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Flow between two coaxial cylinders simulated by multiparticle collision dynamics
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We carry out simulations of multiparticle collision dynamics fluids confined in the region between two coaxial cylinders. In order to confine
these fluids in this geometry, we apply the method based on explicit fluid-solid forces introduced in a recent publication [1]. We consider
two independent situations in which, first, flow is produced by a uniform pressure gradient that points along the axial direction and, second,
azimuthal flow is induced by a centrifugal force field. We generalize the methodology introduced in Ref. [1] and show, through a large number
of numerical experiments, that the correct flow expected from hydrodynamics can be obtained in the two previous cases, with conditions at
the fluid-solid interaction regions that can be adjusted from partial-slip to no-slip boundary conditions.
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1. Introduction which imply that the simulated fluid is a portion of a much
larger, actually infinite, system. However, for some applica-
Multiparticle Collision Dynamics (MPC) is a simulation tions of diffusion in confined systems [29,30], some of which
technique introduced by Malevanets and Kapral [2, 3], thagre relevant for microfluidic and biological problems [28,31],
can be used to simulate the physical behavior of a simplé could be convenient to simulate flow of spatially con-
fluid at the mesoscopic scale. In comparison with similarstrained MPC fluids. One option for extending the basic MPC
methods like Brownian Dynamics [4, 5], Stokesian Dynam-algorithm to include the presence of spatial constrains, is to
ics [6] or the Lattice Boltzmann technique [7_9]' MPC pos_implemenmard Wa”SWhiCh are Usua”y incorporated as sur-
sesses special features that make it more appealing for ti@aces that elastically reflect back those particles coming from
simulation of complex systems. For instance, since MPC ighe fluid phase. Although this extension requires additional
based on partideS, it can be eas”y Coup|ed to po|ymers (ﬁonSiderationS to obtain the correct behavior of the fluid at the
colloids [10-13], a task that is hard to achieve by method$onfining boundary, it has been used successfully to repro-
based on grids like Lattice Boltzmann. In addition, MPC duce hydrodynamic flows in diverse situations [2, 28, 32-35].
captures the hydrodynamic behavior of the fluid around thén two recent publications [1, 36], we have introduced an-
embedded particles and, thus, it naturally incorporates hyother option for simulating the flow of spatially constrained
drodynamic interactions [10], which are absent in BrownianMPC fluids in which confinement is achieved by consider-
Dynamics and must be given through an ana|ytica| represeﬂng eXpliCit forces on the partiCIeS of the fluid phase that are
tation of the mobility tensor in Stokesian Dynamics. Fur-€xerted by surfaces that represent physical walls. Although
thermore, the MPC algorithm is stochastic and gives rise t¢his method is more expensive than the hard wall technique
hydrodynamic fluctuations and Brownian forces on the susfrom the point of view of computations, it has the advantage
pended particles [10, 14-18]. Finally, the MPC aIgorithmOf yielding simulations that are closer to an actual physical
is re|ative|y Simp|e and has been ana|ytica||y studied frornSitua.tion, as |Ong as fluid-solid interactions are alWﬁyS medi-
kinetic and projection operator theories [19_22], f|nd|ng anated by eXpliCit forces. We have used this method to simulate
excellent agreement with the simulation results. This hagylindrical [1] and plane Poiseuille flows [36].
confirmed that a very good understanding of the method has | the present work, we shall show that this method can
been achieved and, in turn, has given confidence in usinge ysed to simulate the behavior of a fluid in a more com-
MPC for simulating physical systems as diverse as suspefyiex situation, namely, that corresponding to confinement be-
sions of polymers [23] and colloids [3, 10], polymers underyyeen two coaxial cylinders. We will consider two specific
flow [15,24,25], flow around objects [26, 27], vesicles underscenarios in which an MPC fluid is forced to move through
flow [28]. the space between the cylinders, first, by a uniform pressure
In the simplest case, MPC simulations are carried ougradient that points along the axial direction and, second, by
by implementing the so-called periodic boundary conditionsa force field with azimuthal component only. In the former



FLOW BETWEEN TWO COAXIAL CYLINDERS SIMULATED BY... 501

case, the method reproduces very well the flow expected froR. MPC algorithm for confinement between
hydrodynamics. We will show that the numerical parameters  coaxial cylinders
that control the flow at the boundaries, presented previously
in Ref. 1, can be directly used here to achieve flow with no-The physical system to be considered in the present work
slip boundary conditions. In the latter case, we will noticeis schematically illustrated in Fig. 1. There, we define two
that, since MPC fluids are compressible, a difficulty in apply-coaxial cylindrical surfaces whose axes coincide with the
ing the simulation technique appears consisting in the devek—axis of a Cartesian coordinate system. The radius of the
opment of flows with non-uniform average densities. There€xternal cylinder will be represented &, while the inter-
fore, simulations will be restricted to the case of small ex-nal radius will be denoted a8,. Along thez direction the
ternal centrifugal forces. In addition, the set of parametersystem is assumed to have an extendign From the point
used for controlling boundary conditions will be modified, of view of the numerical method, it will be convenient to give
since flow will be no longer axial but azimuthal. A series these parameters characterizing the size of the system as mul-
of experiments will be performed to determine this new setiples of a unit of length.. Thus in the following we can con-
of parameters empirically. We will show that, under suchsider thatR, = n,a, Ry = nga andL, = n.a, wheren,,
conditions, our methodology allows for simulating the hy- n, andn_ are integers.
drodynamic flow between the cylinders expected for an in-  In MPC simulations a fluid is assumed to consistof
compressible fluid with no-slip boundary conditions, with a point particles of mass:. These particles are represented as
very satisfactory accuracy. small black spheres in Fig. 1. The positions and velocities
This paper is organized as follows. In Sec. 2, we will of the MPC particles will be represented by the vectBis
present the system to be simulated, as well as the MPC alg@ndd;, respectively, for = 1,2,..., N. The fluid will be
rithm used to reproduce flow between coaxial cylinders. Investricted to move in this geometry, by assuming that the in-
particular, we will describe how the fluid-solid forces derived ternal and external cylinders are physical walls that interact
in Ref. 1 are applied in this situation. In Sec. 3, we will de- with the MPC particles through repulsive potentials. Specif-
scribe the results obtained for axial flow, while in Sec. 4 weically, the interaction potential as§ociated with the external
will present the results for simulation of azimuthal flow. Fi- wall, for an MPC particle located d;, will be written in the
nally, in Sec. 5 we will state our conclusions, and summarizdorm

the advantages and limitations of our approach.
|
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which was derived first in Ref. 1. In this expressian,
denotes the strength of the fluid-solid interaction per uni{
area [37];0 is the effective diameter of the interaction, with

& = 21/6n)g: andR* = R*(R;) represents the closest point
of the external wall to the posmoR . For the interaction
with the internal wall, a completely analogous expression
can be applied to obtain the corresponding pOtem@iﬁ(ﬁi).

The force on the particle due to its interaction with the walls,
F¥el can be calculated fromi"@! = —V(®ey + ®inyr), al-
though in practice, the radial separation between the internal
and external walls is typically much larger than the interac-

tion distances, in such a way that fluid particles do not interact i
simultaneously with both walls. FIGURE 1. Schematic illustration of an ensemble of MPC particles

(small black spheres) confined in the space between two coaxial

As it has been shown in Ref. 1, with the purpose of sim-cylinders. QuantitiefR,, R», and L. define the spatial extension
ulating rough confining walls, it is convenient to apply the of the system.
forcesF wall in the anti parallel direction to the velocity with
which the particles penetrate into the walls. In this schemescribed in detail in Ref. 1, and can be straightforwardly ex-
particles that come into the region of interaction with the contended to consider the interaction with the internal cylinder
fining surfaces face different repulsing barriers. The proceas well.
dure that can be |mp|emented to determine the direction and In addition it should be noticed that if there exists another
magnitude of the forces caused by the external wall, was dédorce field, F& (Rv)- acting on the MPC fluid, it is conven-
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o L, = 2Ry +ainthezy-plane, as itis shown in Fig. 2. Then,
o the spaces outside the external radius and inside the inter-
" nal radius, that do not contain fluid particles, are filled with
® . virtual particles i.e. auxiliary particles having the same mass
/ as the MPC particles that only participate in the collision pro-
cesses. Virtual particles are introduced at positions sampled
° from a uniform probability distribution and their total number
° is such that the global system has uniform density.
2 o As it has been described in Ref. 1, the velocity with
o 1z Rl ) ,) . which virtual particles are introduced can be used as a con-
. o\ 5 ° . trol parameter that allows for adjusting the flow of the MPC
.\ \ o @ 1 ® o 7/ R / ° fluid close to the confining walls. In our simulations, the
< ° I \I: ° o /e 1/. velocities of the virtual particles were assigned as follows.
°. . . Vo First, we defined the cylindrical regions | and Il illustrated in
e
s
o

o o o Fig. 2, that extend over the radial coordinate in the intervals

o \ N . ° / ° (R1,R1 + a/2) and(Ry — a/2, R2), respectively. We also
°© b ° D S - identify the regions were the virtual particles are introduced
. ° o L o ° as I and I, for radial distances lower thaR; and larger
R b ° 1% ol ° o thanR,, respectively. The average velocity of the fluid par-

— ] ] ticles over the regions | and Il was calculated and denoted
FIGURE 2. Sche_matlc illustration of_ the procedure used to mtrq— as# and, respectively. The velocities given to the virtual
ducg virtual parpcles. The system is ex_tended 10 a square re.g'orbarticles in regions’land I were sampled from indepen-
of Size2R> + a in thexy-plane. The region between the coaxial o =5, isjan distributions that had the standard deviation
cylinders is occupied by MPC particles (black circles). Regions | . . o .
and If are filled with virtual particles (empty circles). Virtual parti-  dictated by the equipartition law. The corresponding centers
cles are introduced at random positions in these empty spaces. TH&f these distributionsji anduj-, were selected as function of
number of virtual particles is chosen such that the density is contin-the velocities measured in regions | and @, 4, = i (i)
uous over the whole extended system. Regions | and II, correspon@nd @ir = @/ (%4). The explicit form of these functions
to auxiliary cylindrical portions where the velocities of the MPC will depend on the particular flow to be simulated. They will
particles are measured to establish the velocity with which virtual be explicitly given in Secs. 3 and 4, for the case of simula-
particles will be introduced, as it is described through the text. tion axial and azimuthal flow, respective|y (See Eqs (7) and
) ) i ) (14) below). Notice that the procedure described through this
ient to apply it only to those particles that are not in currenty o a4raph is a generalization of the one used in Ref. 1. There,
contact with the walls, with the purpose of maintaining thegg|e|y axial flow was considered, and it was restricted only by
stability of the S|r_nulat|0_n. Therefore, at a given timethe the external confining surface.
force on theith fluid particle is calculated as Given the global system of fluid and virtual particles with
assigned positions and velocities, the MPC collision step was
B 2) carried out by subdividing the extended simulation box in
F&  otherwise cells of volumea®. The center of mass velocity of the parti-
cles contained in each cell was calculated and particles within
wherer; = \/x? + y2, denotes the radial cylindrical coordi- the same cell were forced to change their velocities according
nate of theith fluid particle. to
Once forces on MPC particles has been defined, the sys- ¥ = Tem + R (o) - [T — Tem) » ©)
tem can be allowed to evolve in time according to a hybrid
algorithm combining Molecular Dynamics (MD) [38,39] and whered! and@; denote the velocities of thith particle after
MPC as follows. For small time intervals of siZetyp, po-  and before collision, respectively; . represents the center
sitions and velocities of the particles are updated using thef mass velocity of the cell; anR («; 7) is a stochastic rota-
Strmer-Verlet integration method, see Eqgs. (7) and (8) irtion matrix, which rotates velocities by an anglearound a
Ref. 1. Then, after performingyp of such steps, fluid parti- random axis:. While « is a parameter whose value is fixed
cles are forced to exchange momentum by applying the chathrough the whole simulation; is sampled in each cell at
acteristic collision rule of MPC. Since MPC was explicitly every collision step from a uniform spherical distribution. As
designed for infinite systems with rectangular symmetry, theét was noticed by the first time by Ihle and Kroll [20, 21],
presence of the cylindrical confining walls makes it necesthe presence of collision cells introduce an artificially fixed
sary to consider an extension of the system before the coframe of reference that leads to a breakdown of the assump-
lision step can be carried out. Following the methodologytion of molecular chaos. In order to restore this property,
introduced in Ref. 1, we extend the simulation system ina uniform random displacement of the cells was performed,
the x andy directions, to cover the square region with sidesbefore collisions take place, that was sampled from uniform

o ﬁiwall7 if T < Rl, orr; > RQ,
Fi(t) =
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distributions in the rangé—a/2, a/2) for the three Cartesian P
directions. v, (r) = ——r* +a;In7r + as, (4)
In summary, the hybrid MD-MPC algorithm used to sim- _ R _ _
ulate flow between concentric cylinders consisted of a sucherer is the viscosity of the fluid and, anda, are inte-
cession ofnyp MD integration steps driven by the forces 9gration constants to be determined from the boundary con-
given by Eq. (2), at intervals of sizAtyp, followed by the ditions. In particular, for no-slip boundary conditions at the
extension of the system, the introduction of virtual particles confining cylindersy. (R1) = v. (R2) = 0, we have [40]
and the application of the collision r_ule, Eqg. (3), to the_ global Pl , RZ — R2 r
system. We shall assume that the size of the systeminthe ax- vz (1) = — |Rz —r"+ —=——<In( — ] .| (5)
. . . . . .. 47] In (Rg/Rl) RQ
ial direction is much larger than its transverse extensien, _ _ _ _
that L, > R.. Thus, we implemented periodic boundary N order to simulate this flow, we applied a force field to
conditions along the-axis. Moreover, we applied a ther- the confined MPC particles that had the form
mostattin_g procedure aft_er each collision step, based on a lo- Fext _ pi,3 e, 6)
cal velocity rescale that fixed the temperature at a prescribed
valueT [16-18]. This thermostatting step has the purpose ofind observed in some initial experiments that the proposed
preventing viscous heating. numerical method described in Sec. 2, indeed produced a
The set of independent simulation parameters consisteiow with the form given by Eq. (4). As it was discussed in
of the length of the MPC cells,; the time-step between MPC the same section, flow velocity at the confining walls can be
collisions, At = nyp Atmp; the average number of particles controlled using the virtual particles. In fact, it is §uggested
per cell,nc; the thermal energys5T"; the MPC rotation an-  from the symmetry of the present problem, that in order to

gle, o; and the mass of the individual MPC particles, All obtain no-slip boundary conditions, virtual particles should
our numerical experiments were carried out with the fixedp€ introduced with an average velocity opposing to the flow
valuesa = 1, kgT = 1, nmp = 10, At = 0.05, andm = 1, in the simulation regions | and Il in Fig. 2. The reason is that,

where simulation units (s.u.) instead of physical units havavhen virtual particles are introduced in this manner, fluid par-
been used, as it will be the case through out the paper. Oficles close to the solid walls that could have a net flow, will
the other hand, for the parameters that define the interactiope slowed down by the former when they exchange momen-
potential between the solid walls and the MPC particles, wdum at the MPC collision process. Therefore, we propose to
used the same values reported in Ref. 1. select the mean values for the distributions of the virtual par-
We allowed a thermalization process to take place, thaticles according to
extended oveR x 10> MD-MPC steps, during which the
simulated systems were able to evolve towards a stationary
state. Afterwards, stages extending o2ex 10° steps were wherex, andx will be considered as adjustable parameters.
conducted in order to perform measurements of the proper- It can be observed that Eq. (7) represents an extension of
ties of the ensemble of confined particles. As it has been dghe procedure performed first in Ref. 1. There, in order to
scribed in Sec 1, we carried out two independent kind of exsimulate Poiseuille flow in a cylindrical cavity with no-slip
periments in which flow is produced with axial and azimuthalboundary conditions, virtual particles were introduced with
symmetry. These experiments will be discussed, respectivelyelocity —xvé., wherev was the average axial fluid veloc-
in Secs. 3 and 4. ity close to the confining cylinder, the equivalent to the
component of our vector;,. Due to the similarity between
the present specific problem and the one studied in Ref. 1, it
3. Simulation of axial flow could be expected that the values of the parameteandx;, ,
must be very similar to those of the parametein Ref. 1,x
We conducted a first series of numerical experiments accordvas obtained empirically by means of an optimization pro-
ing to the simulation scheme described in Sec. 2. In theseedure for a rather wide range of simulated flows, whose
experiments, the MPC fluid was subjected to a uniform presReynolds numbers covered three orders of magnitude in the
sure gradient with magnitude’, directed along the-axis in  laminar regime. Here, we will show that, if simulations are
Fig. 1. performed within the same range, those values obtained
For such a driven force, the hydrodynamic flow producedn Ref. 1 can be also used for simulating axial flow between
between the cylinders is expected to be a symmetric axial vezoaxial cylinders with stick boundary conditions. Let us il-
locity profile of the general forn¥ = v, (r) é,, wherer rep-  lustrate that this is indeed the case for experiments carried
resents the radial distance in the usual system of cylindricadut in systems with size defined B§; = 8a, R, = 16a,
coordinates{r, ¢, z}, andé, the unit vector in the: direc- andL. = 32q, that were performed using a total number of
tion. More precisely, under the assumption that the densityn = 131072, MPC patrticles. The results obtained for two
and temperature fields are uniform, the solution of the conspecific experimental set-ups are illustrated in Figsarsdb.
tinuity, Navier-Stokes, and heat conduction equations readms casea, we used the values = 180°, for the MPC col-
as lision angle, andP’ = 0.4, for the magnitude of the driven

U = —R1 V5,65, and Gy = —Ky vy 1€z, (7)
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used these quantities to calculate the hydrodynamic velocity
of the fluid with stick boundary conditions, as predicted by
Eq. (5). This is shown as a continuous surface in Fay. 3
The corresponding experimental flow was measured at the
level dictated by the size of MPC cells, as a time average of
the velocities of all those particles within volume elements
with cross sectiom? and lengthL,. The simulation results
are represented in the same Figvdth spherical symbols. A
very good agreement between the numerical results and the
predicted hydrodynamic flow can be observed.

For caseb, simulations were conducted using= 135°,

P’ =1.0, and, as it is suggested again from results in Ref. 1,
k1 = k= 0.56. In this case the expected viscosity of the
MPC fluid was found to be = 27.2. The analytical velocity
profile for no-slip boundary conditions and the results from
the numerical experiment show again a very good correspon-
dence.

We will use the Reynolds number, Re, in order to char-
acterize the hydrodynamic regime where our simulations are
carried out. Recall that Re quantifies the relevance of the
inertial forces with respect to the viscous effects. For flow
between coaxial cylinders, Re takes the form

v, D
Re= =1 ®)
14
whereu, is the average flow velocity along the long axis and
FIGURE 3. Velocity profiles obtained from simulations (sym- Dy = 2(Ry — R1), is the so-called hydraulic diameter. In
boljs) of aX|a1| rowaetween coaxial dcy""ders with radl, = 8a. oy case, can be calculated directly from the simulation re-
;n/ 75202 a?%‘ a_se: Ci”gsg’g’ nthséstg f;i{::"vite?ft;kéﬁoﬁbm sults, which allows us to estimate Re for each produced flow.
S S S We conducted four additional simulations designed to test

the estimations carried out in Ref. 1. In the chs¢hese parame- . .
ters took the values — 135°, P’ = 1.0, ands = rn = 0.56. the performance of the proposed method for simulating the

In both situations a very good agreement is found with the hydro-€XPected hydrodynamic flow at different values of Re. In
dynamic flow predicted from Eq. (5) (continuous surfaces), where these experiments, we considered systems having the same
no-slip boundary conditions are assumed. size and density as those used previously, while the parame-
tersa and P’ were selected as it is shown in Table I, in order
- — - to produce flows with Reynolds numbers in the range delim-
TABLE l. Expenr_nents proposed to test the validity of the simula- ited by the values R& 1, and Re~ 102. The specific values
tion m.e.thOd at d'ﬁ.er.em Reynolds ngmbers' The error paranseter of Re obtained experimentally are also presented in Table I.
guantifies the deviation of the experimental results from the hydro- . - . : .
dynamic flow and is defined by Eq. (9). All quantities are given in In order to quantify the deviation of thg S|mulated_ profile with
simulation units. respect to the expected hydrodynamic flow, we introduce the
error parameteg, defined as

Collision Pressure Reynolds Error, 5

angle,« gradient,P’ number, Re € ZA (v,\ — vf\h))
180° 0.25 1.0 0.5% €= S o ; 9)
130° 0.50 31 0.4% wherewv, represents the component of the flow obtained
70° 1.00 28.7 0.3% from the numerical experiments, ang” is the correspond-
30° 4.0 348.7 0.2% ing theoretical value for no-slip boundary conditions, ob-

tained form Eq. (5). In these definitions, the subindeis
gradient. In addition, we notice from the results presented irused to indicate the position where flow is measured and cal-
Table | in Ref. 1 that the parameterfor similar conditions  culatede.g, the location of all the symbols in Figsaandb.
took the values ~ 0.56. Thus, in our simulations we used The results of the numerical experiments, summarized in
k1 = k) = 0.56, to define the average velocity of the vir- Table I, show that for a rather wide range of flows charac-
tual particles. For this situation, the MPC fluid is expectedterized for Reynolds numbers that spread over three orders
to have a viscosity) = 32.3, as it can be calculated from of magnitude, our approach is able to reproduce the hydro-
the expressions that define the kinematic viscosity for thesdynamic flow in a very satisfactory manner, since the error
kind of fluids (seeg.g, Egs. (10) and (11) in Ref. 1). We parameter is found to take rather small valaes 0.5%.
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4. Simulation of azimuthal flow magnitude7. Consequently, it could be anticipated that it
will produce an azimuthal symmetric flow between the coax-

We will consider now the case where the force acting on thgy| cylinders. In the present section we will show that this is

confined MPC fluid does not have axial component. In particigeed the case.

ular, we will study the flow produced when the MPC particles However, before we proceed with our analysis, it is

are subjected to a force field of the form worth noticing that the application of the force field given
F‘vlext (E) = F4i, (10) b_y E.qs. .(10) and (11), will also produce a_non—uniform mass
distribution in the system due to the centripetal force associ-

whereé; , represents the unit vector in the azimuthal direc-ated with the azimuthal flow. The results of our simulations

tion of the usual cylindrical coordinate system. Notice that,y|| show that, for small values of; 4, this effect is not sig-

contrary to the case of the unit vectors of the Cartesian basigficant and that, under such condition, the simulated MPC

éi,¢ is position-dependent. Therefore, is has been identifieqyig can be considered to have a uniform density.

with the subindex. _ In this case, the general solution of the hydrodynamic
In Eqg. (10), F; 4 denotes the magnitude of an external equations [40], can be shown to be

field acting on each confined particle along the azimuthal di- '

rection. A symmetric case that could be of interest, is that of a, Tr r2
azimuthal forces of the form v (r) = —~ Ty {1 —In ()] ; (12)
T
RO where a; and a, represent integration constants. Equa-

whereT is a constant. This field has the property of exertingtion (12) is supplemented with the conditions of having uni-
a constant torque on the MPC particles that has precisely tHerm density and temperature, and observing neither radial

0.02

o
o

0.01

=
[

Azimuthal velocity, v A (s.u.)

| | 1 | | | | 1 | 1
078 12 16 U8 10 12 14 16 12 14 1§
Radial coordinate, » (s.u.)

FIGURA 4. Velocity profiles obtained from simulations (symbols) of azimuthal flow between concentric cylinders oRrad 4a and
R2 = 16a (), R1 = 8a andR2 = 16a (b), andR1 = 12a andR2 = 16a (c). Continuous curves are numerical fits obtained with

the general hydrodynamic solution, Eq. (12). In these simulations, virtual particles were introduced with zero mean velocity. Partial slip is

observed at the confining boundaries.
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FIGURA 5. The same as in Fig. 4 for the density profiles obtained from simulations (symbols). Continuous lines represent the average
density in each simulated system.

nor axial flow,i.e, v, = v, = 0. For arbitrary values of each respective case, wherg denotes the average number
a1 andas, Eq. (12) could be used for describing flow with of particles per MPC cell).

partial-slip boundary conditions. For the special case of no- The azimuthal flows resulting from these simulations are
slip boundary conditions, we have to impose the equalitieshown in Figs. 4, b andc. The velocity profiles presented

vy (R1) = vy (R2) = 0, and Eq. (12) takes the form in this figure were obtained as an average performed over the
- | R2R2 s numb_er of_particles contained in coaxia_l cylinqlrica_\l sections
vy (1) = { B S S [ <2> of radial widtha/2, as well as over the simulation time after
4n TRy —Ri Ry thermalization. The continuous curves were obtained after a

R2 R2 R2 nonlinear fitting procedure using Eqg. (12) as referencezand
+r [111 <22> + —5——=5n (3)} } (13) a4y andn as adjustable parameters. The agreement between
r R5 — Ry R3 . . )
the simulation results (symbols), and the hydrodynamic the-
Recall that, in our simulation scheme, the transition fromoretical flow is remarkable.
partial-slip to no-slip boundary conditioriss., the establish- It is also interesting to present the measurements of the
ment a flow given by Eq. (12) or by Eq. (13), will be con- density profiles established in the simulated systems, for the
trolled by changing the velocity with which virtual particles three experiments described previously. These results are
are introduced at the collision step. In order to emphasize thishown in Figs. §, b andc, where it can be observed that,
point and the role that virtual particles play in the case of azas expected, the centripetal force causes a variation of the
imuthal flow, we performed three initial simulations in which mass density, (), through the system. This variation is such
these particles were introduced with zero mean velocity. Irthat regions at farther distances from the symmetry axis have
these experiments, we kept the following parameters fixedarger densities. This situation is more clearly illustrated in
a =135°,7 = 0.25, R, = 164, andL, = 32a. The first, caseain Fig. 5, that corresponds to a simulated system with
second and third experiments of this series were performed isize R; = 4a andR, = 16a. However, notice that even
systems of different sizes by selecting, respectivily= 4a in this case, changes in density are rather small3(0%).
and N = 245,760; R, = 8a and N = 196,608; and Thus, it can be expected that if simulations parameters are
R1 = 12a and N = 131,072. The values of the total num- kept within this range, the density field can be considered
ber of particles were selected to yield systems with similato be uniform and a comparison of the simulated field with
densities 6. = 10.02, n, = 10.00, andn. = 11.21, for  Egs. (12) and (13), will be valid as a first approximation.
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TaBLE Il. Numerical estimations of the parametesisand x; that can be used as described by Eq. (14) to produce azimuthal flow with
no-slip boundary conditions. All quantities are given in simulation units.

Collision angle Torque, T K vg (R1) Kil vg (R2)
135° 0.05 2.2 5.2 x 107* 0.4 0.2 x107*
135° 0.25 2.2 —2.0x107% 0.9 —7.5x107*
150° 0.05 2.2 8.0 x 1074 0.4 3.1x107*
150° 0.25 2.3 —6.8x 1074 0.9 —5.2x 107*
165° 0.05 2.2 5.2x107* 0.4 —2.7x107°
165° 0.25 2.3 —5.2x107* 0.9 —2.0x107*
180° 0.05 2.2 7.3 x107* 0.4 —0.4x107*
180° 0.25 2.1 1.1x 1074 0.9 —34x107*

We will consider now the results obtained in experimentsjustable parameters given by our optimization procedure are
performed by introducing virtual particles with average ve-presented in Table IlI.
locities different from zero. It is suggested by the results It can be noticed from the results presented in Table Il that
presented in Fig. 4, that virtual particles should have an azthe control parametey; seems to be independent of the colli-
imuthal velocity opposing to that of the fluid, since, in this sion angle and the external torque. Thus, based on the results
way, the collision process between real and virtual particlesrom our numerical experiments we conclude that, within the
will tend to cancel the flow existing close to the confining range of the simulation parameters considered in our analy-
surfaces. In order to introduce virtual particles according tcsis,
this idea, we first calculated the azimuthal average velocity Ky~ 2.2, (15)
of the particles in the regions | and Il described in Fig. 2. Let
ve,1 @anduy i, represent such average velocities, respectively.  On the other handy; does not change appreciably with
Then, the center of the distribution for the velocities of therespect tax, but depends off. In the simplest case, the func-
virtual particles in regions’ land It in the same Fig. 2, was tion x; (7)) can be approximated by a linear relation. Using

respectively defined by the results of Table II, we thus have the approximation
7:}]’ = —KIVUg,l (_ sin ¢7 COs ¢7 O) ) and R (T) ~ 0.275 =+ 2.57. (16)
Ui = —FKivgi (—sind, cos ¢, 0) (14)

With the purpose of verifying the validity of these ap-
where¢ denotes the azimuthal angle associated with the poproximations, we performed a last series of experiments in
sition of the introduced particle. As beforg, and xy, in which the MPC collision angle was allowed to take the val-
Eq. (14) are adjustable parameters. uesa = 140° and 160°, which were not considered in
We carried out diverse experiments using trial values ofur previous experiments. In addition, in order to explore
k1, kn > 0, that allowed us to confirm that when virtual par- the limits of the applicability of Egs. (15) and (16), simula-
ticles are introduced according to the rule given by Eq. (14}ions were performed using five values of the external torque,
the slip at the confining cylinders is reduced. We then imple<7” = 0.05, 0.25, 0.50, 0.75, 1.00, which extended over values
mented an optimization procedure analogous to the one usdarger than those reported in Table Il. The sizes and densities
in Ref. 1, in order to find those values ofandx thatyield of the simulated systems were the same as those used in ex-
no-slip boundary conditions. Such values are found by imperiments from which Egs. (15) and (16) were obtained. The
posing the condition that the numerical fit of the simulationcomparison between the velocity profiles obtained from the
results, carried out with Eq. (12), gives velocities lower thatlast series of experiments and the flow expected from hydro-
102 whenitis evaluated & ; andR.. Since this procedure dynamics is shown in Figs.aéandb. It is worth stressing
is rather expensive from the computational point of view, wethat continuous curves shown in Figa &ndb correspond
restricted our analysis to the case of systems with fixed sizé&o hydrodynamic flow with no-slip boundary conditions, as
and density defined bR; = 4a, R2 = 8a, L, = 32a, and  given by Eq. (13). In evaluating Eq. (13), we estimateoly
N = 245760. Moreover, we considered only MPC fluids using the average mass density of the simulated system and
in the liquid-like behavior regime by restricting the collision the general theoretical expressions for the collisional and ki-
angle to take large values,= 135°,150°,160°, 180°. netic contributions to the kinematic viscosity corresponding
We performed the estimations &f and ), as function to our implementation of MPC, seeg Egs. (10) and (11)
of the collision angle and the external torgtie that took in Ref. 1. Therefore, the comparison shown in Figs. 6a and b
the values7 = 0.05,0.25. The resulting values of the ad- has no adjustable parameters.
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. 5. Conclusions
5 08- i
& In this work we have successfully performed simulations
= y of hydrodynamic flow between two coaxial cylinders using
= 061 T i MPC. In order to achieve this goal, we have extended the
‘g =3 1 technique based on the use of explicit fluid-solid forces that
T}) 0.4 X i was originally introduced in Ref. 1. We have described in
= s | detail how this technique can be adapted to the specific ge-
-f_:’; Ve ometry of coaxial cylinders, with the purposes of confining
g 021 W the MPC fluid and controlling the conditions at the bound-
> ™ ary walls. We have considered, separately, the simulation
< 0 P TR of two kinds of symmetric flows, namely: flows along the

4 6 8 10 12 14 16 axial direction promoted by uniform pressure gradients, and
a Radial coordinate, r (s.u.) azimuthal flows induced by uniform centrifugal torques. In
. R both cases, our method was able to reproduce the correct hy-
S 08F B drodynamic behavior with boundary conditions that could be
3% i adjusted from partial-slip to no-slip. Although our simula-
> tions of azimuthal flows were restricted to small values of
5o 0.6 - g . :
= the driving centrifugal forces due the compressible character
<_% 7 of normal MPC fluids, it is important to mention that, to the
g 04 . best of our knowledge, simulations of this kind of flows using
= ' _ the MPC technique have not been reported previously in the
':5 literature.
E o2 | There exist many extensions of the present work that
Q ] could be interesting from diverse standpoints. First, here we

have tested the performance of the proposed technique by

0 / T L | | | [ L 3
4 4 Radigl caorcli?nate ;Z(S u) W 1 comparing its results only with those obtained from classi-
i h cal fluid mechanics, although the implementation of an alter-
native methodg.g, one based on hard-walls, and the sub-
FIGURE 6. Azimuthal flow between concentric cylinders of radii sequent comparison of its computational performance with
Ry = 4a andRs = 164, for two different MPC fluids char-  '€spect to ours, could be of some interest for researcher in
acterized by the collision angles = 140° (a), anda = 160° the field of computational physics. Second, in the present
(). Symbols represent the results of numerical experiments carpaper we have restricted ourselves to analyze the behavior
ried out with different external torques = 0.05 (black circles);  of a pure simple MPC fluid phase. Nevertheless, MPC can
0.25 (red squares));50 (blue triangles up); 0.75 (green diamonds); be used to simulate colloidal and polymeric suspensions as
and 1.00 (orange triangles down). Continuous curves represent thiell. Therefore, an extension of the method introduced here
flow profile expected from hydrodynamics with no-slip boundary ¢qy|d open the possibility for analyzing the behavior of such
conditions given by Eq. (13). complex fluids in centrifugal flow, at least from the point of
view of numerical simulations. Finally, it is worth stressing
It can be observed that the numerical and theoretical retha.t the anaIySiS carried out here, was limited to show that the
sults are in an excellent agreement for those values of the e/0posed method yields results that are in agreement with a
ternal torque contemplated in Tableilk., for 7 < 0.25. For macroscopic description of fluid dynamics. However, MPC
larger values off, the simulation results do not fit properly naturally incorporates spontaneous random forces on sus-
the hydrodynamic velocity profile. In fact, deviations appearPended particles. Then, another interesting problem could be
close to the external cylinder, where flow is smaller than exi0 analyze of the Brownian dynamics of particles suspended
pected. This can be understood since for large torques, deift centrifugal flows, in similar conditions to those that have
sity variations could be much larger than those presented iR€en recently considered in simpler non-equilibrium scenar-
Fig. 5a. In this case, the density and the viscosity of the fluidios [17,41,42].
close to the external cylinder increase and, consequently, flow
is inhibited there. Thus, if simulations are desired to approx,Acknowledgments
imate an azimuthal flow given by Eq. (13), we recommend
to apply the procedure described in the present section by réd. Hijar thanks Universidad La Salle for financial support
stricting7 to take small values] < 0.25. under grant NEC-04/15.
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