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Flow between two coaxial cylinders simulated by multiparticle collision dynamics
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We carry out simulations of multiparticle collision dynamics fluids confined in the region between two coaxial cylinders. In order to confine
these fluids in this geometry, we apply the method based on explicit fluid-solid forces introduced in a recent publication [1]. We consider
two independent situations in which, first, flow is produced by a uniform pressure gradient that points along the axial direction and, second,
azimuthal flow is induced by a centrifugal force field. We generalize the methodology introduced in Ref. [1] and show, through a large number
of numerical experiments, that the correct flow expected from hydrodynamics can be obtained in the two previous cases, with conditions at
the fluid-solid interaction regions that can be adjusted from partial-slip to no-slip boundary conditions.
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1. Introduction

Multiparticle Collision Dynamics (MPC) is a simulation
technique introduced by Malevanets and Kapral [2, 3], that
can be used to simulate the physical behavior of a simple
fluid at the mesoscopic scale. In comparison with similar
methods like Brownian Dynamics [4, 5], Stokesian Dynam-
ics [6] or the Lattice Boltzmann technique [7–9], MPC pos-
sesses special features that make it more appealing for the
simulation of complex systems. For instance, since MPC is
based on particles, it can be easily coupled to polymers or
colloids [10–13], a task that is hard to achieve by methods
based on grids like Lattice Boltzmann. In addition, MPC
captures the hydrodynamic behavior of the fluid around the
embedded particles and, thus, it naturally incorporates hy-
drodynamic interactions [10], which are absent in Brownian
Dynamics and must be given through an analytical represen-
tation of the mobility tensor in Stokesian Dynamics. Fur-
thermore, the MPC algorithm is stochastic and gives rise to
hydrodynamic fluctuations and Brownian forces on the sus-
pended particles [10, 14–18]. Finally, the MPC algorithm
is relatively simple and has been analytically studied from
kinetic and projection operator theories [19–22], finding an
excellent agreement with the simulation results. This has
confirmed that a very good understanding of the method has
been achieved and, in turn, has given confidence in using
MPC for simulating physical systems as diverse as suspen-
sions of polymers [23] and colloids [3, 10], polymers under
flow [15,24,25], flow around objects [26,27], vesicles under
flow [28].

In the simplest case, MPC simulations are carried out
by implementing the so-called periodic boundary conditions,

which imply that the simulated fluid is a portion of a much
larger, actually infinite, system. However, for some applica-
tions of diffusion in confined systems [29,30], some of which
are relevant for microfluidic and biological problems [28,31],
it could be convenient to simulate flow of spatially con-
strained MPC fluids. One option for extending the basic MPC
algorithm to include the presence of spatial constrains, is to
implementhard wallswhich are usually incorporated as sur-
faces that elastically reflect back those particles coming from
the fluid phase. Although this extension requires additional
considerations to obtain the correct behavior of the fluid at the
confining boundary, it has been used successfully to repro-
duce hydrodynamic flows in diverse situations [2,28,32–35].
In two recent publications [1, 36], we have introduced an-
other option for simulating the flow of spatially constrained
MPC fluids in which confinement is achieved by consider-
ing explicit forces on the particles of the fluid phase that are
exerted by surfaces that represent physical walls. Although
this method is more expensive than the hard wall technique
from the point of view of computations, it has the advantage
of yielding simulations that are closer to an actual physical
situation, as long as fluid-solid interactions are always medi-
ated by explicit forces. We have used this method to simulate
cylindrical [1] and plane Poiseuille flows [36].

In the present work, we shall show that this method can
be used to simulate the behavior of a fluid in a more com-
plex situation, namely, that corresponding to confinement be-
tween two coaxial cylinders. We will consider two specific
scenarios in which an MPC fluid is forced to move through
the space between the cylinders, first, by a uniform pressure
gradient that points along the axial direction and, second, by
a force field with azimuthal component only. In the former
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case, the method reproduces very well the flow expected from
hydrodynamics. We will show that the numerical parameters
that control the flow at the boundaries, presented previously
in Ref. 1, can be directly used here to achieve flow with no-
slip boundary conditions. In the latter case, we will notice
that, since MPC fluids are compressible, a difficulty in apply-
ing the simulation technique appears consisting in the devel-
opment of flows with non-uniform average densities. There-
fore, simulations will be restricted to the case of small ex-
ternal centrifugal forces. In addition, the set of parameters
used for controlling boundary conditions will be modified,
since flow will be no longer axial but azimuthal. A series
of experiments will be performed to determine this new set
of parameters empirically. We will show that, under such
conditions, our methodology allows for simulating the hy-
drodynamic flow between the cylinders expected for an in-
compressible fluid with no-slip boundary conditions, with a
very satisfactory accuracy.

This paper is organized as follows. In Sec. 2, we will
present the system to be simulated, as well as the MPC algo-
rithm used to reproduce flow between coaxial cylinders. In
particular, we will describe how the fluid-solid forces derived
in Ref. 1 are applied in this situation. In Sec. 3, we will de-
scribe the results obtained for axial flow, while in Sec. 4 we
will present the results for simulation of azimuthal flow. Fi-
nally, in Sec. 5 we will state our conclusions, and summarize
the advantages and limitations of our approach.

2. MPC algorithm for confinement between
coaxial cylinders

The physical system to be considered in the present work
is schematically illustrated in Fig. 1. There, we define two
coaxial cylindrical surfaces whose axes coincide with the
z−axis of a Cartesian coordinate system. The radius of the
external cylinder will be represented byR2, while the inter-
nal radius will be denoted asR1. Along thez direction the
system is assumed to have an extensionLz. From the point
of view of the numerical method, it will be convenient to give
these parameters characterizing the size of the system as mul-
tiples of a unit of lengtha. Thus in the following we can con-
sider thatR1 = n1a, R2 = n2a andLz = nza, wheren1,
n2, andnz are integers.

In MPC simulations a fluid is assumed to consist ofN
point particles of massm. These particles are represented as
small black spheres in Fig. 1. The positions and velocities
of the MPC particles will be represented by the vectors~Ri

and~vi, respectively, fori = 1, 2, . . . , N . The fluid will be
restricted to move in this geometry, by assuming that the in-
ternal and external cylinders are physical walls that interact
with the MPC particles through repulsive potentials. Specif-
ically, the interaction potential associated with the external
wall, for an MPC particle located at~Ri, will be written in the
form

Φext

(
~Ri

)
=





εS

(
σ̃2 −

∣∣∣~Ri − ~R∗
∣∣∣
2
)
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∣∣∣




12n

−

 σ∣∣∣~Ri − ~R∗
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6n

+
1
4


 , if

∣∣∣~Ri − ~R∗
∣∣∣ < σ̃

0, otherwise,

(1)

which was derived first in Ref. 1. In this expression,εS

denotes the strength of the fluid-solid interaction per unit
area [37];σ is the effective diameter of the interaction, with
σ̃ = 2(1/6n)σ; and ~R∗ = ~R∗(~Ri) represents the closest point
of the external wall to the position~Ri. For the interaction
with the internal wall, a completely analogous expression
can be applied to obtain the corresponding potentialΦint(~Ri).
The force on the particle due to its interaction with the walls,
~F wall

i , can be calculated from~F wall
i = −~∇(Φext + Φint), al-

though in practice, the radial separation between the internal
and external walls is typically much larger than the interac-
tion distances, in such a way that fluid particles do not interact
simultaneously with both walls.

As it has been shown in Ref. 1, with the purpose of sim-
ulating rough confining walls, it is convenient to apply the
forces~F wall

i in the anti parallel direction to the velocity with
which the particles penetrate into the walls. In this scheme,
particles that come into the region of interaction with the con-
fining surfaces face different repulsing barriers. The proce-
dure that can be implemented to determine the direction and
magnitude of the forces caused by the external wall, was de-

FIGURE 1. Schematic illustration of an ensemble of MPC particles
(small black spheres) confined in the space between two coaxial
cylinders. QuantitiesR1, R2, andLz define the spatial extension
of the system.

scribed in detail in Ref. 1, and can be straightforwardly ex-
tended to consider the interaction with the internal cylinder
as well.

In addition, it should be noticed that if there exists another
force field,~F ext

i

(
~Ri

)
, acting on the MPC fluid, it is conven-
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FIGURE 2. Schematic illustration of the procedure used to intro-
duce virtual particles. The system is extended to a square region
of size2R2 + a in thexy-plane. The region between the coaxial
cylinders is occupied by MPC particles (black circles). Regions I′

and II′ are filled with virtual particles (empty circles). Virtual parti-
cles are introduced at random positions in these empty spaces. The
number of virtual particles is chosen such that the density is contin-
uous over the whole extended system. Regions I and II, correspond
to auxiliary cylindrical portions where the velocities of the MPC
particles are measured to establish the velocity with which virtual
particles will be introduced, as it is described through the text.

ient to apply it only to those particles that are not in current
contact with the walls, with the purpose of maintaining the
stability of the simulation. Therefore, at a given timet, the
force on theith fluid particle is calculated as

~Fi (t) =

{
~F wall

i , if ri < R1, or ri > R2,

~F ext
i , otherwise,

(2)

whereri =
√

x2
i + y2

i , denotes the radial cylindrical coordi-
nate of theith fluid particle.

Once forces on MPC particles has been defined, the sys-
tem can be allowed to evolve in time according to a hybrid
algorithm combining Molecular Dynamics (MD) [38,39] and
MPC as follows. For small time intervals of size∆tMD , po-
sitions and velocities of the particles are updated using the
Störmer-Verlet integration method, see Eqs. (7) and (8) in
Ref. 1. Then, after performingnMD of such steps, fluid parti-
cles are forced to exchange momentum by applying the char-
acteristic collision rule of MPC. Since MPC was explicitly
designed for infinite systems with rectangular symmetry, the
presence of the cylindrical confining walls makes it neces-
sary to consider an extension of the system before the col-
lision step can be carried out. Following the methodology
introduced in Ref. 1, we extend the simulation system in
thex andy directions, to cover the square region with sides

Lx = 2R2 +a in thexy-plane, as it is shown in Fig. 2. Then,
the spaces outside the external radius and inside the inter-
nal radius, that do not contain fluid particles, are filled with
virtual particles, i.e. auxiliary particles having the same mass
as the MPC particles that only participate in the collision pro-
cesses. Virtual particles are introduced at positions sampled
from a uniform probability distribution and their total number
is such that the global system has uniform density.

As it has been described in Ref. 1, the velocity with
which virtual particles are introduced can be used as a con-
trol parameter that allows for adjusting the flow of the MPC
fluid close to the confining walls. In our simulations, the
velocities of the virtual particles were assigned as follows.
First, we defined the cylindrical regions I and II illustrated in
Fig. 2, that extend over the radial coordinate in the intervals
(R1,R1 + a/2) and(R2 − a/2,R2), respectively. We also
identify the regions were the virtual particles are introduced
as I′ and II′, for radial distances lower thanR1 and larger
thanR2, respectively. The average velocity of the fluid par-
ticles over the regions I and II was calculated and denoted
as~vI and~vII , respectively. The velocities given to the virtual
particles in regions I′ and II′ were sampled from indepen-
dent Gaussian distributions that had the standard deviation
dictated by the equipartition law. The corresponding centers
of these distributions,̃~vI′ and~̃vII ′ , were selected as function of
the velocities measured in regions I and II,i.e., ~̃vI′ = ~̃vI′ (~vI)
and ~̃vII ′ = ~̃vII ′ (~vII ). The explicit form of these functions
will depend on the particular flow to be simulated. They will
be explicitly given in Secs. 3 and 4, for the case of simula-
tion axial and azimuthal flow, respectively (see Eqs. (7) and
(14) below). Notice that the procedure described through this
paragraph is a generalization of the one used in Ref. 1. There,
solely axial flow was considered, and it was restricted only by
the external confining surface.

Given the global system of fluid and virtual particles with
assigned positions and velocities, the MPC collision step was
carried out by subdividing the extended simulation box in
cells of volumea3. The center of mass velocity of the parti-
cles contained in each cell was calculated and particles within
the same cell were forced to change their velocities according
to

~v ′i = ~vc.m. + R (α; n̂) · [~vi − ~vc.m.] , (3)

where~v ′i and~vi denote the velocities of theith particle after
and before collision, respectively;~vc.m. represents the center
of mass velocity of the cell; andR (α; n̂) is a stochastic rota-
tion matrix, which rotates velocities by an angleα around a
random axiŝn. While α is a parameter whose value is fixed
through the whole simulation,̂n is sampled in each cell at
every collision step from a uniform spherical distribution. As
it was noticed by the first time by Ihle and Kroll [20, 21],
the presence of collision cells introduce an artificially fixed
frame of reference that leads to a breakdown of the assump-
tion of molecular chaos. In order to restore this property,
a uniform random displacement of the cells was performed,
before collisions take place, that was sampled from uniform
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distributions in the range(−a/2, a/2) for the three Cartesian
directions.

In summary, the hybrid MD-MPC algorithm used to sim-
ulate flow between concentric cylinders consisted of a suc-
cession ofnMD MD integration steps driven by the forces
given by Eq. (2), at intervals of size∆tMD , followed by the
extension of the system, the introduction of virtual particles,
and the application of the collision rule, Eq. (3), to the global
system. We shall assume that the size of the system in the ax-
ial direction is much larger than its transverse extension,i.e.,
that Lz À R2. Thus, we implemented periodic boundary
conditions along thez-axis. Moreover, we applied a ther-
mostatting procedure after each collision step, based on a lo-
cal velocity rescale that fixed the temperature at a prescribed
valueT [16–18]. This thermostatting step has the purpose of
preventing viscous heating.

The set of independent simulation parameters consisted
of the length of the MPC cells,a; the time-step between MPC
collisions,∆t = nMD∆tMD ; the average number of particles
per cell,nc; the thermal energy,kBT ; the MPC rotation an-
gle,α; and the mass of the individual MPC particles,m. All
our numerical experiments were carried out with the fixed
valuesa = 1, kBT = 1, nMD = 10, ∆t = 0.05, andm = 1,
where simulation units (s.u.) instead of physical units have
been used, as it will be the case through out the paper. On
the other hand, for the parameters that define the interaction
potential between the solid walls and the MPC particles, we
used the same values reported in Ref. 1.

We allowed a thermalization process to take place, that
extended over2 × 105 MD-MPC steps, during which the
simulated systems were able to evolve towards a stationary
state. Afterwards, stages extending over2 × 105 steps were
conducted in order to perform measurements of the proper-
ties of the ensemble of confined particles. As it has been de-
scribed in Sec 1, we carried out two independent kind of ex-
periments in which flow is produced with axial and azimuthal
symmetry. These experiments will be discussed, respectively,
in Secs. 3 and 4.

3. Simulation of axial flow

We conducted a first series of numerical experiments accord-
ing to the simulation scheme described in Sec. 2. In these
experiments, the MPC fluid was subjected to a uniform pres-
sure gradient with magnitudeP ′, directed along thez-axis in
Fig. 1.

For such a driven force, the hydrodynamic flow produced
between the cylinders is expected to be a symmetric axial ve-
locity profile of the general form~v = vz (r) êz, wherer rep-
resents the radial distance in the usual system of cylindrical
coordinates{r, φ, z}, and êz the unit vector in thez direc-
tion. More precisely, under the assumption that the density
and temperature fields are uniform, the solution of the con-
tinuity, Navier-Stokes, and heat conduction equations reads
as

vz (r) =
P ′

4η
r2 + a1 ln r + a2, (4)

whereη is the viscosity of the fluid anda1 anda2 are inte-
gration constants to be determined from the boundary con-
ditions. In particular, for no-slip boundary conditions at the
confining cylinders,vz (R1) = vz (R2) = 0, we have [40]

vz (r) =
P ′

4η

[
R2

2 − r2 +
R2

2 −R2
1

ln (R2/R1)
ln

(
r

R2

)
.

]
(5)

In order to simulate this flow, we applied a force field to
the confined MPC particles that had the form

~F ext = P ′a3 êz, (6)

and observed in some initial experiments that the proposed
numerical method described in Sec. 2, indeed produced a
flow with the form given by Eq. (4). As it was discussed in
the same section, flow velocity at the confining walls can be
controlled using the virtual particles. In fact, it is suggested
from the symmetry of the present problem, that in order to
obtain no-slip boundary conditions, virtual particles should
be introduced with an average velocity opposing to the flow
in the simulation regions I and II in Fig. 2. The reason is that,
when virtual particles are introduced in this manner, fluid par-
ticles close to the solid walls that could have a net flow, will
be slowed down by the former when they exchange momen-
tum at the MPC collision process. Therefore, we propose to
select the mean values for the distributions of the virtual par-
ticles according to

~̃vI′ = −κI vz,I êz, and ~̃vII ′ = −κII vz,II êz, (7)

whereκI andκII will be considered as adjustable parameters.
It can be observed that Eq. (7) represents an extension of

the procedure performed first in Ref. 1. There, in order to
simulate Poiseuille flow in a cylindrical cavity with no-slip
boundary conditions, virtual particles were introduced with
velocity−κv̄êz, wherev̄ was the average axial fluid veloc-
ity close to the confining cylinder, the equivalent to thez
component of our vector~vII . Due to the similarity between
the present specific problem and the one studied in Ref. 1, it
could be expected that the values of the parametersκI andκII ,
must be very similar to those of the parameterκ. In Ref. 1,κ
was obtained empirically by means of an optimization pro-
cedure for a rather wide range of simulated flows, whose
Reynolds numbers covered three orders of magnitude in the
laminar regime. Here, we will show that, if simulations are
performed within the same range, those values ofκ obtained
in Ref. 1 can be also used for simulating axial flow between
coaxial cylinders with stick boundary conditions. Let us il-
lustrate that this is indeed the case for experiments carried
out in systems with size defined byR1 = 8a, R2 = 16a,
andLz = 32a, that were performed using a total number of
N = 131072, MPC particles. The results obtained for two
specific experimental set-ups are illustrated in Figs. 3a andb.
In casea, we used the valuesα = 180◦, for the MPC col-
lision angle, andP ′ = 0.4, for the magnitude of the driven
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FIGURE 3. Velocity profiles obtained from simulations (sym-
bols) of axial flow between coaxial cylinders with radiiR1 = 8a
andR2 = 16a. Casea corresponds to parametersα = 180◦,
P ′ = 0.4, andκI = κII = 0.56, these latter were taken from
the estimations carried out in Ref. 1. In the caseb, these parame-
ters took the valuesα = 135◦, P ′ = 1.0, andκI = κII = 0.56.
In both situations a very good agreement is found with the hydro-
dynamic flow predicted from Eq. (5) (continuous surfaces), where
no-slip boundary conditions are assumed.

TABLE I. Experiments proposed to test the validity of the simula-
tion method at different Reynolds numbers. The error parameterε
quantifies the deviation of the experimental results from the hydro-
dynamic flow and is defined by Eq. (9). All quantities are given in
simulation units.

Collision Pressure Reynolds Error,

angle,α gradient,P ′ number, Re ε

180◦ 0.25 1.0 0.5%

130◦ 0.50 3.1 0.4%

70◦ 1.00 28. 7 0.3%

30◦ 4.0 348.7 0.2%

gradient. In addition, we notice from the results presented in
Table I in Ref. 1 that the parameterκ for similar conditions
took the valueκ ' 0.56. Thus, in our simulations we used
κI = κII = 0.56, to define the average velocity of the vir-
tual particles. For this situation, the MPC fluid is expected
to have a viscosityη = 32.3, as it can be calculated from
the expressions that define the kinematic viscosity for these
kind of fluids (see,e.g., Eqs. (10) and (11) in Ref. 1). We

used these quantities to calculate the hydrodynamic velocity
of the fluid with stick boundary conditions, as predicted by
Eq. (5). This is shown as a continuous surface in Fig. 3a.
The corresponding experimental flow was measured at the
level dictated by the size of MPC cells, as a time average of
the velocities of all those particles within volume elements
with cross sectiona2 and lengthLz. The simulation results
are represented in the same Fig. 3a with spherical symbols. A
very good agreement between the numerical results and the
predicted hydrodynamic flow can be observed.

For caseb, simulations were conducted usingα = 135◦,
P ′ = 1.0, and, as it is suggested again from results in Ref. 1,
κI = κII = 0.56. In this case the expected viscosity of the
MPC fluid was found to beη = 27.2. The analytical velocity
profile for no-slip boundary conditions and the results from
the numerical experiment show again a very good correspon-
dence.

We will use the Reynolds number, Re, in order to char-
acterize the hydrodynamic regime where our simulations are
carried out. Recall that Re quantifies the relevance of the
inertial forces with respect to the viscous effects. For flow
between coaxial cylinders, Re takes the form

Re=
v̄zDH

ν
, (8)

wherev̄z is the average flow velocity along the long axis and
DH = 2 (R2 −R1), is the so-called hydraulic diameter. In
our case,̄vz can be calculated directly from the simulation re-
sults, which allows us to estimate Re for each produced flow.

We conducted four additional simulations designed to test
the performance of the proposed method for simulating the
expected hydrodynamic flow at different values of Re. In
these experiments, we considered systems having the same
size and density as those used previously, while the parame-
tersα andP ′ were selected as it is shown in Table I, in order
to produce flows with Reynolds numbers in the range delim-
ited by the values Re& 1, and Re∼ 102. The specific values
of Re obtained experimentally are also presented in Table I.
In order to quantify the deviation of the simulated profile with
respect to the expected hydrodynamic flow, we introduce the
error parameter,ε, defined as

ε =

√∑
λ

(
vλ − v

(h)
λ

)2

∑
λ vλ

, (9)

wherevλ represents thez component of the flow obtained
from the numerical experiments, andv

(h)
λ is the correspond-

ing theoretical value for no-slip boundary conditions, ob-
tained form Eq. (5). In these definitions, the subindexλ is
used to indicate the position where flow is measured and cal-
culated,e.g., the location of all the symbols in Figs. 3a andb.

The results of the numerical experiments, summarized in
Table I, show that for a rather wide range of flows charac-
terized for Reynolds numbers that spread over three orders
of magnitude, our approach is able to reproduce the hydro-
dynamic flow in a very satisfactory manner, since the error
parameter is found to take rather small valuesε ≤ 0.5%.
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4. Simulation of azimuthal flow

We will consider now the case where the force acting on the
confined MPC fluid does not have axial component. In partic-
ular, we will study the flow produced when the MPC particles
are subjected to a force field of the form

~F ext
i

(
~Ri

)
= Fi,φêi,φ, (10)

whereêi,φ represents the unit vector in the azimuthal direc-
tion of the usual cylindrical coordinate system. Notice that,
contrary to the case of the unit vectors of the Cartesian basis,
êi,φ is position-dependent. Therefore, is has been identified
with the subindexi.

In Eq. (10),Fi,φ denotes the magnitude of an external
field acting on each confined particle along the azimuthal di-
rection. A symmetric case that could be of interest, is that of
azimuthal forces of the form

Fi,φ =
T
ri

, (11)

whereT is a constant. This field has the property of exerting
a constant torque on the MPC particles that has precisely the

magnitudeT . Consequently, it could be anticipated that it
will produce an azimuthal symmetric flow between the coax-
ial cylinders. In the present section we will show that this is
indeed the case.

However, before we proceed with our analysis, it is
worth noticing that the application of the force field given
by Eqs. (10) and (11), will also produce a non-uniform mass
distribution in the system due to the centripetal force associ-
ated with the azimuthal flow. The results of our simulations
will show that, for small values ofFi,φ, this effect is not sig-
nificant and that, under such condition, the simulated MPC
fluid can be considered to have a uniform density.

In this case, the general solution of the hydrodynamic
equations [40], can be shown to be

vφ (r) =
a1

r
+
T r

4η

[
1− ln

(
r2

a2

)]
, (12)

where a1 and a2 represent integration constants. Equa-
tion (12) is supplemented with the conditions of having uni-
form density and temperature, and observing neither radial

FIGURA 4. Velocity profiles obtained from simulations (symbols) of azimuthal flow between concentric cylinders of radiiR1 = 4a and
R2 = 16a (a), R1 = 8a andR2 = 16a (b), andR1 = 12a andR2 = 16a (c). Continuous curves are numerical fits obtained with
the general hydrodynamic solution, Eq. (12). In these simulations, virtual particles were introduced with zero mean velocity. Partial slip is
observed at the confining boundaries.
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FIGURA 5. The same as in Fig. 4 for the density profiles obtained from simulations (symbols). Continuous lines represent the average
density in each simulated system.

nor axial flow, i.e., vr = vz = 0. For arbitrary values of
a1 anda2, Eq. (12) could be used for describing flow with
partial-slip boundary conditions. For the special case of no-
slip boundary conditions, we have to impose the equalities
vφ (R1) = vφ (R2) = 0, and Eq. (12) takes the form

vφ (r) =
T
4η

{
− 1

r

R2
1R2

2

R2
2 −R2

1

ln
(R2

2

R2
1

)

+ r

[
ln

(R2
2

r2

)
+

R2
1

R2
2 −R2

1

ln
(R2

2

R2
1

)]}
. (13)

Recall that, in our simulation scheme, the transition from
partial-slip to no-slip boundary conditions,i.e., the establish-
ment a flow given by Eq. (12) or by Eq. (13), will be con-
trolled by changing the velocity with which virtual particles
are introduced at the collision step. In order to emphasize this
point and the role that virtual particles play in the case of az-
imuthal flow, we performed three initial simulations in which
these particles were introduced with zero mean velocity. In
these experiments, we kept the following parameters fixed:
α = 135◦, T = 0.25, R2 = 16 a, andLz = 32a. The first,
second and third experiments of this series were performed in
systems of different sizes by selecting, respectively,R1 = 4a
and N = 245, 760; R1 = 8a and N = 196, 608; and
R1 = 12a andN = 131, 072. The values of the total num-
ber of particles were selected to yield systems with similar
densities (nc = 10.02, nc = 10.00, andnc = 11.21, for

each respective case, wherenc denotes the average number
of particles per MPC cell).

The azimuthal flows resulting from these simulations are
shown in Figs. 4a, b andc. The velocity profiles presented
in this figure were obtained as an average performed over the
number of particles contained in coaxial cylindrical sections
of radial widtha/2, as well as over the simulation time after
thermalization. The continuous curves were obtained after a
nonlinear fitting procedure using Eq. (12) as reference anda1,
a2 andη as adjustable parameters. The agreement between
the simulation results (symbols), and the hydrodynamic the-
oretical flow is remarkable.

It is also interesting to present the measurements of the
density profiles established in the simulated systems, for the
three experiments described previously. These results are
shown in Figs. 5a, b andc, where it can be observed that,
as expected, the centripetal force causes a variation of the
mass density,ρ (r), through the system. This variation is such
that regions at farther distances from the symmetry axis have
larger densities. This situation is more clearly illustrated in
casea in Fig. 5, that corresponds to a simulated system with
sizeR1 = 4 a andR2 = 16 a. However, notice that even
in this case, changes in density are rather small (< 3.0%).
Thus, it can be expected that if simulations parameters are
kept within this range, the density field can be considered
to be uniform and a comparison of the simulated field with
Eqs. (12) and (13), will be valid as a first approximation.
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TABLE II. Numerical estimations of the parametersκI andκII that can be used as described by Eq. (14) to produce azimuthal flow with
no-slip boundary conditions. All quantities are given in simulation units.

Collision angle,α Torque,T κI vφ (R1) κII vφ (R2)

135◦ 0.05 2.2 5.2× 10−4 0.4 0.2× 10−4

135◦ 0.25 2.2 −2.0× 10−4 0.9 −7.5× 10−4

150◦ 0.05 2.2 8.0× 10−4 0.4 3.1× 10−4

150◦ 0.25 2.3 −6.8× 10−4 0.9 −5.2× 10−4

165◦ 0.05 2.2 5.2× 10−4 0.4 −2.7× 10−5

165◦ 0.25 2.3 −5.2× 10−4 0.9 −2.0× 10−4

180◦ 0.05 2.2 7.3× 10−4 0.4 −0.4× 10−4

180◦ 0.25 2.1 1.1× 10−4 0.9 −3.4× 10−4

We will consider now the results obtained in experiments
performed by introducing virtual particles with average ve-
locities different from zero. It is suggested by the results
presented in Fig. 4, that virtual particles should have an az-
imuthal velocity opposing to that of the fluid, since, in this
way, the collision process between real and virtual particles
will tend to cancel the flow existing close to the confining
surfaces. In order to introduce virtual particles according to
this idea, we first calculated the azimuthal average velocity
of the particles in the regions I and II described in Fig. 2. Let
vφ,I andvφ,II , represent such average velocities, respectively.
Then, the center of the distribution for the velocities of the
virtual particles in regions I′ and II′ in the same Fig. 2, was
respectively defined by

~̃vI′ = −κIvφ,I (− sin φ, cos φ, 0) , and

~̃vII ′ = −κIIvφ,II (− sin φ, cosφ, 0) , (14)

whereφ denotes the azimuthal angle associated with the po-
sition of the introduced particle. As before,κI and κII in
Eq. (14) are adjustable parameters.

We carried out diverse experiments using trial values of
κI , κII > 0, that allowed us to confirm that when virtual par-
ticles are introduced according to the rule given by Eq. (14)
the slip at the confining cylinders is reduced. We then imple-
mented an optimization procedure analogous to the one used
in Ref. 1, in order to find those values ofκI andκII that yield
no-slip boundary conditions. Such values are found by im-
posing the condition that the numerical fit of the simulation
results, carried out with Eq. (12), gives velocities lower that
10−3 when it is evaluated atR1 andR2. Since this procedure
is rather expensive from the computational point of view, we
restricted our analysis to the case of systems with fixed size
and density defined byR1 = 4a, R2 = 8a, Lz = 32a, and
N = 245760. Moreover, we considered only MPC fluids
in the liquid-like behavior regime by restricting the collision
angle to take large values,α = 135◦, 150◦, 160◦, 180◦.

We performed the estimations ofκI andκII as function
of the collision angle and the external torqueT , that took
the valuesT = 0.05, 0.25. The resulting values of the ad-

justable parameters given by our optimization procedure are
presented in Table II.

It can be noticed from the results presented in Table II that
the control parameterκI seems to be independent of the colli-
sion angle and the external torque. Thus, based on the results
from our numerical experiments we conclude that, within the
range of the simulation parameters considered in our analy-
sis,

κI ' 2.2. (15)

On the other hand,κII does not change appreciably with
respect toα, but depends onT . In the simplest case, the func-
tion κII (T ) can be approximated by a linear relation. Using
the results of Table II, we thus have the approximation

κII (T ) ' 0.275 + 2.5T . (16)

With the purpose of verifying the validity of these ap-
proximations, we performed a last series of experiments in
which the MPC collision angle was allowed to take the val-
ues α = 140◦ and 160◦, which were not considered in
our previous experiments. In addition, in order to explore
the limits of the applicability of Eqs. (15) and (16), simula-
tions were performed using five values of the external torque,
T = 0.05, 0.25, 0.50, 0.75, 1.00, which extended over values
larger than those reported in Table II. The sizes and densities
of the simulated systems were the same as those used in ex-
periments from which Eqs. (15) and (16) were obtained. The
comparison between the velocity profiles obtained from the
last series of experiments and the flow expected from hydro-
dynamics is shown in Figs. 6a andb. It is worth stressing
that continuous curves shown in Figs. 6a andb correspond
to hydrodynamic flow with no-slip boundary conditions, as
given by Eq. (13). In evaluating Eq. (13), we estimatedη by
using the average mass density of the simulated system and
the general theoretical expressions for the collisional and ki-
netic contributions to the kinematic viscosity corresponding
to our implementation of MPC, seee.g. Eqs. (10) and (11)
in Ref. 1. Therefore, the comparison shown in Figs. 6a and b
has no adjustable parameters.
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FIGURE 6. Azimuthal flow between concentric cylinders of radii
R1 = 4 a andR2 = 16 a, for two different MPC fluids char-
acterized by the collision anglesα = 140◦ (a), andα = 160◦

(b). Symbols represent the results of numerical experiments car-
ried out with different external torquesT = 0.05 (black circles);
0.25 (red squares);0.50 (blue triangles up); 0.75 (green diamonds);
and 1.00 (orange triangles down). Continuous curves represent the
flow profile expected from hydrodynamics with no-slip boundary
conditions given by Eq. (13).

It can be observed that the numerical and theoretical re-
sults are in an excellent agreement for those values of the ex-
ternal torque contemplated in Table II,i.e., for T . 0.25. For
larger values ofT , the simulation results do not fit properly
the hydrodynamic velocity profile. In fact, deviations appear
close to the external cylinder, where flow is smaller than ex-
pected. This can be understood since for large torques, den-
sity variations could be much larger than those presented in
Fig. 5a. In this case, the density and the viscosity of the fluid
close to the external cylinder increase and, consequently, flow
is inhibited there. Thus, if simulations are desired to approx-
imate an azimuthal flow given by Eq. (13), we recommend
to apply the procedure described in the present section by re-
strictingT to take small values,T . 0.25.

5. Conclusions

In this work we have successfully performed simulations
of hydrodynamic flow between two coaxial cylinders using
MPC. In order to achieve this goal, we have extended the
technique based on the use of explicit fluid-solid forces that
was originally introduced in Ref. 1. We have described in
detail how this technique can be adapted to the specific ge-
ometry of coaxial cylinders, with the purposes of confining
the MPC fluid and controlling the conditions at the bound-
ary walls. We have considered, separately, the simulation
of two kinds of symmetric flows, namely: flows along the
axial direction promoted by uniform pressure gradients, and
azimuthal flows induced by uniform centrifugal torques. In
both cases, our method was able to reproduce the correct hy-
drodynamic behavior with boundary conditions that could be
adjusted from partial-slip to no-slip. Although our simula-
tions of azimuthal flows were restricted to small values of
the driving centrifugal forces due the compressible character
of normal MPC fluids, it is important to mention that, to the
best of our knowledge, simulations of this kind of flows using
the MPC technique have not been reported previously in the
literature.

There exist many extensions of the present work that
could be interesting from diverse standpoints. First, here we
have tested the performance of the proposed technique by
comparing its results only with those obtained from classi-
cal fluid mechanics, although the implementation of an alter-
native method,e.g., one based on hard-walls, and the sub-
sequent comparison of its computational performance with
respect to ours, could be of some interest for researcher in
the field of computational physics. Second, in the present
paper we have restricted ourselves to analyze the behavior
of a pure simple MPC fluid phase. Nevertheless, MPC can
be used to simulate colloidal and polymeric suspensions as
well. Therefore, an extension of the method introduced here
could open the possibility for analyzing the behavior of such
complex fluids in centrifugal flow, at least from the point of
view of numerical simulations. Finally, it is worth stressing
that the analysis carried out here, was limited to show that the
proposed method yields results that are in agreement with a
macroscopic description of fluid dynamics. However, MPC
naturally incorporates spontaneous random forces on sus-
pended particles. Then, another interesting problem could be
to analyze of the Brownian dynamics of particles suspended
in centrifugal flows, in similar conditions to those that have
been recently considered in simpler non-equilibrium scenar-
ios [17,41,42].
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