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Optimization of a cubic equation of state and van der Waals mixing rules for
modeling the phase behavior of complex mixtures
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A thermodynamic modeling for the vapor–liquid equilibrium of binary systems of supercritical fluids and ionic liquids is presented. The van
der Waals mixing rules and a cubic equation of state are used to evaluate the fugacity coefficient on the systems. Then, a particle swarm
algorithm was used to minimize the difference between calculated and experimental bubble pressure, and calculate the interaction parameters
for all systems used. The results show that the bubble pressures were correlated with low deviations between experimental and calculated
values. These deviations show that the proposed model is a good technique to optimize the interaction parameters of the phase equilibrium
of binary systems containing supercritical fluids and ionic liquids.
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1. Introduction

In the last years, the ionic liquids (ILs) have been the ob-
ject of increasing attention due to their unique physicochem-
ical properties [1]. ILs are organic salts composed of cations
and anions that are liquid at conditions around room temper-
ature [2].

Phase equilibrium data of mixtures containing ILs are
necessary for further development of some separation pro-
cesses [3]. The gas solubilities data provides important in-
formation for the characterization of solutesolvent interac-
tions and so contribute to understand the mechanisms of
dissolution. From a practical point of view, gas solubility
can be useful in the calculation of vapor–liquid equilibrium
(VLE) [4].

On this line, VLE data for binary systems including ionic
liquids, although essential for the design and operation of
separation processes, are still scarce. Various models have
been used to correlate experimental data of phase equilibria
of these systems [3]. One of the common approaches used
in the literature to correlate and predict phase equilibrium re-
quires an equation of state (EoS) that well relates the vari-
ables temperature, pressure and volume and appropriate mix-
ing rules to express the dependence of the equation of state
parameters on the concentration [5].

2. Thermodynamic formulation

The most common and industrially important EoS are the cu-
bic equations derived from van der Waals EoS; among these,
the Peng–Robinson equation (PR) has proven to combine the
simplicity and accuracy required for the prediction and corre-
lation of volumetric and thermodynamic properties of several
fluids [6].

The PR EoS was expressed as follows [7]:
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For mixtures, the parametersa and b are expressed as
functions of the concentration of the different components in
the mixture, through the so-called mixing rules. Until recent
years, most of the applications of EoS to mixtures considered
the use of the classical van der Waals mixing rules (vdW),
with the inclusion of an interaction parameter for the force
constanta and volume constantb. The PR EoS for a mixture
is:
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V − bm
+

am

V (V + bm) + bm (V − bm)
(6)

And the classical van der Waals mixing rules are [3]:
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the combining rules foraij andbij , with interaction parame-
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ters for the force and volume constants, are:

aij =
√

aiaj (1− αij) (9)

bij =
bi + bj

2
(1− βij) (10)

where the parametersαij and βij in the above combining
rules are calculated by regression analysis of experimental
phase equilibrium data.

Then, the problem is reduced here to determine the opti-
mal interaction parameters by minimizing the following ob-
jective function in data regression [6]:
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whereND is the number of points in the experimental data
set andP is the pressure of IL in the vapor phase, the super-
script denotes the experimental (exp) data point and calcu-
lated (calc) values.

The existing methods to solve phase equilibrium systems
obtain only local solutions. It has been demonstrated that for
cases of systems containing supercritical fluids, the optimum
values of the interaction parameters depend on the searching
interval and on the initial value of used interaction parame-
ters [8].

Parameter estimation procedures are very important in
engineering, industrial, and chemical process for develop-
ment of mathematical models, since design, optimization and
advanced control of bioprocesses depend on model param-
eter values obtained from experimental data [2]. The use
of heuristic optimization methods, such particle swarm opti-
mization (PSO), for the parameter estimation is very promis-
ing [6]. This biologically-deriver method represents an ex-
cellent alternative to find a global optimum for phase equilib-
rium calculations [3].

3. Particle swarm optimization

The PSO algorithm is initialized with a population of random
particles and the algorithm searches for optima by updating
generations [9]. In a PSO system, each particle is “flown”
through the multidimensional search space, adjusting its po-
sition in search space according to its own experience and
that of neighboring particles. The particle therefore makes
use of the best position encountered by itself and that of its
neighbors to position itself toward an optimal solution [10].
The performance of each particle is evaluated using a prede-
fined fitness function, which encapsulates the characteristics
of the optimization problem [11].

Let s andv denote a particle position and its correspond-
ing velocity in a search space, respectively. Therefore, the
k − th particle is represented in then-dimensional search
space as:

sk =
(
s1

k, s2
k, ..., sn

k

)
(12)

And the current velocity of thek − th particle is repre-
sented as:

vk =
(
v1

k, v2
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k

)
(13)

Let the current personal best position of particlek and
f(s) be the target function which will be minimized.

pk =
(
p1

k, p2
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k

)
(14)

Then the best positionpk is determined by:

pk(t+1)=

{
pk(t), if f(sk(t+1)) ≥ f(pk(t))

sk(t+1), if f(sk(t+1)) < f(pk(t))
(15)

In each iteration, every particle calculates its velocity ac-
cording to the following formula:

vk(t + 1) = wvk(t) + c1r1(pk(t)

− sk(t)) + c2r2(pg(t)− sk(t)) (16)

wheret is the current step number,w is the inertia weight,c1

andc2 are the acceleration constants, andr1, r2 are element
from two randon sequences in the range (0,1). The current
position of the particle is determined bysk(t); pk is the best
one of the solutions this particle has reached,pg is the best
one of the solutions all the particles have reached [10].

The variablew is responsible for dynamically adjusting
the velocity of the particles, so it is responsible for balancing
between local and global search, hence requiring fewer itera-
tions for the algorithm to converge [6]. A low value of inertia
weight implies a local search, while a high value leads to a
global search. Applying a large inertia weight at the start of
the algorithm and making it decay to a small value through
the PSO execution makes the algorithm search globally at the
beginning of the search, and search locally at the end of the
execution [2]. The following weight functionw is used in
Eq. (16):

w = wmax− wmax− wmin

tmax
t (17)

Generally, the value of each component inv can be
clamped to the range [–vmax, vmax] control excessive roaming
of particles outside the search space [10]. After calculating
the velocity, the new position of every particle is:

si (t + 1) = si (t) + vi (t + 1) (18)

The PSO performs repeated applications of the update
equations above until a specified number of iteration has been
exceeded, or until the velocity updates are close to zero [9].
The scheme of the PSO algorithm is presented in detail in
Table I.

4. Results and discussion

PSO algorithm was used for minimize the difference between
calculated and experimental bubble pressure in Eq. (11). Ta-
ble II shows the selected parameters for the PSO algorithm.
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TABLE I. Scheme of the PSO algorithm development in this study.

Step Description

01 Initialize algorithm. Set constants:tmax, vmax, w, c1, c2

02 Randomly initialize the swarm positionssi
0 ∈ Rn for i= 1, . . . ,p

03 Randomly initialize particle velocitiesvi
0 for i = 1, . . . ,p

04 Sett = 1 Evaluate function valuef i
kusing design space coordinatessi

k:

05 If f i
k ≤ f i

best thenf i
best = f i

k, pi
k = si

k If f i
k ≤ fg

best thenfg
best = f i

k, pg
k = si

k

06 If stopping condition is satisfied then stop algorithm

07 Update all particle velocitiesvi
k for i = 1, . . . ,p

08 Update all particle positionssi
k for i = 1, . . . ,p

09 Otherwise sett = t + 1 goes to step 5

TABLE II. Parameters used in the PSO algorithm.

PSO Parameters Value

Number of particles in swarm 100

Number of generations 1000

Cognitive component (c1) 1.49

Social component (c2) 1.49

Maximum velocity (vmax) 12

Minimum inertia weight (wmin) 0.4

Maximum inertia weight (wmax) 0.41

TABLE III. Thermodynamic properties of the substances involved
in this study.

Substance Tc(K) Pc(MPa) ω

[C2mim] [PF6] 663.5 1.95 0.6708

[C2mim][PF4] 585.3 2.36 0.7685

[C6mim][PF6] 754.3 1.55 0.8352

[C8mim][BF4] 726.1 1.60 0.9954

CO2 304.2 7.38 0.2236

CHF3 299.0 4.82 0.2642

TABLE IV. Details on the phase equilibrium data of the five sys-
tems used in this study.

No. System Ref.ND ∆T ∆P ∆x

(K) (MPa)

1 CHF3+[C2mim][PF6] [12] 100 308-363 1-52 0.1-0.9

2 CO2+[C2mim][PF6] [13] 74 313-358 1-97 0.1-0.6

3 CO2+[C6mim][PF6] [14] 98 308-359 1-95 0.1-0.7

4 CO2+[C2mim][BF4] [15] 40 303-323 2-13 0.1-0.6

5 CO2+[C8mim][BF4] [16] 99 308-363 1-85 0.1-0.8

Five binary vapor-liquid phase systems containing super-
critical fluid with ionic liquids were considered in this study.
Table III shows the thermodynamic properties of the sub-

TABLE V. Interaction parameters calculated with the PSO algo-
rithm.

System αij βij |%∆P |
1 -0.01302 -0.06598 9.8

2 -0.11921 -0.09741 8.6

3 0.04798 -0.01030 6.4

4 0.12064 -0.05809 6.8

5 0.48241 -0.01463 9.5

TABLE VI. Mean values of the variables of interest for PSO, GA
and LMA.

Parameter PSO GA LMA

Iteration best solution (tmax) 700 350 950

CPU time (s) 550 345 2189

Unique solutions in

the final population (%) 90 75 –

Accuracy of solutions (%) 95.02 85.1 80.03

Minimun deviation (%) 0.31 1.52 6.03

Maximun deviation (%) 12.34 22.18 34.29

Average deviation (%) 8.22 12.78 18.11

stances used. In this Table,Tc is the critical temperature,
Pc is the critical pressure, andω is the acentric factor (taken
from [6]). The details of the experimental vapor-liquid equi-
librium data taken from Refs. 12 to 16 are presented in Ta-
ble IV.

Table V shows the calculated parametersαij andβij us-
ing the PR–vdW + PSO in Eq. (11). Figure 1 shows the
interaction parameters determined with the PSO algorithm.
The results show that the pressures of the ILs in the vapor
phase were correlated with low deviations between experi-
mental and calculated values (average deviations of|%∆P |
were below 10%). Figure 2 shows an example of the accu-
racy of the proposed thermodynamic model to describe the
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FIGURE 1. Deviation obtained for the interaction parameters by
minimizing the objective function.

FIGURE 2. Calculated (solid line) and experimental (circles) vapor-
liquid equilibrium at 313 K for the systems: 3 (red), 4 (green), and
5 (blue).

VLE of binary systems containing ILs with supercritical flu-
ids. The figure shows experimental and correlated values of
VLE for three systems used in this study.

A comparison was made between of the results obtained
with the PSO algorithm and the results obtained with an-
other two algorithms: genetic algorithm (GA) [17], and
Levenberg–Marquart algorithm (LMA) [18]. Note that, GA
and LMA are commonly used in these problems. Table VI
shows the mean values of the above variables of interest for
these three algorithms. In this table, the best variables were
calculated as an average of the best solution found by the

FIGURE 3. Comparison between PSO (©), GA (¤), and LMA (∆)
optimizations used on all systems of this study. In this figure, the
systems are listed as in Table V.

three algorithms for all systems, and to evaluate the quality
of the entire set of solutions that each algorithm provides. In
general PSO performs better than GA and LMA, with accu-
racy of 95% and average deviation below than 10%. Fig-
ure 3 shows a comparison between the PSO algorithm devel-
opment in this work, with GA and LMA. This figure shows
the average pressure deviations found with the three algo-
rithms for all the ionic liquids considered in this work. These
results represent a tremendous increase in accuracy to predict
the phase equilibrium of these complex mixtures and, shows
that the use of the proposed thermodynamic model (PR-vdW
+ PSO) was crucial.

5. Conclusions

Based on the results and discussion presented in this study,
the following main conclusions are obtained: (i) the PR–vdW
model is appropriate to modeling the high–pressure phase
equilibrium of binary systems containing supercritical fluids
with ionic liquids; (ii) the PSO algorithm is a good tools for
the calculation of the optimum values for the interaction pa-
rameters used in the proposed model. The results show that
the pressures of the ILs in the vapor phase were correlated
with low deviations between experimental and calculated val-
ues.
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