated between the two liquids
[12,18,16,19]. This is recorded using two Ag/AgCl2 elec-
trodes, one placed in the salt water and the other placed in
the fresh water.
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FIGURE 1. Experimental setup. Two pumps working in parallel
are needed to infuse water swiftly.

FIGURE 2. Diagram showing the line of integration when the salty
water jet flows down inside the fresh water reservoir.

Volume pulse protocol. The oscillator is perturbed by in-
fusing a fixed volume (1-4 mL) of fresh water into the bot-
tom of the outer container and then withdrawing that same
volume, using one or two syringe pumps driving two 60
mL syringes in parallel (WPI SP210iw Pump). This vol-
ume represents less than0.15% of the total volume in the
outer container. The flow rate in the pumps was adjusted by a
computer-controlled interface so that the injection and with-
drawal times are a small fraction of the natural period of the
oscillation,4% of ∼ 35 s (T0). A biphasic pulse is used to
prevent a long-lasting, cumulative effect on the volume - and
thus the height - of the fluid.

Data recording and analysis. Both the voltage gener-
ated by the saline oscillator and a TTL signal that indicates
when the pump was infusing were conditioned (InstruTech
VR-10B; 47.2 kHz, 14-bit resolution) and recorded as a file
with a PC data interface board (InstruTech VR-111, decima-
tion factor of 128 leading to an effective sampling interval
of 2.71 ms). The data was further decimated by a factor
of 3 and passed through a Gaussian digital low-pass filter
with σ = 0.05 [20]. To display, measure, and plot the data,

we used Acquire-5.0.1, Review-5.0.1, and DataAccess-7.0.2
(Bruxton Corp.), as well as custom-written MATLAB pro-
grams.

Phase-resetting curve. As in our earlier study [9] we use
the response of the oscillator to a single biphasic pulse, the
phase-resetting response, to characterize the system behav-
ior. The start of the cycle is taken to be the moment when the
downwards flow of salty water initiates. In a phase-resetting
run, a single biphasic volume pulse is delivered at a coupling
time (Tc), defined as the time from the start of the cycle to
the start of the pulse. The effect of this pulse is generally
to change the duration of the cycle in which it is embedded
(T1). The duration of the following cycle,T2, is typicaly
unchanged from the control cycle lengthT0. The phase at
which the pulse is delivered is termed the old phaseΦ, and
is defined to beTc/T0, while the new phaseΦ′ is defined as
Φ′ = 1−T1/T0 +Tc/T0 (modulo 1) [21]. The plot ofΦ′ vs.
Φ is called the phase transition curve (PTC). Figure 6 shows
PTCs obtained with different volumes. At each volume, three
PTCs are shown, using data collected on three different days.
For each PTC, there were∼ 50 pulses delivered. The oscilla-
tor was allowed to recover for five cycles between successive
perturbations.

3. The Model

As has been done before [10-17], we will split the problem
in two. We will separately study the fresh water jet ascend-
ing through salty water and the salty jet descending through
fresh water. We will not attempt to describe what is happen-
ing during the time when a jet vanishes and the opposing jet
develops.

Consider first the descending jet. We have fixed the ori-
gin of the coordinate system at the center of the inner vessel
hole. If axial symmetry of the setup and flow is assumed, the
axis of symmetry “z” passing through the center of the inner

FIGURE 3. The evolution in time of the dimensionless salty wa-
ter free surface height. The inset shows a close look at the height
oscillation. Model parameters correspond to Yoshikawaet al. ex-
periments [17].
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FIGURE 4. Top, a typical phase diagram of the movement of the
dimensionless salty water free surface height for different initial
conditions. Bottom, the phase diagram corresponding to Fig. 3,
showing a fast convergence to the limit cycle.

vessel hole is a streamline (a curve tangent to the velocity
field) and the velocity of the fluid elements on this axis will
have only vertical component. This is a simplifying assump-
tion that will provide an estimate of the pressure in the jet, the
flow passing through the orifice and forming a jet may not be
axis symmetrical.

One can integrate the Euler equations for the ve-
locity v and the pressurep fields on an inviscid flow
(ρ(∂v/∂ t + v · ∇ v) = − ∇ p + ρg), projected
along the axis of symmetry “z”, from a point−z0 below the
inner vessel pinhole up to the salty water free surfaceh (see
Fig. 2). This will provide a relation for the time evolution of
the free surfaceh(t) as long as it goes down.

h∫

−z0

[
∂vz

∂t
+

∂

∂z

(
v2

z

2

)]
dz

= −
h∫

−z0

∂
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(
p

ρs
+ gz

)
dz, (1)

wherevz(z, t) andp(z, t) are the vertical component of the
velocity field and the pressure at the symmetry axis,g is the

gravitational acceleration andρs is the salty water density,
since the line in the axis of symmetry remains inside the salty
water region.

Although we have not measured the flow field, direct ob-
servation suggests an apparent unidirectional flow below a
certain depth from the hole. Right below the hole, the jet
must drag down the surrounding fresh water producing a lo-
cal converging flow of fresh water outside the jet, but without
contracting the jet as happens in the problem of the empty-
ing tank, the “vena contracta” effect. Downstream, the jet
has no apparent change in radius and there is no perceptible
external flow except in the vertical direction. Flow incom-
pressibility tells us that pressure inside and outside the jet at
this depth will be a function ofz only, but there could be a
pressure jump when crossing radially the jet boundary, due
to the abrupt change of density. If pressure outside the jet is
z dependent and flow is neglegible as we move away from
the jet radialy, then it may be approximated by its hydrostatic
value.

Therefore, by integrating on a streamline starting some-
where below the hole (−z0), in the center line of the jet, the
pressure at that point can be estimated by the external hy-
drostatic pressure of fresh water at the same depth and its
evolution in time. We takep(−z0) = patm + ρfg(he + z0)
−q(ρf − ρs), where the termpatm + ρfg(he + z0) stands for
the external hydrostatic pressure of fresh water of densityρf

at a depthhe + z0, wherehe represents the level of the fresh
water free surface,patm the atmospheric pressure andg the
gravitational acceleration. The termq(ρf − ρs) accounts for
the pressure jump between points right inside and outside the
jet, at the same depth, taken to be proportional, with constant
q, to the density difference and considering that this differ-
ence will not change significantly during the period of time
when the jet is fully developed. This appears to be the case
as the interface that allows direct visual observation of the jet
remains fixed and does not blur during the lifespan of the jet.
Conservation of volumeV = Bhe + Ah will, in turn, make
this pressure proportional toh, ashe = (V −Ah)/B, where
A andB are, respectively, the areas of the salty and fresh
water free surfaces. Hence

h∫

−z0

∂

∂z

(
p

ρs
+ gz

)
dz = −ρf

ρs
g

(
V −Ah

B
+ z0

)

+ q

(
ρf

ρs
− 1

)
+ g(h + z0). (2)

Notice that we are assuming that this all happens far from
the bottom of the fresh water reservoir. Aside from the bot-
tom region, fresh water movement far from the salty jet ap-
pears to be negligible if compared with the jet speed.

The integral of the inertial term∂vz/∂t in Eq. (1) can be
estimated considering that a fluid element traveling down the
streamline will accelerate from approximatelyh′ to h′A/α
inside the jet when crossing the pinhole, whereh′ is the
speed of the salty water free surface andα stands for the area
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of the pinhole. Hence the acceleration along the streamline
will change fromh′′ above the hole toh′′A/α inside the jet.
This change happens over a distance that scales with

√
α and

should represent the main contribution to the integral, this
suggests that the inertial term scales as

h∫

−z0

∂vz

∂t
dl ≈ A

α
h′′(z0 +

√
α). (3)

We have neglected the contribution to the integral coming
from z =

√
α to z = h as it should scale withhh′′, a much

smaller contribution given thatA/α À 1 typically.
Finally, as the salty jet has roughly a fixed width, the ve-

locity vz at z = −z0 is given byh′A/α. Therefore, having
scaled all terms in Eq. (1) byh and its derivatives, we arrive
at a model equation for the descending salty jet given by

A
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)
−g (h+z0) , (4)

as long ash′ < 0.
Similarly, for the ascending fresh jet the Euler equations

are integrated on a streamline starting from a pointl below
the hole deep enough to consider the fluid at rest, up along
the symmetry axis to a pointz0 above the hole, inside the jet.
The same arguments lead to a similar equation forh when
h′ > 0 given by

A
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2
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)
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To get dimensionless equations we scale distances with
the characteristic heighth0 = V/(A + B) (typically the ini-
tial inner and outer height) and time with

√
h0/g to arrive at

two equations for the dimensionless heightH = h/h0 as a
function ofτ = t

√
g/h0,

LḦ = dc−H (1 + bd)

−Q (1− d) + ε (d− 1)− 1
2
Ḣ2

(
1− a2

)
, (6)

wheneverḢ < 0, and

LḦ = c−H

(
1 +

1
d

)

−Q

(
1
d
− 1

)
+ ε

(
1
d
− 1

)
− 1

2
Ḣ2a2, (7)

wheneverḢ > 0.
The dimensionless parameters representing the setup ge-

ometry area = A/α, b = A/B andc = V/(Bh0), and the

density ratiod = ρf/ρs. These model equations have two
free parameters given by the dimensionless distance from

FIGURE 5. Dependence of the oscillating period on dimensionless
parametersa, b andd, ρf = 1 for all curves. Top, the period as a
function of the ratio of areasa = A/α for different values ofρs

(1.01, 1.06, 1.11, 1.15 and1.2), from ρs = 1.01, the lower curve,
to ρs = 1.2, the upper curve. Middle, the period as a function of
the ratio of areasb = A/B for the same values ofρs, lower curve
correspond toρs = 1.01. Bottom, the period as a function of the
density ratiod = ρd/ρs, for different values ofa (418, 625, 1033,
2025 and5625), from a = 418, the lower curve, toa = 5625, the
upper curve.
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FIGURE 6. Comparison of the experimental PTC and the model predictions (continous line) for different pulse volumes.

the hole needed to have a unidirectional flow around the jet
ε = z0/h0 and the constant of proportionality between pres-
sure and density gradientsQ = −q/(gh0). The characteristic
length of the inertial effects is given byL = a(ε +

√
α/h0).

Typically, experiments are performed starting with the
free surface of the salty and fresh water at the same level,
which produces a descending salty jet first. This corresponds
to the initial conditionsH ′ = 0 and a prescribed initial height
H for the model Eq. (6). WhenH ′ changes sign, the as-
cending fresh water jet model Eq. (7) comes into play with
initial conditions given byH ′ = 0 and the last value ofH
computed with Eq. (6). In this way, Eqs. (6) and (7) are al-
ternated wheneverH ′ changes sign to mimic the oscillation
of the system.

Equations (6) and (7) have, respectively, an equilibrium
points given by

Heq =
cd−Q(1− d)− ε(1− d)

1 + db
, (8)

and

Heq =
cd−Q(1− d) + ε(1− d)

1 + db
. (9)

Hence, the amplitude of oscillation is given roughly by the
difference

∆Heq = 2
ε(1− d)
1 + db

. (10)

Therefore, the free parameterε will allow us to adjust the am-
plitude of oscillation while the parameterQ will determine
the height of the oscillation mid point relative toh0.

Notice that the parameterc appears to be redundant as it
is equal to1 + b if volume V remains constant and the in-
ternal and external starting heights are equal. Nevertheless,
in order to reproduce experiments in which the system is per-
turbed by including and removing small amounts of fresh wa-
ter in the external reservoir, as the volume changes in time,
the parameterc = V (t)/(Bh0) will be prescribed accord-
ingly to account for these variations. Equations (6) and (7)
remain unchanged if volume changes as its effect is still cap-
tured by the dependence of the hydrostatic fresh water pres-
sure onV by c, only the characteristic height must be related
to the initial volume corresponding to the unperturbed situa-
tion (h0 = V0/(A + B)).

Equations (6) and (7) can be integrated once to obtain

(H′)2 = Ke−2βH − γ
β

(
H− 1

2β

)
, (11)

where the constantK is determined by the initial conditions
and the various parameters and functions are defined as

H = H − dc + (Q + ε)(d− 1)
1 + bd

,

γ =
1 + bd

L
,
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β =
1− a2

2L
,

whenH ′ < 0, and

H = H − dc + (Q− ε)(d− 1)
1 + bd

,

γ =
b + 1/d

L
,

β =
a2

2L
,

whenH ′ > 0.
These model equations for the oscillating height may be

solved and compared to experiments by fitting the free pa-
rametersQ andε. In the following section, the behavior of
the model equation and its comparison with experiments is
discussed.

4. Results

In order to model the density oscillator, Eqs. (6) and (7) are
numerically integrated, alternating one after the other every
time H ′ changes sign. A typical result is shown in Fig. 3 in
which the model parameters have been chosen to reproduce
the Okamuraet al. experimental measurements of the height
evolution [17]. Notice that, after an initial long discharge,
oscillations occur aroundh = 0.9146, this is the equilibrium
hydrostatic state, an unstable equilibria as the inital density
distribution will not comply with hydrostatic conditions de-
manding a density profile vertically stratified. In this par-
ticular case, when the parameterε was chosen to adjust the
oscillation amplitude to that observed by Okamuraet al., the
oscillating period predicted by the model was half the pe-
riod reported in the experiments. Paradoxically, full Navier-
Stokes simulations performed by Okamuraet al. predicted
twice the observed period. Okamuraet al. argued that the
oscillating period was sensitive to the shape of the orifice.
In our case this could also be the reason, as viscous effects
are not included and must be responsible for the sensitivity
to the boundary conditions and a dampening effect that must
lead to longer jet lifespans. As can be seen in Fig. 4, the be-
havior of the model in phase space resembles that of a limit
cycle exhibited also by the Rayleigh equation. Additionally,
the model suggests the behavior of the period of oscillation
as a function of the physical parameters shown in Fig. 5.
In particular, dependence on the area ratioa shows the same
trend observed in the experiments by Alfredsson and Lager-
stedt [22], the period increases as the orifice area decreases.
The dependence of the period onb shows that it increases as
the fresh water free surface is made bigger, as it takes more
time for the salty jet to discharge enough mass and elevate the
fresh water free surface and build enough hydrostatic pres-
sure to stop the jet. Last figure shows that the period grows
as the salty water gets denser, suggesting that a heavier salty
water jet needs more pressure to stop.

In order to further test the model, we compared with ex-
periments in which the oscillator is perturbed by adding and
subtracting a small amount of fresh water in the external
reservoir at different times during an oscillating period,i.e.,
the phase reseting experiments previously described. Model
parametersa, b, c andd were taken from the experimental
setup, the free parametersQ andε were taken from the fitting
with Okamura’s experiments [17], the only available data that
follow the free surface height with time.

Figure 6 shows a comparison of the PTC behavior of the
model against experimental data for different values of the
fresh water added volume. To compare with the modelled re-
sults, the parameterc was increased by an amountδc during
a lapse of time of4% of the original modeled period (T0),
as in the experiments. Comparison with the experiments of
added volumes of 1, 2, 3 and 4 ml was made with parameter
valuesδc = 0.0035, 0.007, 0.0105, 0.014 respectively. This
shows the model exhibits the right trend, which is not sur-
prising as the volume dependence of Eqs. (7) and (6) comes
from mass conservation, the least dubious of the assumptions
made. These comparisons also show experimental PTC data
reach a minimum at values ofΦ barely below0.5, while the
model predicts a minimum atΦ a little bigger than0.5. The
reason of this discrepancy is the fact that the model predicts a
descending jet that lasts longer than the ascending one, while
experiments show the opposite behavior. It should be men-
tioned that the chosen values ofδc to make comparison do
not correspond to the experimentally added volumes, these
values correspond to approximately three times those chosen
and overestimate the PTC behavior.

5. Discussion

Notice that equations (6) and (7) are of the form

Ḧ = λḢ2 + ωH + I, (12)

the coefficientλ is (1/2)(a2 − 1)/L À 1 while Ḣ < 0, and
(1/2)a2/L ¿ −1 while Ḣ > 0. Therefore the termλḢ2

works as a damper as long as the right equation is chosen
depending on the sign oḟH. But the origin of this term is in-
ertial, comes from the kinetic term in the Bernoulli equation.
It must be noticed that neither of the model Eqs. (6) and (7)
show an oscillatory behavior by themselves, it is the alternate
use of them that mimics the oscillation. By themselves they
do not include a dissipative mechanism that produce a limit
cycle and Eq. (12) can not be regarded as a damped oscillator
for a fixed value ofλ.

Notice that the system can not stop until all salty water
has left the inner cup and is replaced by fresh water, as hy-
drostatic conditions are always unstable while there is salty
(heavier) water in the inner cup above fresh lighter water. The
model suggests that jets originate as buoyancy driven insta-
bilities and are stopped by the hydrostatic pressure building
up around them. The system seems to oscillate between un-
stable equilibrium states.
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The inhomogeneous forcing termI, equal to

1
L

[dc− (Q + ε)(1− d)] when Ḣ < 0

and to

1
dL

[dc− (Q− ε)(1− d)] when Ḣ > 0,

include the two fitting parametersQ and ε. Although they
were included to model the pressure jump at the jet boundary
and the distance from the orifice needed to observe a unidi-
rectional flow around the jet, the role they play in the model
equations is related to their unstable equilibrium point. Every
time the equation is switched, the equilibrium point changes.
For practical purposes, the free parametersQ and ε adjust
the amplitude and midpoint of the oscillation. It must be ac-
knowledge that it remains unclear to us how to relate them
to their physical origins, speciallyε that determines the end
of the streamline, where the assumption of axial symmetry
should give a good estimate of the pressure in the jet. A bet-
ter understanding of the flow in the jet and its possible helical
modes could provide a way of relatingε with the experimen-
tal parameters.

6. Conclusions

A system of model equations for the density oscillator based
on the inviscid hydrodynamical equations was developed.
The model predictions compare reasonably well with the ob-
served behavior of the free surface evolution and PTC ex-
periments. The model shows the same features that led pre-
vious investigators to use Rayleigh equations to model this
system [17], which is basically having a limit cycle, with the
benefit of a physical representation of the model parameters
and a better adjustment to the PTC behavior and height oscil-
lation behavior.
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