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Using the laws of thermodynamics together with empirical data, we present a qualitative geometric construction of the fundamental relation

of a pure substancg = S(E, N, V), with S entropy,F energy,N number of particles anti volume. We analyze two very general type

of substances, a “normal” and a “quantum” one, the main difference between them being that the latter presents superfluid phases. It is
found that the constant entropy level curves are completely different in both cases, in the normal substances being obtuse while acute in
guantum ones. A concomitant signature of the previous result is that the chemical potential can be both positive and negative in quantum
substances, but only negative in normal ones. Our results suggest the existence of a region in the quantum substances that may be identified
as a supersolid phase. We also make emphasis on the relevance of the present study within the context of superfluidity in ultracold gases.

Keywords: Superfluids; supersolids; thermodynamics; phase diagrams.

Usando las leyes de la termoémica en conjunto con datos efripos, presentamos una constrdgcgeongtrica cualitativa de la relain
fundamental de una sustancia péa= S(E, N,V'), dondeS es la entrofa, E la enerda, N el nUmero de paftulas yV el volumen.
Analizamos dos tipos de sustancias muy generales, una “normal” y otatfca’, siendo la diferencia principal entre ellas el hecho que
la Gltima presenta fases superfluidas. Se encuentra que las curvas de nivel da eommsfante son completamente diferentes entre ambos
casos, siendo obtusas para las sustancias normales y agudas pagdatiaasuUna propiedad concomitante al hecho anterior es que en la
sustancias @nticas el potencial gmico puede ser tanto negativo como positivo, mientras que en las normales el poteintied giempre

es negativo. Nuestros resultados sugieren la existencia de uba eglas sustancias @&nticas que puede ser identificada como una fase
superslida. Enfatizamos tambn la relevancia del presente estudio en el contexto de la superfluidez de los gaséssultrafr

Descriptores: Superfluidez; supersolidez; termodmica; diagramas de fase.

PACS: 05.70.-a,64.10.+h,67.10.-j,67.80.bd,67.85.-d

1. Introduction E, number of particlesV and volumeV. However, since
entropy is also extensive, it can be written%s= Vs(e,n)

While the elucidation of equations of state and susceptibilWherés = S/V, e = E/V andn = N/V, namely, volume
ities of pure substances, both theoretically and experimerfl€nsities of entropy, energy and number of particles. There-
tally, is vigorously pursued due to their immediate relevancd©re the task we perform is the geometric construction of
in basic and applied research, rarely one finds analysis of fur. = (¢;72), a single valued surface, function of two vari-
damental thermodynamic relations which, if known, would 2P!es onlye andn. As we review below, as dictated by ther-
allow for the knowledge in turn of all thermodynamic prop- Modynamics, the function is not only single valued, it is
erties [1, 2]. Indeed, if getting hold of equations of state and?!SC concave in both variablesandn. The difficulty, as we
susceptibilities, such as isothermal expansions and specifﬁba" see, resides in the (?orrect Ioca]lzatlon of the different
heats, is already difficult, the construction of a fundamentaPh@ses. The reward of this construction, as we have already
relation appears as an even harder endeavor. Neverthele§&ntioned, is that the knowledge of= s(e,n) completely
this can be done qualitatively if, on the one hand one knowsuffices to determinall the thermodynamic properties of the
empirical data in the form of measured phase diagrams angubstance.

on the other, one makes use of the power of the laws of ther- |, gec. 2 we present generic empirigat- 7 phase di-

modynamics. This is not just an academic exercise. As W&grams, based on the measured phase diagrams of Ar and
shall see, the fundamental relation indicates features that ang;q [3-6]. The generic substance based on Ar will be termed
absentin usual phase diagrams, sugh-a# diagrams wittp  «normal”; while the one related tdHe will be called “quan-
pressure and’ temperature. These features allows us to posg,m» que to the presence of the superfluid phase. An ultimate
restrlctlons' poth in theoretical models as well as in measUrynderstanding of both diagrams certainly requires the use of
able quantities. Furthermore, the fundamental relation may antum mechanics but it is the nature of superfluidity that
also indicate the existence of phases, with their own assoc‘s:uggested to us the use of those adjectives. The main pur-
ated phenomena, that have not been measured or not lookgfse of Sec. 2 is to indicate the main features of the phases
for. as well as the order of the different phase transitions. We take

The fundamental relation that we address in this article ighis as “empirical” data on which our further analysis will be
the entropysS as a function of the extensive variables energybased.
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Section 3 is devoted to a brief review of the laws of p a)
thermodynamics and their implications on the geometric and

topological characteristics of the surface- s(e,n). In par-
ticular, we shall consider systems whose energy spectra is
unbounded from above, since the molecular kinetic energy is
always present in the considered systems and, therefore, the
temperature will be considered positive always> 0 [1].

Strictly speaking]” = 0 is banned by the Third Law. Further, liquid
we shall make an strong emphasis that although, in principle, .
the chemical potential can be expressed with respect to an solid (Tc, pc)

arbitrary reference, we can fix this reference by imposing that

in the limit of arbitrarily low particle densities; — 0, the

substance must obey the thermodynamics of a classical ideal

gas. This will give a clear meaning to the sign of the chemical (Tt, pt)

potential.
Sections 4 and 5 discuss in detail the construction of the gas

surfacess = s(e,n) for the normal and the quantum sub- T

stances respectively. We will emphasize the crucial fact that, b)

within the convention used, the chemical potential is always P

negative for normal substances while it can change sign in

the quantum one. This will also be reflected in the geomet-

ric characteristics of the entropy level surfaces, being obtuse

in the normal case and acute in the quantum version. As an

important consequence, it will be shown that the superfluid (T, Pu)

phase occurs mostly in the region of positive chemical poten- liquid

tial and, as we will further argue, there appears a region in / (Te; pe)

the solid phase with positive chemical potential which may

be identified as a supersolid “phase” [8-12]. We conclude in e

Sec. 6 with a set of Final Remarks. -

solid

superfluid (Tx, p»)
Ay P

2. Thermodynamic phenomenology of a pure
substance

A pure substance, composed of a sole chemical compound, T
can be found n the form of solid, liquid, gas, .superflwd or FIGURE 1. (Color online) Generip—T phase diagrams for normal
in phase coexistence of the former. We Consider 23 typICa(la) and quantum (b) substances. Diagrams are not drawn to scale.
examples of pure sgbstances asOh Ar, CO_Z’ He, “He, . According to Ref. 3, the coordinates of the triple (solid black) and
among others, of which an abundant experimental data eXisSfye critical (empty black) points of Argon ardy( = 83.804 K,
Gravitational, electric and magnetic effects will not be con-,, — 0.06895 MPa) and . = 150.6633 K, p. = 4.860 MPa),
sidered in the thermodynamic description of a pure substanc@spectively. In the case dHe, there are three isolated points: two
here. of them (solid black) are the ends of theline, which is the line

For the sake of simplicity, we classify the pure substanceseparating the liquid and the superfluid phases; the other is the criti-
according to their quantum characteristics into normal and@! point (empty black). From Refs. 40 6, the coordinates of these
quantum substances. Microscopic descriptions of normal an@oints are . = 1.7633 K, p, = 3.01340 MPa), (I = 2.1720K,
guantum substances assume intermolecular interaction pg-* N 0'.00504 MPa) gnd (- = 5'2014 K, pe = 0'22746 MPa),

respectively. The point of the highest temperature inXHme is

tentials, typically pairwise. Normal substances can be ObE:alled the\-point, and the point of the lowest temperature could be

served in solid, liquid and gas phases. Additionally, duecaIIed the upper-triple point [5, 6] because it could represent ther-

to particular qualities of the intermoleculgr potential [4-6], modynamic equilibrium between the superfluid, solid and liquid
quantum substances can be observed in one more phasfases.

namely, the superfluid phase. That is, we denote as “quan-

tum” substances to the aforementioned by the fact that supeinsulator, or even a magnet, but here we shall mainly be con-
fluidity is a macroscopic quantum phenomenon, describederned with the shared thermodynamic characteristitslef
primarily in the context of many-body quantum theory, see*He, and the recent ultracold alkali vapors, both bosonic,
e.g.Ref. 13. There are other systems that can be called quasuch as”Rb, 23Na, “Li [14—17], and fermionic, such &4

tum substances as well, for example, a Fermi gas, a Motand*’K [18-20].
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Figure 1 shows generie — 7" diagrams of (a) a normal The Second Law of Thermodynamics asserts that the en-
substance and (b) a quantum one. Although stylized for ditropy s = s(e,n) is a concave function of its variables,
dactical purposes, those diagrams are based on the expenamely,
mental phase diagrams of Ar addle [3—-6]. According to (8%)

: : : 5] <0 4
the Gibbs phase rule, areas in a phase diagram correspond oe? )
to a unique phase in equilibrium and lines to the coexistencgng
between two phases. Isolated points in the diagram corre- ) ( 9%s )
sponds either to a triple point or to a critical point. In the <as) _ \o%edn) < 0. (5)
figure caption we specify the actual values of all those rel- on?J, (%)n
evant pressures and temperatures. As we will explicitly do  These inequalities establish the stability of the thermody-
so in Secs. 4 and 5, these phase diagrams will allow us tAamic states [1,2]. The first condition is equivalent to stat-
construct the fundamental relationship= s(e, n). ing that the specific heat at constant volumeis positive,

It is well known that for a normal substance, with the ex-whereas the second one that the isothermal compressibility
ception of the critical point that is a continuous second ordef is also positive,
phase transition, all the coexistence curves represent discon- 99 1 /om
tinuous first order phase transitions. For the quantum sub- ¢, =T () >0 and k= — () >0. (6)
stance, it is also known [4-7] that the liquid-solid, liquid-gas ar/, n\0op/r
and superfluid-solid are first order phase transitions. The critywwhen any of these conditions is not met, the system suffers a
ical point and thex—line liquid-superfluid are second order phase transition to enforce stability.
phase transitions. Although féHe there are references, such  Phase transitions are classified into first and second order.
as Refs. 21 to 23, that suggest that the coexistence curve gag-a first order phase transition the extensive quantitjes
superfluid is first order, there are no experimental data conandwv are discontinuous while the intensive orfgésp and i
firming this is the case. On the other hand, all the recent exare always continuous. In a second order phase transition all
perimental and theoretical work on the fermionic and bosonighe variables are continuous but the remarkable characteris-
degenerate ultracold gases, that suffer a gas-superfluid transic of these transitions is that, typically, the specific heat and
tion [17,24], indicate that such a transition is similar to the  the isothermal compressibility become infinite at the transi-
transition and, therefore, that it is second order. Thus, withtion. The main lesson from this behavior is that the function
out affecting our overall conclusions, we shall also considek = s(e,n) is not analytic at critical points [23, 25, 26]. For
that such a transition is indeed second order. the purposes of our geometric construction we shall use, with

no loss of generality, that singcer — oo at critical points,
) ) . this implies tha{dp/dn)r — 0 at those points. That is, the
3. Thermodynamic laws and their restrictions  jsothermal curves — constantp vsn become flat at second
ons = s(e,n) order phase transitions but remain monotonically increasing
at any other thermodynamic state.
Besides the assumed fact that thermodynamics describes sjnce we are dealing with systems whose energy spectra
equilibrium states only, it is very important to emphasize atare unbounded from above, negative temperatures are ruled
the outset that a given value of the set of variaflesN, V') out [1, 27, 28] and, therefore, the Third Law can simply be
of a pure substance uniquely specifies an equilibrium statexpressed as the requirement that the temperature is always
Therefore, the entropy functiofi(£, N,V) = Vs(e,n)is  positive, T > 0. Zero temperature can be considered as a
a single valued function of its variables. In the same fashiimijt only and, as we shall see, this will also be reflected in
ion, any Legendre transform &f(E, N, V'), sayV by p or  the form of the surface = s(e,n). Due to the identifica-

N by p, is also a single valued fundamental relation bearingion of temperature by the first of Egs. (2), this implies that
the same information just in the transformed variables [1, 2]the isochores curves, = constants vs e are monotonously

Here, we concentrate on the relatior- s(e, n). increasing with their slope becoming infiniteZat— 0.
The First Law of Thermodynamics is, A most important issue is the sign of the chemical poten-
1 tial . On the one hand, there is no thermodynamic law that
ds = —de — ﬁdm (1)  bears an implication on such an issue. At most, the Second
T T Law requires the surface = s(e,n) to be concave but this
which indicates that does not imply that the isoenergetic curvess constant,s
vs n_have to be monotonously increasing, see Eqs. (2), (4)
1 (35> and P _ <35) (2y and (5). On the other hand, it is commonly believed that
T \Oe n T on), the chemical potential can only be defined up to an arbitrary

constant since the origin of the energy can also be arbitrar-

The extensitivity ofS = V's(e,n) implies that the pressure ly fixed. This constant, however, can indeed be fixed for
is given by, atomic substances by imposing that in the limit of a very
p=Ts—e+ un. (3) dilute system;n — 0, the system approaches an ideal gas
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whose energy can be taken as definite positive since it arisesill distinctly shape the surfaces= s(e, n) for normal and
from the atomic kinetic energy only. From a thermodynamicquantum substances.

point of view, we can impose that in the normal gas region

of the phase diagram, as— 0, the entropy of the gas must ] )

approach [1] 4. Entropy construction of a generic normal

substance

k1 1 (4mme\*? 5 7

s(e,n) =k qIn n ( 3h? n) + 2 ) The logical stages in the construction of the phase diagrams
o o . that represent the function= s(e, n) of the normal and the

which is the classical ideal gas expression for a system of gantum substance are the same. First, we assume the phase

non interacting atoms of mass. In the above expressidn  giagramp — T as given, as shown in Fig. 1. Then, we map

andh are Boltzmann and Planck constants. This restrictionne corresponding isotherms onto the n diagram. These

also fixes the pressure to become- nkT and the energy can also be checked with available experimental data [3] and

e — (3/2)nkT in the limitn — 0 for fixed temperature. ith the predictions of van der Waals model. Third, we use

Clearly, with this condition, the energy of the gas phase isne pehavior of the density of the system in then diagram

limited to have positive values only. Because of the identi-55 5 guide to infer the structure of the n diagram. The very

fication of the chemical potential by the second of EGs. (2)4ast stage consists in mapping the isoenergetic curves in the
and becaus#' > 0, the reference of the chemical potential is , _ , diagram onto corresponding ones in the e diagram.

also fixed, becoming negative in the mentioned limit- 0. The last two diagrams; — n ands — ¢, can be summarized
To look further into the sign of the chemical potential re- j, 31, — ¢ diagram with isentropic curves= constant.

call that, according to statistical physics, the entropy is given  a¢ qescribed above. we start with the- T diagram of a

by [1], normal substance in Fig. 2(a). Consider an isothermal curve
S(E,N,V) = kInQ(E,V,N) (8) 7 — constant. This is represented by a vertical line that can
whereQ(E,V, N) is the number of states of the system for cross one or two coexistence lines, see Fig. 2(a) where 5 typ-
given values of £, V, N). The thermodynamic limit is as- ical isotherms are plotted. Figure 2(b) shows the correspond-
sumed to be taken. Thus, for a fixed value of the energy peng diagramp — n. This diagram is also well known, as can
volumee = E/V = constant, a negative sign of the chem- be found in usual thermodynamics textbooks [21], but it can
ical potential implies that the number of states increases a&lso be constructed from the— 7" diagram and the restric-
the particle densitys = N/V also increases, see Eq. (2). tions from the laws of thermodynamics. We highlight several
Conversely, a positive, signals that the number of states aspects. First, the isotherms have the same pressure at coex-
decreasesvhen particle density: increases. The first be- istence. Second, we empirically set the slope of the isotherms
havior is the common one in classical systems since, even it coexistence being higher in the denser state. And third, the
the energy per particle/n diminishes, the fact that there are solid phase is assumed to asymptotically reach zero pressure
more particles implies a larger number of available states. Ot infinite densityn, consistently with the presumption that
course, as the number of particles increases even further, tiseich a solid can occur at zero temperature only and in coex-
increase of entropy will still do so but at a slower rate. Theistence with a gas at zero density, namely, an “unatainable”
extreme case of positive chemical potential implies that as thetate. The most important aspect of this figure, but also a well
energy per particle decreases the number of available statbsown result, is the existence ahstableregions where no
also decreases. This implies a kind of “condensation” thaequilibrium states occur. These are the shaded areas in the
can only be explained within the use of quantum mechanfigures.
ics. This is the common behavior of ideal Bose and Fermi  The unstable states actually do not “exist” and, therefore,
gases [1, 29], as well of those weakly interacting ones, age cannot assign a value for any of the variables n, etc,
given by BCS [13, 30] and Bogoliubov [17, 31] theories: all in those regions. This is very important for the construction
of these do show a positive chemical potential. The reasonf the phase diagram— »n and, ultimately, for the — e one.
behind such a behavior is that, as the entropy decreases wilthat is, from diagranp — n we can construct—n, Fig. 2(c),
even larger densities, there exists a limiting valuendbr using as guides the coexistence regions. As can be checked
which the entropy becomes zero= 0. That s, for the given  from models, such as van der Waals, and from experimen-
fixed value ofe, such an extreme value afcorresponds to tal data [3], at coexistence the entrgpsr volumes = S/V
the quantum ground state of the system. is higher in the denser coexistence region; if one considers
Because classical ideal gases, models such as van dentropies per mole, the inequalities are inverted. Thus, in
Waals, and ideal quantum gases present negative chenihe triple point the entropy per volumseis lowest in the gas
cal potentials before quantum effects set in (such as Bosgshase and highest in the solid one. The task here is to trace
Einstein condensation and Fermi degeneracy [1, 29]), wésoenergetic curves = constant in the diagram — n. We
shall make a working hypothesis that, as it will be shown,have two initial restrictions, first, those curves must be con-
it is a correct one, namely, that in the gas phase the chentave and, second, they cannot cross sineee(s, n) is also a
ical potential is always negative. As we will see, this factfundamental relation [2]. And here it comes the fundamental
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FIGURE 2. (Color online) Generic phase diagrams for a normal substance. (g FH€ diagram is based on empirical data [3]. (b) We
infer the structure of the — n diagram from the structure @f— 7" and also from empirical data. The isotherms are qualitative and must obey
the linearity of the ideal gas equation in the dilute regime. Note that the critical isotherm is flat at the critical point. {¢} Thdiagram is

built accordingly to the behaviour of the density and of the coexistence regions jin-the phase diagram. (d) Then, we obtain the e
diagram from the previous step. In both (c) and (d), we plot the same isochetenstant and isoenergeties= constant.

issue that the slope of the isoenergetics equalgT’, with ertheless, from the illustration of Fig. 2(c), we find that be-

T > 0. The immediate consequence is that the isoenergetause of the existence of the unstable region and because the
ics at coexistence, while they correspond to different valuesaturated gas curve must be much steeper than the saturated
of energy, must have the same slope, sipceandT must  solid one, the slope of the isoenergetics at the solid-gas co-
be continuous. Now, since we are assuming that at vergxistence states, in order to have the same value, must have
low densities the ideal gas is always reached, the chemicalositive slope, namely negative chemical potential, otherwise
potential starts as negative and, therefore, the isoenergetitisey would either point into the unstable region or they would
start concave but with positive slopesat= 0. The ques- eventually cross. The extraordinary conclusion is that, for a
tion is whether the isoenergetics reach the coexistence ling®rmal substance the isoenergetic curves are all concave and
with positive or negative slope. Again, from van der Waalsmonotonously increasing functios®f n. Thatis, the chemi-
model, one can check that chemical potential is negative iical potential is always negative for normal substances. As we
the gas-liquid coexistence states. However, for the gas-solidill see below, the “intrusion” of the superfluid phase into the
coexistence states one does not have a reliable model. Neunstable gas-solid region makes it necessary the appearance
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of positive chemical potentials and, thus, the whole structure
of the surfaces = s(e,n) for a quantum substance will be
completely different than in the normal ones.

From the diagrans — n, Fig. 2(c), we can now con-
struct thes — e diagram, as shown in Fig. 2(d). Here,
we have at the outset two strong restrictions, the isochores,
n = constant,s vs e must not only be concave but because
their slope is the inverse of the temperature, see Eq. (2), they
must be monotonic. The only delicate point is that, since we
assume that for arbitrary temperature one can always lower
the density to extreme small values, the energy in this limit
must reacke ~ nkT. This implies that the gas phase must
end at zero energy, setting thus its origin. This right away
implies that the low entropy solid phase must have negative
energy. However, nothing prevents the solid to have positive
energy at higher entropies, or the liquid phase to have neg-
ative energies either. It i_S thereforg not very Comp!icated tq:IGURE 3. (Color online) Isentropic level curves= constant in
conclude that the — e diagram, with the help of diagram 5, _ ¢ plane. Heres; < s. < s2 < s5 are drawn qualitatively.

s — n, appears as such. In this diagram, we have plotted se\jote that in an adiabatic compression or expansion the energy is
eral isochores to match the corresponding points values in th&onotonous. Moreover, the tangent asymptotes to the isentropic
s — n diagram. curves,(n — oo,e — —oo) and(n — 0,e — oo), form an angle

The diagramss — n and s — e define the surface = greater thanr/2, namely, the adiabatic curves are all obtuse. Note
s(e,n). In order to gain a bit more insight on such a surface,also that the normal vectors have all negative components.
we can draw isentropic (= constant) level curves inia— e
diagram. For this, we first calculate the normal vectors to th&€0existent states at a first order phase transition, say:
surface, placing energyalongz, n alongy ands alongz,  s(e1,n1) andsz = s(ez, n2) have parallel tangent planes,
in conventional cartesian coordinates. Using dimensionles@hich yield equal temperatur® and chemical potentiat,
units, say using the gas-liquid critical point as reference, thé@nd their precise location is further determined by the fact

normal unit vectors of the surface= s(e, n) are given by, ~ thatthey also have the same pressure, nampelye, —T's, +
puny andp = es — T'ss + uny. This makes the “sewing” of

n= I S (=1, 1, 7). (9) thesurfaces of the different phases. The critical point is pecu-
V2 +T?+1 liar since the coexisting planes become closer and closer and
Thus, along the adiabatic curvese,n) = constant, finally merge in the same plane at the critical point. Thus,

the normal components in the plane—e, namely, it seems, the surface = s(e,n) must be flat at the critical

—1/(u24+T2+1)1/2 along e and u/(u2+T2+1)1/2 along ~ Point. This represents a “suture” of two different surfaces and
n, always point in the negative directions becayse0.  the matching cannot be made analytically in general. This
Thus, the isentropic, or adiabatic, curves are ali- flatness of the surfaces at the critical point is an indication
tuse This is illustrated in Fig. 3, where we plot sev- Of the divergence of the specific heat and of the isothermal

eral level curves ofs = constant. The extreme curve compressibility.

s = 0, which is degenerated with' = 0, is reached with

infinite slope in the gas phase, with zero density, and it is ) )

never reached in the solid phase. This property of the iser®. Entropy construction of a generic quantum

tropic curve indicates that in any adiabatic process the energy  substance

monotonically either increases or decreases, and the temper-

ature always increases or decreases as well, properties tha@amalogous to the previous section, the goal here is the geo-

can experimentally be checked. metric construction of the surfage= s(e, n) for a quantum
Although surfaces plotted in 2D-planes never do justice tasubstance whose genegic— 7' phase diagram is given in

the richness of a 3D object, one can gain further informatiorig. 1(b). As mentioned before, the main characteristics of

using the normal vectdi given by Eq. (9). The main aspect this diagram follow the properties 6He, see Refs. 32 to 36.

we want to highlight is that, while the surfase= s(e,n) is  The procedure, in principle, is the same as for a normal sub-

certainly smooth, it cannot be covered continuously with thestance. From thg — T" diagram we construct the— n dia-

same surface, that is, it is actually formed by patches of surgram, then the — n one, and finallys — e, as illustrated in

faces, with “holes” on it, representing the inexistent unstabld-ig. 4. The last two are the corresponding projections of the

states. At any point on the surface one can set a local tangestirfaces = s(e,n). From the latter, we can plot isentropic

plane whose normal is defined by the temperafuand the  curves in the: — e plane to illustrate that for a quantum sub-

chemical potentigl:, as given by Eq. (9). Two different co- stance those curves are “acute”, see Fig. 5. As we shall dis-
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FIGURE 4. (Color online) Generic phase diagrams for a quantum substance.—(d) diagram based on empirical data [4—6]. b} n
diagram based on the— 7" one. The states below the lifé= 0 are non-existent. Note that the isotherms cross each other in the vicinity
of the A-line, see text for explanation. (6)— n diagram built based on the behavior of the density and the coexistence regiong it the
diagram. The isoenergetic curves are all non-monotonics (de diagram based on the previous diagram. In both (c) and (d), we plot the

same isochores = constant and isoenergeties= constant.

cuss, a section of the solid phase shows “quantum” propertigzarameter is the complex condensate wavefunction, its conju-

that makes it a candidate for the supersolid phase [8-12]. gate field is unknown [23]. This prevents from obtaining the
critical behavior of all thermodynamic properties across the

Regarding the B T diagram in F|g._ 4(a), we f‘?ca” ONCE 4ransition. Nevertheless, there is no doubt that the entropy
more that the coexistence curves solid-superfluid and solidg, \ tion s — s(e,n) is non analytic at thev-line, and for
I|qU|q are f'r.St ord_e.r. The_ same fo_r the I|qu|d-yapqr CUVe our purposes this suffices for prescribing that the isothermal
terminating in a critical point. Tha-line, separating liquid- compressibility diverges there. Thus, this allows us to draw
superfluid, is a line of second order phase transitions. Thig . i itherms as flat when crossing theline. For the tran-
transition h".is been egtensively studied, both experimentallgition gas-superfluid we will also assume that such a line is
and theoretically, anq I has.been conc_ludeq .that itbelongs 13,4 of critical points, and if so, in the same universality class
the 3D XY-modef universalty class with critical EXPONeNtS 45 theA-transition. This assumption is further validated by
a = —0.0127 [37-39] and = 0.6717 [40]. The usual diffi- o hopavior of the ideal Bose gas [41] and by the recent ex-
culty with this transition is that while the corresponding order
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periments in ultracold gases, which show that the transitiomeduced from the = 0 superfluid state, keeping the energy
gas to superfluid is indeed second order [42, 43]. We insistixed, the entropy must increase and, therefore, the curve
once more that it is not mandatory that the gas-superfluid bes n must have a negative slope in the vicinity of= 0.
second order. If it were first order, the details of the phaséhat is, its chemical potential must be positiye;> 0. This
diagrams would change, but not the main conclusions sincshould not be surprising, Bogoliubov theory of atomic Bose
these follow from the mere existence of the superfluid phassuperfluidity [31] and BCS theory of atomic Fermi superflu-
and not from the order of the phase transitions. We also pointity [30] both show positive chemical potentials near and at
out that there are two triple points, a lower one connectingzero temperature. It is interesting to find that the ideal Fermi
vapor, liquid and superfluid, and the upper one with solid,gas curves vsn ate = constant also all show a maximum
superfluid and liquid. and are all similar to the curvg in Fig. 4(c) [44]. The pre-

For the construction of the — n diagram, Fig. 4(b), spe- Vious argument indicates that there exists a point where the
cial care must be taken due to the existence of the superfluiclrves vsn ate constant reaches a maximum, namely, when
phase. These states have the property of remaining fluid, witthe chemical potential becomes zeios 0.
finite density, even &' = 0 (s = 0). From the thermody- The final phase diagram— e, shown in Fig. 4(d), can
namic point of view, the temperatufe = 0 is unreachable be constructed from the — n diagram and taking into ac-
because the zero isotherm and zero isentropic curves are desunt that the isochores; = constant,s vs e must be
generate and do not cross any other isoth@rgd 0, neither  monotonously concave sinéé > 0. The diagrams — e
any isentropic # 0 curves. That is, it would take an infinite appears extremely complex because the isoenergetic vertical
number of steps to reach tlie= 0 state. But the state does lines fold over themselves. That is, there are no states above
“exist”: itis the ground state for the corresponding number ofthe liney = 0. This defines the locus of the local maxima of
atoms. As a consequence of this, the isoth&rm 0 inthe  all isoenergetic curves. Nevertheless, with care and patience,
p — n diagram, first of all, occurs for all (finite) values af  one can find the main features shown in the diagram, in par-
and, second, it limits the existence of thermodynamic stateScular, one sees that the isochores curves cross each other.
to lower values of the corresponding presspfe, 7 = 0).  Again, this does not represent any problem since the single-
Thus, in Fig. 4(b), the states in the shaded region below thgaluedness of = s(e,n) is always ensured. That is, the
T = 0 line are not “unstable”, it is simply meaningless to multivaluedness of the functiom = n(s, ¢) does not violate
speak of them. As can also be seen from Fig. 4(b), there ar@ny law sincee ands are inverse functions of each other at
isotherms that can cross from the gas to the superfluid, them = constant. In other words, the functien= n(s, e) is not
to the liquid and finally to the solid phase. These isothermsx fundamental relationship.
cross each other in the vicinity of theline, namely, in the In Fig. 5 we show a condensed, yet simpler version of
transition between liquid and superfluid. Such a crossinghe surfaces = s(e,n). This figure show isentropic curves
of different isotherms does not violate any law, it is simply s = constant in & — e diagram, similarly to the diagram in
a consequence that the slope of théine is “anomalous”, Fig. 3 of the normal substance. The main feature is that the
namely, it is negative, just as in the solid-liquid transition lineisentropic curves are all acute, with their vertices or turning
in water where the isotherms also cross. points ati, = 0. This can be seen by analyzing the normal

The crucial difference between a quantum and a normatectorsin ~ (—1,u,T) to the surfaces = s(e,n), using
substances appears in the construction ofsthen diagram  Eg. (9) (withe alongz, n alongy ands alongz). One conse-
in Fig. 4(c). In our search for the relationship= s(e, n), quence is that adiabatic processes in these substances, being
we need to draw curves at constant eneegy; constant, in  non-monotonic in density are also non monotonic in temper-
the s — n diagram. Thus, the appearance of the superfluidature. A second consequence is that the limiting cusves)
with states even as — 0 (I" — 0), makes it necessary that are both reached with infinite slope. Again, the appearance of
the curvess vs n at constant, while always concave, nec- a superfluid modifies profoundly the whole entropy surface
essarily are not monotonic. That is, the isoenergetic curvewith respect to a normal substance, as a direct comparison
increase, initiating frons = 0 in the gas phase, then reach between Figs. 3 and 5 show.

a maximum, to finally decrease againste= 0 in the super- Although there is no a priori reason to consider that the
fluid or solid phases. This is best seen by considering a curviine of states with, = 0 represents a change in the thermody-

s vsn at very low energy in the vicinity of the transition gas namic properties, such as in a phase transition, it does appear
to superfluid, see curve in Fig. 4(c). As we have argued to signal a kind of crossover between “normal” and “quan-
before, in the limit, — 0 ands — 0, the gas must approach tum” behaviors, as suggested in Sec. 2. That ig, & 0,

an ideal gas. In such a case, the chemical potential is neg#ie entropy increases with increasing density, at fixed tem-
tive, u < 0, namely,s vs n has a positive slope in the gas perature, a behavior that is in agreement with typical systems
phase, see Eg. (2). On the other hand, at such a fixed energyheying classical mechanics: more particles, more entropy.
we know that there must be a number of particles for whichHowever, in the extreme case in which systems can be arbi-
the given energy equals their many-body ground state energgrarily close tal" = 0, those systems are in quantum degener-
Such a state is superfluid and has zero entropy. Since thate states, and it must be the opposite: increasing the number
curve must be concave, as the number of particles is slightlpf particles reduces the number of states since the energy per
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//// / T3

FIGURE 5. (Color online) Adiabatics in a quantum vs e phase
diagram. We draw two types of normal vectors, those with nega-
tive components, and those whose components have different sign. ) ] o
Thus, the adiabatic processes showed, expansion or compressiofi! URE 6. (Color online) Isotherms in the —n projection for the
have thermodynamic states with < 0 (#.), and another with ~ duantum case. Herg, < T3 < T3. Note that we can distinguish

1 > 0 (f,). The qualitative asymptotes correspondingites oo a region in the solid phase witla > 0. This region is in coexis-
ande — oo, andn — 0 ande — oo make an angle less thar 2. tence with the superfluid and we could say that this is the supersolid

phase of the quantum substance.

particle is also reduced until the ground state is reached. Fig-

ure 6 shows a phase diagrgm— n, where few isotherms 6. Final Remarks

are also plotted. The purpose of this diagram is to highlight

the presence of states with positive chemical potential. Th@hermodynamics methods and empirical evidence have made
crossover lingu = 0 appears to cross the superfluid region possible to obtain a qualitative geometric construction of the
and, due to the observation of the previous paragraph, thgindamental relationship = s(e,n) for both normal and
actual existence of this line could be tested with adiabati¢luantum pure substances. We recall that, under the assump-
processes within the superfluid phase since it is only in thigion that electromagnetic properties are not relevant for those
region where the non-monotonicity of the isentropic curvessystems, the fundamental relationship bears all their thermo-
is present. That is, the liquid and gas region are all in thelynamic information and content.

1 < 0 region and, therefore, adiabatic processes are mono- We highlight that while the main property of the surface
tonic there. The other important aspect we want to highlights = s(e,n) is to be concave at each point, the existence
is that the solid region is divided into two regions, one with of several phases indicates that the whole surface is in fact
1 < 0 and the other with: > 0. Because quantum properties made of several “patches” with each phase being covered
are clearly more present in the> 0, we want to hypothesize by a smooth, continuous patch. First order phase transitions
here that the solid region with > 0 may be identified with  are actually the result of finite regions of unstable states that
the so-called “supersolid” phase. As it has been experimerare actually not existent, with their borders defined by the
tally shown, when superfluitHe is solidified by increasing continuity of the intensive quantities, temperature, pressure
the pressure, at very low temperatures, the obtained solid hasd chemical potential. Second order phase transitions oc-
very peculiar mechanical properties, such as the mass transur either isolated, such as the liquid-vapor critical point, or
port through a cell filled with solid Helium [45, 46]. It has are part of a finite set of states, such as Mdine in the
thus been speculated that this is a new phase, called supdiguid-superfluid transition. In either case, those points are
solid. With the present study certainly we cannot predict alithe “suture” of two smooth surfaces and, therefore, this re-
mechanical properties, however, we can tell that in adiabatisults on those states being non-analytic points of the surface
expansions the energy is reduced instead of being increased= s(e, n).

contrary to normal substances. Moreover, it must be clear A remarkable result, not easily foreseen, was the role of
that these solid states must be very different from the usuahe sign of the chemical potential, which in turn just reflects
solid ones withy < 0, such as all the solids in a normal the dependence of(e,n) onn ate = constant, assuming
substance and the solid states at high temperature in quantufh> 0 throughout. That is, negative chemical potential yields
materials. That is, supersolids, just as superfluids, requira concavencreasingentropys as a function of., while pos-

a description using many-body quantum mechanics, that extive chemical potential @aecreasingone. Our analysis in-
plicitly takes into account exchange effects due to the facticate that normal substances, that do not show superfluid
that the atoms are indistinguishable. phases, have the as a signature 0 for all thermodynamic
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states. For quantum substances the conclusion is that thei@l potential, globally affects the whole surface- s(e, n),
are regions of negative chemical potential, such as all gas andaking it obtuse for normal substances and acute for quan-

liquid phases, while the superfluid and solid ones can haveum ones.

This has as a consequence that adiabatic pro-

bothu < 0 andy > 0. We have argued that as the quantumcesses in normal substances are always monotonic, while
properties of the thermodynamic state become more impomon-monotonic in the quantum ones. It is further interesting
tant, the chemical potential becomes positive. The locus ofhat the non-monotonicity cannot be experimentally tested in
1 = 0 does not appear as a phase transition but rather asthe gas and fluid phases but in the superfluid and solid phases
crossover. The fact that the solid phase clearly gets dividednly.

by thep = 0 line (a local maximum of vsn ate =constant)

has prompted us to identify such a solid region as the recentl}&
discussed “supersolid” phase. These regions certainly occur
as the temperature is arbitrarily lowered.
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