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Using the laws of thermodynamics together with empirical data, we present a qualitative geometric construction of the fundamental relation
of a pure substanceS = S(E, N, V ), with S entropy,E energy,N number of particles andV volume. We analyze two very general type
of substances, a “normal” and a “quantum” one, the main difference between them being that the latter presents superfluid phases. It is
found that the constant entropy level curves are completely different in both cases, in the normal substances being obtuse while acute in
quantum ones. A concomitant signature of the previous result is that the chemical potential can be both positive and negative in quantum
substances, but only negative in normal ones. Our results suggest the existence of a region in the quantum substances that may be identified
as a supersolid phase. We also make emphasis on the relevance of the present study within the context of superfluidity in ultracold gases.

Keywords: Superfluids; supersolids; thermodynamics; phase diagrams.

Usando las leyes de la termodinámica en conjunto con datos empı́ricos, presentamos una construcción geoḿetrica cualitativa de la relación
fundamental de una sustancia puraS = S(E, N, V ), dondeS es la entroṕıa, E la enerǵıa, N el número de partı́culas yV el volumen.
Analizamos dos tipos de sustancias muy generales, una “normal” y otra “cuántica”, siendo la diferencia principal entre ellas el hecho que
la última presenta fases superfluidas. Se encuentra que las curvas de nivel de entropı́a constante son completamente diferentes entre ambos
casos, siendo obtusas para las sustancias normales y agudas para las cuánticas. Una propiedad concomitante al hecho anterior es que en la
sustancias cúanticas el potencial quı́mico puede ser tanto negativo como positivo, mientras que en las normales el potencial quı́mico siempre
es negativo. Nuestros resultados sugieren la existencia de una región en las sustancias cuánticas que puede ser identificada como una fase
superśolida. Enfatizamos también la relevancia del presente estudio en el contexto de la superfluidez de los gases ultrafrı́os.

Descriptores: Superfluidez; supersolidez; termodinámica; diagramas de fase.

PACS: 05.70.-a,64.10.+h,67.10.-j,67.80.bd,67.85.-d

1. Introduction

While the elucidation of equations of state and susceptibil-
ities of pure substances, both theoretically and experimen-
tally, is vigorously pursued due to their immediate relevance
in basic and applied research, rarely one finds analysis of fun-
damental thermodynamic relations which, if known, would
allow for the knowledge in turn of all thermodynamic prop-
erties [1, 2]. Indeed, if getting hold of equations of state and
susceptibilities, such as isothermal expansions and specific
heats, is already difficult, the construction of a fundamental
relation appears as an even harder endeavor. Nevertheless,
this can be done qualitatively if, on the one hand one knows
empirical data in the form of measured phase diagrams and,
on the other, one makes use of the power of the laws of ther-
modynamics. This is not just an academic exercise. As we
shall see, the fundamental relation indicates features that are
absent in usual phase diagrams, such asp−T diagrams withp
pressure andT temperature. These features allows us to pose
restrictions both in theoretical models as well as in measur-
able quantities. Furthermore, the fundamental relation may
also indicate the existence of phases, with their own associ-
ated phenomena, that have not been measured or not looked
for.

The fundamental relation that we address in this article is
the entropyS as a function of the extensive variables energy

E, number of particlesN and volumeV . However, since
entropy is also extensive, it can be written asS = V s(e, n)
wheres = S/V , e = E/V andn = N/V , namely, volume
densities of entropy, energy and number of particles. There-
fore, the task we perform is the geometric construction of
s = s(e, n), a single valued surface, function of two vari-
ables only,e andn. As we review below, as dictated by ther-
modynamics, the functions is not only single valued, it is
also concave in both variablese andn. The difficulty, as we
shall see, resides in the correct localization of the different
phases. The reward of this construction, as we have already
mentioned, is that the knowledge ofs = s(e, n) completely
suffices to determineall the thermodynamic properties of the
substance.

In Sec. 2 we present generic empiricalp − T phase di-
agrams, based on the measured phase diagrams of Ar and
4He [3–6]. The generic substance based on Ar will be termed
“normal”, while the one related to4He will be called “quan-
tum” due to the presence of the superfluid phase. An ultimate
understanding of both diagrams certainly requires the use of
quantum mechanics but it is the nature of superfluidity that
suggested to us the use of those adjectives. The main pur-
pose of Sec. 2 is to indicate the main features of the phases
as well as the order of the different phase transitions. We take
this as “empirical” data on which our further analysis will be
based.
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Section 3 is devoted to a brief review of the laws of
thermodynamics and their implications on the geometric and
topological characteristics of the surfaces = s(e, n). In par-
ticular, we shall consider systems whose energy spectra is
unbounded from above, since the molecular kinetic energy is
always present in the considered systems and, therefore, the
temperature will be considered positive always,T > 0 [1].
Strictly speaking,T = 0 is banned by the Third Law. Further,
we shall make an strong emphasis that although, in principle,
the chemical potentialµ can be expressed with respect to an
arbitrary reference, we can fix this reference by imposing that
in the limit of arbitrarily low particle densities,n → 0, the
substance must obey the thermodynamics of a classical ideal
gas. This will give a clear meaning to the sign of the chemical
potential.

Sections 4 and 5 discuss in detail the construction of the
surfacess = s(e, n) for the normal and the quantum sub-
stances respectively. We will emphasize the crucial fact that,
within the convention used, the chemical potential is always
negative for normal substances while it can change sign in
the quantum one. This will also be reflected in the geomet-
ric characteristics of the entropy level surfaces, being obtuse
in the normal case and acute in the quantum version. As an
important consequence, it will be shown that the superfluid
phase occurs mostly in the region of positive chemical poten-
tial and, as we will further argue, there appears a region in
the solid phase with positive chemical potential which may
be identified as a supersolid “phase” [8–12]. We conclude in
Sec. 6 with a set of Final Remarks.

2. Thermodynamic phenomenology of a pure
substance

A pure substance, composed of a sole chemical compound,
can be found in the form of solid, liquid, gas, superfluid or
in phase coexistence of the former. We consider as typical
examples of pure substances as H2O, Ar, CO2, 4He, 3He,
among others, of which an abundant experimental data exist.
Gravitational, electric and magnetic effects will not be con-
sidered in the thermodynamic description of a pure substance
here.

For the sake of simplicity, we classify the pure substances
according to their quantum characteristics into normal and
quantum substances. Microscopic descriptions of normal and
quantum substances assume intermolecular interaction po-
tentials, typically pairwise. Normal substances can be ob-
served in solid, liquid and gas phases. Additionally, due
to particular qualities of the intermolecular potential [4–6],
quantum substances can be observed in one more phase,
namely, the superfluid phase. That is, we denote as “quan-
tum” substances to the aforementioned by the fact that super-
fluidity is a macroscopic quantum phenomenon, described
primarily in the context of many-body quantum theory, see
e.g.Ref. 13. There are other systems that can be called quan-
tum substances as well, for example, a Fermi gas, a Mott

FIGURE 1. (Color online) Genericp−T phase diagrams for normal
(a) and quantum (b) substances. Diagrams are not drawn to scale.
According to Ref. 3, the coordinates of the triple (solid black) and
the critical (empty black) points of Argon are (Tt = 83.804 K,
pt = 0.06895 MPa) and (Tc = 150.6633 K, pc = 4.860 MPa),
respectively. In the case of4He, there are three isolated points: two
of them (solid black) are the ends of theλ-line, which is the line
separating the liquid and the superfluid phases; the other is the criti-
cal point (empty black). From Refs. 4 to 6, the coordinates of these
points are (Tu = 1.7633 K, pu = 3.01340 MPa), (Tλ = 2.1720 K,
pλ = 0.00504 MPa) and (Tc = 5.2014 K, pc = 0.22746 MPa),
respectively. The point of the highest temperature in theλ-line is
called theλ-point, and the point of the lowest temperature could be
called the upper-triple point [5, 6] because it could represent ther-
modynamic equilibrium between the superfluid, solid and liquid
phases.

insulator, or even a magnet, but here we shall mainly be con-
cerned with the shared thermodynamic characteristics of4He,
3He, and the recent ultracold alkali vapors, both bosonic,
such as87Rb, 23Na, 7Li [14–17], and fermionic, such as6Li
and40K [18–20].
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Figure 1 shows genericp − T diagrams of (a) a normal
substance and (b) a quantum one. Although stylized for di-
dactical purposes, those diagrams are based on the experi-
mental phase diagrams of Ar and4He [3–6]. According to
the Gibbs phase rule, areas in a phase diagram correspond
to a unique phase in equilibrium and lines to the coexistence
between two phases. Isolated points in the diagram corre-
sponds either to a triple point or to a critical point. In the
figure caption we specify the actual values of all those rel-
evant pressures and temperatures. As we will explicitly do
so in Secs. 4 and 5, these phase diagrams will allow us to
construct the fundamental relationships = s(e, n).

It is well known that for a normal substance, with the ex-
ception of the critical point that is a continuous second order
phase transition, all the coexistence curves represent discon-
tinuous first order phase transitions. For the quantum sub-
stance, it is also known [4–7] that the liquid-solid, liquid-gas
and superfluid-solid are first order phase transitions. The crit-
ical point and theλ−line liquid-superfluid are second order
phase transitions. Although for4He there are references, such
as Refs. 21 to 23, that suggest that the coexistence curve gas-
superfluid is first order, there are no experimental data con-
firming this is the case. On the other hand, all the recent ex-
perimental and theoretical work on the fermionic and bosonic
degenerate ultracold gases, that suffer a gas-superfluid transi-
tion [17,24], indicate that such a transition is similar to theλ
transition and, therefore, that it is second order. Thus, with-
out affecting our overall conclusions, we shall also consider
that such a transition is indeed second order.

3. Thermodynamic laws and their restrictions
on s = s(e, n)

Besides the assumed fact that thermodynamics describes
equilibrium states only, it is very important to emphasize at
the outset that a given value of the set of variables(E, N, V )
of a pure substance uniquely specifies an equilibrium state.
Therefore, the entropy functionS(E, N, V ) = V s(e, n) is
a single valued function of its variables. In the same fash-
ion, any Legendre transform ofS(E, N, V ), sayV by p or
N by µ, is also a single valued fundamental relation bearing
the same information just in the transformed variables [1, 2].
Here, we concentrate on the relations = s(e, n).

The First Law of Thermodynamics is,

ds =
1
T

de− µ

T
dn, (1)
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The extensitivity ofS = V s(e, n) implies that the pressure
is given by,
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The Second Law of Thermodynamics asserts that the en-
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These inequalities establish the stability of the thermody-
namic states [1, 2]. The first condition is equivalent to stat-
ing that the specific heat at constant volumecv is positive,
whereas the second one that the isothermal compressibility
κT is also positive,

cv = T

(
∂s

∂T

)

v

> 0 and κT =
1
n

(
∂n

∂p

)

T

> 0. (6)

When any of these conditions is not met, the system suffers a
phase transition to enforce stability.

Phase transitions are classified into first and second order.
In a first order phase transition the extensive quantitiess, e,
andv are discontinuous while the intensive onesT , p andµ
are always continuous. In a second order phase transition all
the variables are continuous but the remarkable characteris-
tic of these transitions is that, typically, the specific heat and
the isothermal compressibility become infinite at the transi-
tion. The main lesson from this behavior is that the function
s = s(e, n) is not analytic at critical points [23, 25, 26]. For
the purposes of our geometric construction we shall use, with
no loss of generality, that sinceκT → ∞ at critical points,
this implies that(∂p/∂n)T → 0 at those points. That is, the
isothermal curves,T = constant,p vsn become flat at second
order phase transitions but remain monotonically increasing
at any other thermodynamic state.

Since we are dealing with systems whose energy spectra
are unbounded from above, negative temperatures are ruled
out [1, 27, 28] and, therefore, the Third Law can simply be
expressed as the requirement that the temperature is always
positive,T > 0. Zero temperature can be considered as a
limit only and, as we shall see, this will also be reflected in
the form of the surfaces = s(e, n). Due to the identifica-
tion of temperature by the first of Eqs. (2), this implies that
the isochores curves,n = constant,s vs e are monotonously
increasing with their slope becoming infinite atT → 0.

A most important issue is the sign of the chemical poten-
tial µ. On the one hand, there is no thermodynamic law that
bears an implication on such an issue. At most, the Second
Law requires the surfaces = s(e, n) to be concave but this
does not imply that the isoenergetic curves,e = constant,s
vs n have to be monotonously increasing, see Eqs. (2), (4)
and (5). On the other hand, it is commonly believed that
the chemical potential can only be defined up to an arbitrary
constant since the origin of the energy can also be arbitrar-
ily fixed. This constant, however, can indeed be fixed for
atomic substances by imposing that in the limit of a very
dilute system,n → 0, the system approaches an ideal gas
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whose energy can be taken as definite positive since it arises
from the atomic kinetic energy only. From a thermodynamic
point of view, we can impose that in the normal gas region
of the phase diagram, asn → 0, the entropy of the gas must
approach [1]

s(e, n) → nk

{
ln

1
n

(
4πm

3h2

e

n

)3/2

+
5
2

}
(7)

which is the classical ideal gas expression for a system ofn
non interacting atoms of massm. In the above expressionk
andh are Boltzmann and Planck constants. This restriction
also fixes the pressure to becomep → nkT and the energy
e → (3/2)nkT in the limit n → 0 for fixed temperature.
Clearly, with this condition, the energy of the gas phase is
limited to have positive values only. Because of the identi-
fication of the chemical potential by the second of Eqs. (2),
and becauseT > 0, the reference of the chemical potential is
also fixed, becoming negative in the mentioned limitn → 0.

To look further into the sign of the chemical potential re-
call that, according to statistical physics, the entropy is given
by [1],

S(E, N, V ) = k lnΩ(E, V, N) (8)

whereΩ(E, V, N) is the number of states of the system for
given values of(E, V, N). The thermodynamic limit is as-
sumed to be taken. Thus, for a fixed value of the energy per
volumee = E/V = constant, a negative sign of the chem-
ical potential implies that the number of states increases as
the particle densityn = N/V also increases, see Eq. (2).
Conversely, a positiveµ signals that the number of states
decreaseswhen particle densityn increases. The first be-
havior is the common one in classical systems since, even if
the energy per particlee/n diminishes, the fact that there are
more particles implies a larger number of available states. Of
course, as the number of particles increases even further, the
increase of entropy will still do so but at a slower rate. The
extreme case of positive chemical potential implies that as the
energy per particle decreases the number of available states
also decreases. This implies a kind of “condensation” that
can only be explained within the use of quantum mechan-
ics. This is the common behavior of ideal Bose and Fermi
gases [1, 29], as well of those weakly interacting ones, as
given by BCS [13, 30] and Bogoliubov [17, 31] theories: all
of these do show a positive chemical potential. The reason
behind such a behavior is that, as the entropy decreases with
even larger densities, there exists a limiting value ofn for
which the entropy becomes zero,s = 0. That is, for the given
fixed value ofe, such an extreme value ofn corresponds to
the quantum ground state of the system.

Because classical ideal gases, models such as van der
Waals, and ideal quantum gases present negative chemi-
cal potentials before quantum effects set in (such as Bose-
Einstein condensation and Fermi degeneracy [1, 29]), we
shall make a working hypothesis that, as it will be shown,
it is a correct one, namely, that in the gas phase the chem-
ical potential is always negative. As we will see, this fact

will distinctly shape the surfacess = s(e, n) for normal and
quantum substances.

4. Entropy construction of a generic normal
substance

The logical stages in the construction of the phase diagrams
that represent the functions = s(e, n) of the normal and the
quantum substance are the same. First, we assume the phase
diagramp − T as given, as shown in Fig. 1. Then, we map
the corresponding isotherms onto thep − n diagram. These
can also be checked with available experimental data [3] and
with the predictions of van der Waals model. Third, we use
the behavior of the density of the system in thep−n diagram
as a guide to infer the structure of thes−n diagram. The very
last stage consists in mapping the isoenergetic curves in the
s−n diagram onto corresponding ones in thes− e diagram.
The last two diagrams,s − n ands − e, can be summarized
in an− e diagram with isentropic curvess = constant.

As described above, we start with thep− T diagram of a
normal substance in Fig. 2(a). Consider an isothermal curve
T = constant. This is represented by a vertical line that can
cross one or two coexistence lines, see Fig. 2(a) where 5 typ-
ical isotherms are plotted. Figure 2(b) shows the correspond-
ing diagramp − n. This diagram is also well known, as can
be found in usual thermodynamics textbooks [21], but it can
also be constructed from thep − T diagram and the restric-
tions from the laws of thermodynamics. We highlight several
aspects. First, the isotherms have the same pressure at coex-
istence. Second, we empirically set the slope of the isotherms
at coexistence being higher in the denser state. And third, the
solid phase is assumed to asymptotically reach zero pressure
at infinite densityn, consistently with the presumption that
such a solid can occur at zero temperature only and in coex-
istence with a gas at zero density, namely, an “unatainable”
state. The most important aspect of this figure, but also a well
known result, is the existence ofunstableregions where no
equilibrium states occur. These are the shaded areas in the
figures.

The unstable states actually do not “exist” and, therefore,
we cannot assign a value for any of the variabless, e, n, etc,
in those regions. This is very important for the construction
of the phase diagrams− n and, ultimately, for thes− e one.
That is, from diagramp−n we can constructs−n, Fig. 2(c),
using as guides the coexistence regions. As can be checked
from models, such as van der Waals, and from experimen-
tal data [3], at coexistence the entropyper volumes = S/V
is higher in the denser coexistence region; if one considers
entropies per mole, the inequalities are inverted. Thus, in
the triple point the entropy per volumes is lowest in the gas
phase and highest in the solid one. The task here is to trace
isoenergetic curvese = constant in the diagrams − n. We
have two initial restrictions, first, those curves must be con-
cave and, second, they cannot cross sincee = e(s, n) is also a
fundamental relation [2]. And here it comes the fundamental
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FIGURE 2. (Color online) Generic phase diagrams for a normal substance. (a) Thep − T diagram is based on empirical data [3]. (b) We
infer the structure of thep−n diagram from the structure ofp−T and also from empirical data. The isotherms are qualitative and must obey
the linearity of the ideal gas equation in the dilute regime. Note that the critical isotherm is flat at the critical point. (c) Thes− n diagram is
built accordingly to the behaviour of the density and of the coexistence regions in thep − n phase diagram. (d) Then, we obtain thes − e
diagram from the previous step. In both (c) and (d), we plot the same isochoresn = constant and isoenergeticse = constant.

issue that the slope of the isoenergetics equals−µ/T , with
T > 0. The immediate consequence is that the isoenerget-
ics at coexistence, while they correspond to different values
of energy, must have the same slope, sinceµ and T must
be continuous. Now, since we are assuming that at very
low densities the ideal gas is always reached, the chemical
potential starts as negative and, therefore, the isoenergetics
start concave but with positive slope atn = 0. The ques-
tion is whether the isoenergetics reach the coexistence lines
with positive or negative slope. Again, from van der Waals
model, one can check that chemical potential is negative in
the gas-liquid coexistence states. However, for the gas-solid
coexistence states one does not have a reliable model. Nev-

ertheless, from the illustration of Fig. 2(c), we find that be-
cause of the existence of the unstable region and because the
saturated gas curve must be much steeper than the saturated
solid one, the slope of the isoenergetics at the solid-gas co-
existence states, in order to have the same value, must have
positive slope, namely negative chemical potential, otherwise
they would either point into the unstable region or they would
eventually cross. The extraordinary conclusion is that, for a
normal substance the isoenergetic curves are all concave and
monotonously increasing functionss of n. That is, the chemi-
cal potential is always negative for normal substances. As we
will see below, the “intrusion” of the superfluid phase into the
unstable gas-solid region makes it necessary the appearance
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of positive chemical potentials and, thus, the whole structure
of the surfaces = s(e, n) for a quantum substance will be
completely different than in the normal ones.

From the diagrams − n, Fig. 2(c), we can now con-
struct thes − e diagram, as shown in Fig. 2(d). Here,
we have at the outset two strong restrictions, the isochores,
n = constant,s vs e must not only be concave but because
their slope is the inverse of the temperature, see Eq. (2), they
must be monotonic. The only delicate point is that, since we
assume that for arbitrary temperature one can always lower
the density to extreme small values, the energy in this limit
must reache ∼ nkT . This implies that the gas phase must
end at zero energy, setting thus its origin. This right away
implies that the low entropy solid phase must have negative
energy. However, nothing prevents the solid to have positive
energy at higher entropies, or the liquid phase to have neg-
ative energies either. It is therefore not very complicated to
conclude that thes − e diagram, with the help of diagram
s− n, appears as such. In this diagram, we have plotted sev-
eral isochores to match the corresponding points values in the
s− n diagram.

The diagramss − n and s − e define the surfaces =
s(e, n). In order to gain a bit more insight on such a surface,
we can draw isentropic (s = constant) level curves in an− e
diagram. For this, we first calculate the normal vectors to the
surface, placing energye alongx, n alongy ands alongz,
in conventional cartesian coordinates. Using dimensionless
units, say using the gas-liquid critical point as reference, the
normal unit vectors of the surfaces = s(e, n) are given by,

n̂ =
1√

µ2 + T 2 + 1
(−1, µ, T ). (9)

Thus, along the adiabatic curvess(e, n) = constant,
the normal components in the planen−e, namely,
−1/(µ2+T 2+1)1/2 along e and µ/(µ2+T 2+1)1/2 along
n, always point in the negative directions becauseµ<0.
Thus, the isentropic, or adiabatic, curves are allob-
tuse. This is illustrated in Fig. 3, where we plot sev-
eral level curves ofs = constant. The extreme curve
s = 0, which is degenerated withT = 0, is reached with
infinite slope in the gas phase, with zero density, and it is
never reached in the solid phase. This property of the isen-
tropic curve indicates that in any adiabatic process the energy
monotonically either increases or decreases, and the temper-
ature always increases or decreases as well, properties that
can experimentally be checked.

Although surfaces plotted in 2D-planes never do justice to
the richness of a 3D object, one can gain further information
using the normal vector̂n given by Eq. (9). The main aspect
we want to highlight is that, while the surfaces = s(e, n) is
certainly smooth, it cannot be covered continuously with the
same surface, that is, it is actually formed by patches of sur-
faces, with “holes” on it, representing the inexistent unstable
states. At any point on the surface one can set a local tangent
plane whose normal is defined by the temperatureT and the
chemical potentialµ, as given by Eq. (9). Two different co-

FIGURE 3. (Color online) Isentropic level curvess = constant in
a n − e plane. Heres1 < sc < s2 < s3 are drawn qualitatively.
Note that in an adiabatic compression or expansion the energy is
monotonous. Moreover, the tangent asymptotes to the isentropic
curves,(n →∞, e → −∞) and(n → 0, e →∞), form an angle
greater thanπ/2, namely, the adiabatic curves are all obtuse. Note
also that the normal vectors have all negative components.

coexistent states at a first order phase transition, say,s1 =
s(e1, n1) and s2 = s(e2, n2) have parallel tangent planes,
which yield equal temperatureT and chemical potentialµ,
and their precise location is further determined by the fact
that they also have the same pressure, namely,p = e1−Ts1+
µn1 andp = e2 − Ts2 + µn2. This makes the “sewing” of
the surfaces of the different phases. The critical point is pecu-
liar since the coexisting planes become closer and closer and
finally merge in the same plane at the critical point. Thus,
it seems, the surfaces = s(e, n) must be flat at the critical
point. This represents a “suture” of two different surfaces and
the matching cannot be made analytically in general. This
flatness of the surfaces at the critical point is an indication
of the divergence of the specific heat and of the isothermal
compressibility.

5. Entropy construction of a generic quantum
substance

Analogous to the previous section, the goal here is the geo-
metric construction of the surfaces = s(e, n) for a quantum
substance whose genericp − T phase diagram is given in
Fig. 1(b). As mentioned before, the main characteristics of
this diagram follow the properties of4He, see Refs. 32 to 36.
The procedure, in principle, is the same as for a normal sub-
stance. From thep− T diagram we construct thep− n dia-
gram, then thes − n one, and finallys − e, as illustrated in
Fig. 4. The last two are the corresponding projections of the
surfaces = s(e, n). From the latter, we can plot isentropic
curves in then− e plane to illustrate that for a quantum sub-
stance those curves are “acute”, see Fig. 5. As we shall dis-
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FIGURE 4. (Color online) Generic phase diagrams for a quantum substance. (a)p − T diagram based on empirical data [4–6]. (b)p − n
diagram based on thep − T one. The states below the lineT = 0 are non-existent. Note that the isotherms cross each other in the vicinity
of theλ-line, see text for explanation. (c)s− n diagram built based on the behavior of the density and the coexistence regions in thep− n
diagram. The isoenergetic curves are all non-monotonic. (d)s − e diagram based on the previous diagram. In both (c) and (d), we plot the
same isochoresn = constant and isoenergeticse = constant.

cuss, a section of the solid phase shows “quantum” properties
that makes it a candidate for the supersolid phase [8–12].

Regarding thep− T diagram in Fig. 4(a), we recall once
more that the coexistence curves solid-superfluid and solid-
liquid are first order. The same for the liquid-vapor curve
terminating in a critical point. Theλ-line, separating liquid-
superfluid, is a line of second order phase transitions. This
transition has been extensively studied, both experimentally
and theoretically, and it has been concluded that it belongs to
the 3D XY-model universality class with critical exponents
α = −0.0127 [37–39] andν = 0.6717 [40]. The usual diffi-
culty with this transition is that while the corresponding order

parameter is the complex condensate wavefunction, its conju-
gate field is unknown [23]. This prevents from obtaining the
critical behavior of all thermodynamic properties across the
transition. Nevertheless, there is no doubt that the entropy
function s = s(e, n) is non analytic at theλ-line, and for
our purposes this suffices for prescribing that the isothermal
compressibility diverges there. Thus, this allows us to draw
the isotherms as flat when crossing theλ−line. For the tran-
sition gas-superfluid we will also assume that such a line is
one of critical points, and if so, in the same universality class
as theλ-transition. This assumption is further validated by
the behavior of the ideal Bose gas [41] and by the recent ex-
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periments in ultracold gases, which show that the transition
gas to superfluid is indeed second order [42, 43]. We insist
once more that it is not mandatory that the gas-superfluid be
second order. If it were first order, the details of the phase
diagrams would change, but not the main conclusions since
these follow from the mere existence of the superfluid phase
and not from the order of the phase transitions. We also point
out that there are two triple points, a lower one connecting
vapor, liquid and superfluid, and the upper one with solid,
superfluid and liquid.

For the construction of thep− n diagram, Fig. 4(b), spe-
cial care must be taken due to the existence of the superfluid
phase. These states have the property of remaining fluid, with
finite density, even atT = 0 (s = 0). From the thermody-
namic point of view, the temperatureT = 0 is unreachable
because the zero isotherm and zero isentropic curves are de-
generate and do not cross any other isothermT 6= 0, neither
any isentropics 6= 0 curves. That is, it would take an infinite
number of steps to reach theT = 0 state. But the state does
“exist”: it is the ground state for the corresponding number of
atoms. As a consequence of this, the isothermT = 0 in the
p − n diagram, first of all, occurs for all (finite) values ofn
and, second, it limits the existence of thermodynamic states
to lower values of the corresponding pressurep(n, T = 0).
Thus, in Fig. 4(b), the states in the shaded region below the
T = 0 line are not “unstable”, it is simply meaningless to
speak of them. As can also be seen from Fig. 4(b), there are
isotherms that can cross from the gas to the superfluid, then
to the liquid and finally to the solid phase. These isotherms
cross each other in the vicinity of theλ-line, namely, in the
transition between liquid and superfluid. Such a crossing
of different isotherms does not violate any law, it is simply
a consequence that the slope of theλ-line is “anomalous”,
namely, it is negative, just as in the solid-liquid transition line
in water where the isotherms also cross.

The crucial difference between a quantum and a normal
substances appears in the construction of thes − n diagram
in Fig. 4(c). In our search for the relationships = s(e, n),
we need to draw curves at constant energy,e = constant, in
the s − n diagram. Thus, the appearance of the superfluid,
with states even ass → 0 (T → 0), makes it necessary that
the curvess vs n at constante, while always concave, nec-
essarily are not monotonic. That is, the isoenergetic curves
increase, initiating froms = 0 in the gas phase, then reach
a maximum, to finally decrease again tos = 0 in the super-
fluid or solid phases. This is best seen by considering a curve
s vs n at very low energy in the vicinity of the transition gas
to superfluid, see curveei in Fig. 4(c). As we have argued
before, in the limitn → 0 ands → 0, the gas must approach
an ideal gas. In such a case, the chemical potential is nega-
tive, µ < 0, namely,s vs n has a positive slope in the gas
phase, see Eq. (2). On the other hand, at such a fixed energy,
we know that there must be a number of particles for which
the given energy equals their many-body ground state energy.
Such a state is superfluid and has zero entropy. Since the
curve must be concave, as the number of particles is slightly

reduced from thes = 0 superfluid state, keeping the energy
fixed, the entropy must increase and, therefore, the curves
vs n must have a negative slope in the vicinity ofs = 0.
That is, its chemical potential must be positive,µ > 0. This
should not be surprising, Bogoliubov theory of atomic Bose
superfluidity [31] and BCS theory of atomic Fermi superflu-
idity [30] both show positive chemical potentials near and at
zero temperature. It is interesting to find that the ideal Fermi
gas curvess vs n at e = constant also all show a maximum
and are all similar to the curveei in Fig. 4(c) [44]. The pre-
vious argument indicates that there exists a point where the
curves vsn ate constant reaches a maximum, namely, when
the chemical potential becomes zero,µ = 0.

The final phase diagrams − e, shown in Fig. 4(d), can
be constructed from thes − n diagram and taking into ac-
count that the isochores,n = constant,s vs e must be
monotonously concave sinceT > 0. The diagrams − e
appears extremely complex because the isoenergetic vertical
lines fold over themselves. That is, there are no states above
the lineµ = 0. This defines the locus of the local maxima of
all isoenergetic curves. Nevertheless, with care and patience,
one can find the main features shown in the diagram, in par-
ticular, one sees that the isochores curves cross each other.
Again, this does not represent any problem since the single-
valuedness ofs = s(e, n) is always ensured. That is, the
multivaluedness of the functionn = n(s, e) does not violate
any law sincee ands are inverse functions of each other at
n = constant. In other words, the functionn = n(s, e) is not
a fundamental relationship.

In Fig. 5 we show a condensed, yet simpler version of
the surfaces = s(e, n). This figure show isentropic curves
s = constant in an − e diagram, similarly to the diagram in
Fig. 3 of the normal substance. The main feature is that the
isentropic curves are all acute, with their vertices or turning
points atµ = 0. This can be seen by analyzing the normal
vectorsn̂ ∼ (−1, µ, T ) to the surfaces = s(e, n), using
Eq. (9) (withe alongx, n alongy ands alongz). One conse-
quence is that adiabatic processes in these substances, being
non-monotonic in density are also non monotonic in temper-
ature. A second consequence is that the limiting curvess = 0
are both reached with infinite slope. Again, the appearance of
a superfluid modifies profoundly the whole entropy surface
with respect to a normal substance, as a direct comparison
between Figs. 3 and 5 show.

Although there is no a priori reason to consider that the
line of states withµ = 0 represents a change in the thermody-
namic properties, such as in a phase transition, it does appear
to signal a kind of crossover between “normal” and “quan-
tum” behaviors, as suggested in Sec. 2. That is, ifµ < 0,
the entropy increases with increasing density, at fixed tem-
perature, a behavior that is in agreement with typical systems
obeying classical mechanics: more particles, more entropy.
However, in the extreme case in which systems can be arbi-
trarily close toT = 0, those systems are in quantum degener-
ate states, and it must be the opposite: increasing the number
of particles reduces the number of states since the energy per
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594 M. MENDOZA-LÓPEZ AND V. ROMERO-ROCH́IN

FIGURE 5. (Color online) Adiabatics in a quantumn vs e phase
diagram. We draw two types of normal vectors, those with nega-
tive components, and those whose components have different sign.
Thus, the adiabatic processes showed, expansion or compression,
have thermodynamic states withµ < 0 (n̂n), and another with
µ > 0 (n̂p). The qualitative asymptotes corresponding ton → ∞
ande →∞, andn → 0 ande →∞ make an angle less thanπ/2.

particle is also reduced until the ground state is reached. Fig-
ure 6 shows a phase diagramµ − n, where few isotherms
are also plotted. The purpose of this diagram is to highlight
the presence of states with positive chemical potential. The
crossover lineµ = 0 appears to cross the superfluid region
and, due to the observation of the previous paragraph, the
actual existence of this line could be tested with adiabatic
processes within the superfluid phase since it is only in this
region where the non-monotonicity of the isentropic curves
is present. That is, the liquid and gas region are all in the
µ < 0 region and, therefore, adiabatic processes are mono-
tonic there. The other important aspect we want to highlight
is that the solid region is divided into two regions, one with
µ < 0 and the other withµ > 0. Because quantum properties
are clearly more present in theµ > 0, we want to hypothesize
here that the solid region withµ > 0 may be identified with
the so-called “supersolid” phase. As it has been experimen-
tally shown, when superfluid4He is solidified by increasing
the pressure, at very low temperatures, the obtained solid has
very peculiar mechanical properties, such as the mass trans-
port through a cell filled with solid Helium [45, 46]. It has
thus been speculated that this is a new phase, called super-
solid. With the present study certainly we cannot predict all
mechanical properties, however, we can tell that in adiabatic
expansions the energy is reduced instead of being increased,
contrary to normal substances. Moreover, it must be clear
that these solid states must be very different from the usual
solid ones withµ < 0, such as all the solids in a normal
substance and the solid states at high temperature in quantum
materials. That is, supersolids, just as superfluids, require
a description using many-body quantum mechanics, that ex-
plicitly takes into account exchange effects due to the fact
that the atoms are indistinguishable.

FIGURE 6. (Color online) Isotherms in theµ−n projection for the
quantum case. HereT1 < T2 < T3. Note that we can distinguish
a region in the solid phase withµ > 0. This region is in coexis-
tence with the superfluid and we could say that this is the supersolid
phase of the quantum substance.

6. Final Remarks

Thermodynamics methods and empirical evidence have made
possible to obtain a qualitative geometric construction of the
fundamental relationships = s(e, n) for both normal and
quantum pure substances. We recall that, under the assump-
tion that electromagnetic properties are not relevant for those
systems, the fundamental relationship bears all their thermo-
dynamic information and content.

We highlight that while the main property of the surface
s = s(e, n) is to be concave at each point, the existence
of several phases indicates that the whole surface is in fact
made of several “patches” with each phase being covered
by a smooth, continuous patch. First order phase transitions
are actually the result of finite regions of unstable states that
are actually not existent, with their borders defined by the
continuity of the intensive quantities, temperature, pressure
and chemical potential. Second order phase transitions oc-
cur either isolated, such as the liquid-vapor critical point, or
are part of a finite set of states, such as theλ−line in the
liquid-superfluid transition. In either case, those points are
the “suture” of two smooth surfaces and, therefore, this re-
sults on those states being non-analytic points of the surface
s = s(e, n).

A remarkable result, not easily foreseen, was the role of
the sign of the chemical potential, which in turn just reflects
the dependence ofs(e, n) on n at e = constant, assuming
T > 0 throughout. That is, negative chemical potential yields
a concaveincreasingentropys as a function ofn, while pos-
itive chemical potential adecreasingone. Our analysis in-
dicate that normal substances, that do not show superfluid
phases, have the as a signatureµ < 0 for all thermodynamic
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states. For quantum substances the conclusion is that there
are regions of negative chemical potential, such as all gas and
liquid phases, while the superfluid and solid ones can have
bothµ < 0 andµ > 0. We have argued that as the quantum
properties of the thermodynamic state become more impor-
tant, the chemical potential becomes positive. The locus of
µ = 0 does not appear as a phase transition but rather as a
crossover. The fact that the solid phase clearly gets divided
by theµ = 0 line (a local maximum ofs vsn ate =constant)
has prompted us to identify such a solid region as the recently
discussed “supersolid” phase. These regions certainly occur
as the temperature is arbitrarily lowered.

We also remark again that the existence of superfluid
phases, with its concomitant change of the sign of the chem-

ical potential, globally affects the whole surfaces = s(e, n),
making it obtuse for normal substances and acute for quan-
tum ones. This has as a consequence that adiabatic pro-
cesses in normal substances are always monotonic, while
non-monotonic in the quantum ones. It is further interesting
that the non-monotonicity cannot be experimentally tested in
the gas and fluid phases but in the superfluid and solid phases
only.
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