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Optimization of a cubic equation of state and van der Waals mixing rules for
modeling the phase behavior of complex mixtures
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A thermodynamic modeling for the vapor—liquid equilibrium of binary systems of supercritical fluids and ionic liquids is presented. The van

der Waals mixing rules and a cubic equation of state are used to evaluate the fugacity coefficient on the systems. Then, a particle swarm

algorithm was used to minimize the difference between calculated and experimental bubble pressure, and calculate the interaction parameters
for all systems used. The results show that the bubble pressures were correlated with low deviations between experimental and calculated
values. These deviations show that the proposed model is a good technique to optimize the interaction parameters of the phase equilibrium
of binary systems containing supercritical fluids and ionic liquids.
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1. Introduction The PR EoS was expressed as follows [7]:
In the last years, the ionic liquids (ILs) have been the ob- p_ BT n a o
ject of increasing attention due to their unique physicochem- V—-b VV+b+b({V -5
ical properties [1]. ILs are organic salts composed of cations 22
and anions that are liquid at conditions around room temper- a = 0.457235 Iz o (T,) (2)
ature [2]. ¢

Phase equilibrium data of mixtures containing ILs are h— 0.077796@ (3)
necessary for further development of some separation pro- c
cesses [3]. The gas solubilities data provides important in- 2
formation for the characterization of solutesolvent interac- o(Ty) = [1 Tk (1 - \/ﬁ)} )

tions and so contribute to understand the mechanisms of
dissolution. From a practical point of view, gas solubility

can be useful in the calculation of vapor—liquid equilibrium ]
(VLE) [4]. For mixtures, the parametersand b are expressed as

functions of the concentration of the different components in

liquids, although essential for the design and operation o*he m|xturet, t?;ﬁUQh trll_e s:?-callta](dEmgltng rylt(as. Until rggentd
separation processes, are still scarce. Various models hay&a’s: moftho Ieapp |c|:a |on(sj N Wo IO mixtures IconS|d3\r/e
been used to correlate experimental data of phase equilibrfg_e use of the classical van der Waals mixing rules (vaw),

of these systems [3]. One of the common approaches usé’&‘th the inclusion of an interaction parameter for the force

in the literature to correlate and predict phase equilibrium reg(?nstantz and volume constast The PR EoS for a mixture

quires an equation of state (EoS) that well relates the vari™:
ables temperature, pressure and volume and appropriate mix- RT
ing rules to express the dependence of the equation of state P =
parameters on the concentration [5].

K = 0.37646 + 1.54226w — 0.26992w>  (5)

On this line, VLE data for binary systems including ionic

Qm

V—bm V(V E o)+ b (V — )

(6)

And the classical van der Waals mixing rules are [3]:

2. Thermodynamic formulation N N

A = Z TiT 0 @)
The most common and industrially important EoS are the cu- i
bic equations derived from van der Waals EoS; among these, N N
the Peng—Robinson equation (PR) has proven to combine the by, = Z x5 (8)
simplicity and accuracy required for the prediction and corre- P

lation of volumetric and thermodynamic properties of several
fluids [6]. the combining rules fo;; andb;;, with interaction parame-
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ters for the force and volume constants, are:

aij = \/aia; (1 — ;) 9) o = (0}, 03, .y 0}) (13)
bij = bit b (1—-8i) (10) Let the current personal best position of partiglend
2 . . f(s) be the target function which will be minimized.
where the parameters;; and 3;; in the above combining
rules are calculated by regression analysis of experimental pe = (D} 3, DY) (14)

phase equilibrium data. L .

Then, the problem is reduced here to determine the opti- Then the best positiopy. is determined by:
mal interaction parameters by minimizing the following ob- (1), if 1)) > t
jective function in data regression [6]: pr(t+1)= {pk( ! Jlontr) = Jpelt) (15)

se(t+1), i fsk(t41)) < f(pr(t))

In each iteration, every particle calculates its velocity ac-
cording to the following formula:

100 22

Pcalc _ pexp
Np &=|  pe»

/= — (1)

1=1
where Np is the number of points in the experimental data

set andP is the pressure of IL in the vapor phase, the super- vp(t 4+ 1) = wor(t) 4+ 11 (pr(t)
script denotes the experimentakp) data point and calcu-
lated (calc) values. — 5,(1)) + cara(py(t) — si(t))  (16)

The existing methods to solve phase equilibrium systems . . R .
obtain only local solutions. It has been demonstrated that fo¥vheret IS the current step number,s the inertia weight;,

y . " . . andcs are the acceleration constants, andr, are element
cases of systems containing supercritical fluids, the optimu .

. . .from two randon sequences in the range (0,1). The current

values of the interaction parameters depend on the searching ... S . A
. o . . sition of the particle is determined by(t); ps is the best
interval and on the initial value of used interaction parame- : . . .
ters [8] one of the solutions this particle has reachegis the best

o . .one of the solutions all the particles have reached [10].
Earameter estlmgnon procedures are very important in The variablew is responsible for dynamically adjusting
;negr:?ﬁfr::;%’]éﬁ;{ig?ﬁ\fgg;gﬁggisronceosii;?i;:tie;/ﬁlgng]e velocity of the particles, so it is responsible for balancing
advanced control of bio rocésses de egd’oﬁ model para etween local and global search, hence requiring fewer itera-
oter values obtained fropm ox erimen?al data [2] ThF()e usrglons for the algorithm to converge [6]. A low value of inertia
I L b : ) - Weight implies a local search, while a high value leads to a
of heuristic optimization methods, such particle swarm opti-

mization (PSO), for the parameter estimation is very promis:-gIObaI search. Applying a large inertia weight at the start of

ing [6]. This biologically-deriver method represents an ex-the algorithm and making it decay to a small value through

. . . ... the PSO execution makes the algorithm search globally at the
cellent alternative to find a global optimum for phase equilib-,_ " . .
. . beginning of the search, and search locally at the end of the
rium calculations [3]. . : . o .

execution [2]. The following weight functiow is used in
_ o Eq. (16):
3. Particle swarm optimization
Wmax — Wmin

. e . . W= Wmax— ——, ¢ (17)

The PSO algorithm is initialized with a population of random tmax

particles and the algorithm searches for optima by updating Generally, the value of each componentiincan be
generations [9]. In a PSO system, each particle is “flown"ciamped to the range {max, vmad control excessive roaming
through the multidimensional search space, adjusting its pasf particles outside the search space [10]. After calculating

sition in search space according to its own experience anghe velocity, the new position of every particle is:
that of neighboring particles. The particle therefore makes

use of the best position encountered by itself and that of its si(t+1)=s;(t) v (t+1) (18)
neighbors to position itself toward an optimal solution [10]. h ; d licati f th q
The performance of each particle is evaluated using a prede- The PSO performs repeated applications of the update

fined fitness function, which encapsulates the characteristicguations above until a specified number of iteration has been
of the optimization problem [11]. exceeded, or until the velocity updates are close to zero [9].

Let s andv denote a particle position and its correspond-The scheme of the PSO algorithm is presented in detail in

ing velocity in a search space, respectively. Therefore, thdable .
k — th particle is represented in thedimensional search

space as: 4. Results and discussion
_ 1 2 n
sk = (S 5k 57) 12)  pso algorithm was used for minimize the difference between
And the current velocity of thé — th particle is repre- calculated and experimental bubble pressure in Eg. (11). Ta-
sented as: ble Il shows the selected parameters for the PSO algorithm.
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TABLE |. Scheme of the PSO algorithm development in this study.

Step Description

01 Initialize algorithm. Set constantsaax, vmax, W, €1, 2

02 Randomly initialize the swarm positiosise R™ fori=1, ...,p

03 Randomly initialize particle velocitie§ fori =1, ...,p

04 Sett = 1 Evaluate function valuff using design space coordinatgs

05 If fi < faesthen foes = fi i = si If fi < flqthenflg= fi. v = si
06 If stopping condition is satisfied then stop algorithm

07 Update all particle velocitieg fori =1, ...,p

08 Update all particle positiors fori =1, ...,p

09 Otherwise set =t + 1 goes to step 5

TABLE Il. Parameters used in the PSO algorithm.

PSO Parameters Value
Number of particles in swarm 100
Number of generations 1000
Cognitive componentcf ) 1.49
Social componenict) 1.49
Maximum velocity ¢max) 12
Minimum inertia weight {vmin) 0.4
Maximum inertia weight ©max) 0.41

TaBLE IlIl. Thermodynamic properties of the substances involved

in this study.

Substance T-(K) P.(MPa) w
[Camim] [PFs] 663.5 1.95 0.6708
[Comim][PF4] 585.3 2.36 0.7685
[Csmim][PFs] 754.3 1.55 0.8352
[Csmim|[BF4] 726.1 1.60 0.9954

CO; 304.2 7.38 0.2236
CHF; 299.0 4.82 0.2642

TABLE IV. Details on the phase equilibrium data of the five sys-

tems used in this study.

No. System

Ref.ND

AT
(K)

AP Az
(MPa)

CHFs+[Comim][PFs] [12]
CO+[Comim][PFs] [13]

CO+[Comim][BF4] [15]

1
2
3  CO+[Csmim][PFs] [14]
4
5

CO+[Csmim][BF4] [16]

100 308-363

74
98
40
99

313-358
308-359
303-323
308-363

1-52 0.1-0.9
1-97 0.1-0.6
1-95 0.1-0.7
2-13 0.1-0.6
1-85 0.1-0.8

TABLE V. Interaction parameters calculated with the PSO algo-
rithm.

System Qi Bij |70AP
1 -0.01302 -0.06598 9.8
2 -0.11921 -0.09741 8.6
3 0.04798 -0.01030 6.4
4 0.12064 -0.05809 6.8
5 0.48241 -0.01463 9.5

TABLE VI. Mean values of the variables of interest for PSO, GA
and LMA.

Parameter PSO GA LMA
Iteration best solutiont{,q.) 700 350 950
CPU time (s) 550 345 2189
Unique solutions in

the final population (%) 90 75 -
Accuracy of solutions (%) 95.02 85.1 80.03
Minimun deviation (%) 0.31 1.52 6.03
Maximun deviation (%) 12.34 22.18 34.29
Average deviation (%) 8.22 12.78 18.11

stances used. In this Tabl@&, is the critical temperature,
P. is the critical pressure, andis the acentric factor (taken
from [6]). The details of the experimental vapor-liquid equi-
librium data taken from Refs. 12 to 16 are presented in Ta-
ble IV.

Table V shows the calculated parametefsandj;; us-
ing the PR—vdW + PSO in Eq. (11). Figure 1 shows the
interaction parameters determined with the PSO algorithm.
The results show that the pressures of the ILs in the vapor
phase were correlated with low deviations between experi-

Five binary vapor-liquid phase systems containing supermental and calculated values (average deviatiorj%eX P|
critical fluid with ionic liquids were considered in this study. were below 10%). Figure 2 shows an example of the accu-
Table Il shows the thermodynamic properties of the sub-racy of the proposed thermodynamic model to describe the
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FIGURE 3. Comparison between PSQ)), GA (O), and LMA (A)
. _ . optimizations used on all systems of this study. In this figure, the
Betha ij 0.1 -05 Alpha ij systems are listed as in Table V.

FIGURE 1. Deviation obtained for the interaction parameters by

minimizing the objective function. three algorithms for all systems, and to evaluate the quality

of the entire set of solutions that each algorithm provides. In
general PSO performs better than GA and LMA, with accu-

160 racy of 95% and average deviation below than 10%. Fig-
ure 3 shows a comparison between the PSO algorithm devel-
80 opment in this work, with GA and LMA. This figure shows
the average pressure deviations found with the three algo-
rithms for all the ionic liquids considered in this work. These
60f results represent a tremendous increase in accuracy to predict
A, the phase equilibrium of these complex mixtures and, shows
a0t that the use of the proposed thermodynamic model (PR-vdW
+ PSO) was crucial.
20t
5. Conclusions
a8
00 0.2 04 06 0.8 Based on the results and discussion presented in this study,

x the following main conclusions are obtained: (i) the PR—vdW

FIGURE 2. Calculated (solid line) and experimental (circles) vapor- Model is appropriate to modeling the high—pressure phase

liquid equilibrium at 313 K for the systems: 3 (red), 4 (green), and €quilibrium of binary systems containing supercritical fluids
5 (blue). with ionic liquids; (ii) the PSO algorithm is a good tools for

the calculation of the optimum values for the interaction pa-
VLE of binary systems containing ILs with supercritical flu- rameters used in the proposed model. The results show that
ids. The figure shows experimental and correlated values ahe pressures of the ILs in the vapor phase were correlated
VLE for three systems used in this study. with low deviations between experimental and calculated val-

A comparison was made between of the results obtainedes.

with the PSO algorithm and the results obtained with an-
other two algorithms: genetic algorithm (GA) [17], and
Levenberg—Marquart algorithm (LMA) [18]. Note that, GA Acknowledgments
and LMA are commonly used in these problems. Table VI
shows the mean values of the above variables of interest forhis work was partially supported by the Direction of Re-
these three algorithms. In this table, the best variables wergearch of the University of La Serena (DIULS), and the De-
calculated as an average of the best solution found by theartment of Physics of the University of La Serena (DFULS).

Rev. Mex. Fis58(2012) 510-514



514

[N

. Q. Dou,J. Phys. Condens. Matt&3(2011) 175001.
. J.A. Lazas,Int. J. Thermophys30 (2009) 883.

. L. Palma-Chilla, J.A. Lazzs and A.A. Rrez Ponce). Eng.
Thermophys20 (2011) 487.

. W. Ren, B. Sensenich and A.M. Scurtb,Chem. Thermodyn.

42(2010) 305.

. P.F. Arce, P.A. Robles, T.A. Graber and M. Azrialyid Phase
Equilib. 295(2010) 9.

J.A. Lazdis, A.A. Ferez Ponce and L. Palma-Chill&]uid
Phase Equilib317(2012) 132.

D.Y. Peng and D.B. Robinsorind. Eng. Chem. Fundl15
(1976) 59.

J.A. Lazdis,J. Eng. Thermophy20 (2009) 306.

9. Y. Jiang, T. Hu, C.C. Huang, and X. Wappl. Math. Comput.

193(2007) 231.

10.
11.
12.
13.
14.
15.

16.

17.

18.

J.A. LAZZUS

J.A. Lazdis,Comput. Math. Appl60 (2010) 2260.

T. Da and G. XiurunNeurocomputing3 (2005) 527.

A. Shariati and C.J. Peter, Supercrit. Fluid225 (2003) 109.
A. Shariati and C.J. Peter, Supercrit. Fluid29 (2004) 43.
A. Shariati and C.J. Peter, Supercrit. Fluids30 (2004) 139.

S. Hwang, Y. Park, and K. Parkl. Chem. Thermodyrd3
(2011) 339.

K.L. Gutkowski, A. Shariati, and C.J. Peteds,Supercrit. Flu-
ids 39 (2006) 187.

J. Holland,Adaptation in Natural and Artificial Systenggni-
versity of Michigan Press, USA, 1975).

M. Reilly, Computer Programs for Chemical Engineering Ed-
ucation(Sterling Swift, Texas, 1972).

Rev. Mex. Fis58(2012) 510-514



