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Exploring solutions for Type-IlI superconductors in critical state

C. Romero-Salazar and O.A. Hamdez-Flores
Escuela de Ciencias, Universidad Anbma Benito Jarez de Oaxaca,
Av. Universidad s/n. Colonia Cinco Sares, Oaxaca de duwez, 68120, Oax, Bkico,
e-mail: cromeros@sirio.ifuap.buap.mx; omar22121972@yahoo.com.mx

Received 13 June 2012; accepted 28 November 2012

An analytical solution is found for magnetic induction in a type-ll superconducting plate in parallel geometry. In this study, critical currel
density is modeled following the Ming Xet al.,approach which requires the adjusting parameteaad B*. A symmetry relation between

the generating equations of tif& > 0 and H < 0 cases is presented, as well as an equivalence between vertical and power laws for
superconductor in steady state. We present a systematic procedure for identifying magnetic induction profiles and we analyze the phy
characteristics of the superconducting plate whesnd B* vary. Specifically, we present flat surface plots of the penetration field, dou-
ble penetration field, critical current density and, finally, an application of our results to calculate the shielding field, which prevents t
occurrence flux jumps.
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1. Introduction of steady or quasi-steady states, even though flux transport
occurs in the interior due to vortex bundling induced by the

Over the last forty years, it has been well established that thl—:'Orentz forceF; = J x B, once the pinning forc&’, is

macroscopical magnetic response of irreversible type-ll| syPVercome.

perconductors is controlled by two fundamental processes: From current-voltage curves analysis, is well known that
the flux pinning due to vortices with deffects or inhomo- changes in magnetic flux inside the superconductor will gen-
geneities interactions and tfleix-line cuttingdue to adja-  erate an electric field. Flux movement resists through a fric-
cent plane vortex interactions. The latter occurs when thegion force due to pinning centers, together with a viscous
applied magnetic field contains several components or variforce, although the latter is usually less than the formef. If
able orientation. Both phenomena have been studied employs exceeded during transport measurements an electric field
ing models based on Bean theory [1]: The Double Generalg is detected due to the presence of electrostatic charges at
ized Critical-State model [2,3], the Two-Velocity Hydrody- the terminals array. On the other hand, if there is a flux leak
namic model [5,6], the Optimal Control model [4], the El- in a superconducting ring is induced due to the abscence
liptic Flux-Line-Cutting Critical-State model [7], and, most of electrostatic charge, even if local conditions are identical
recently, the Elliptic-Extended Flux-Line-Cutting Critical- to those in the transport measurement case.

State model [8]. These models employ a material equation .
based on the fact that an electric fiditlcan exist inside a In the present study, we perform a theoretical study of the

sample in the superconducting state, and the magnitude GRacroscopic properties of type-Il superconducting plates in
the supercurrent density can possess a finite critical value Parallel geometry.

Je, that persists even in absenseidf As the external magnetic field varies in magnitude but not

Bean proposed that a superconductor can hold a limitegh direction, it is possible to find analytical solutions if we
superconducting current densify(B) and analyzed its mag-  consider an infinite sample with finite thickness. We analyze
netic properties by solving Angges law, the stationary state of two standard material relatiBng).

VxH=+], ) _To the best of the. agthors_’ knowlgdge, a detailed. presen-
tation of how magnetic induction profiles can be obtained has
where|J| = J.. Any electromotive force greater than this not yet been carried out. Experimental and theoretical studies
value will cause the supercurrent to flow locally and the ma-have focused on magnetization and hysteresis curves calcula-
terial enter a resistive state. tion [9,11], as well as numerical calculations of the magnetic
It is of interest to study the electromagnetic properties ofinduction profiles of HTSC [12]. In the present work, we

type-Il superconductors subjected to slowly increased exteremploy the Kim-generalized function for the critical current
nal magnetic field¥I. Flux distribution can fall into a variety densityJ.(B) to perform both a systematic presentation for
of metaestable states, which change only when the magnituddentifying magnetic induction profiles and a detailed analy-
of the local current density exceeds the critical current den- sis of how the superconducting behavior depends on the para-
sity J. = J.(B). The material can relax through a successionmetricality ofn and B*.
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2. Steady-State Solutions and th& — J rela- z
tionship

The Maxwell equations in a medium are:

V xH=J+§D 2)
VxE=-09B 3)
V-D=p 4)
V-B=0. (5)

The request for additional equations is well known. These
so-called constitutive relations, for an anisotropic medium,
can be written as follows:

J
D (6)
B

I
=] o] 9
T ® o

FIGURE 1. Scheme of a portion of an infinite type-Il superconduct-

where the conductivityo’, permittivity ¢’, and permeabil- ' _
thdg plate of thicknes®.

ity %', are second rank tensors. In our theoretical study,
superconductor is isotropic; the net electrostatic charge distri-
bution is null; temporal variations of the electrical displace-
ment are negligible, and for the sake of simplicity we assume, 0 17| < J.
with good approximation, the boundary conditiBr= 1o H. E(J) = e - (8)
e onn p(J —signaJ)Je) |J| = Je.
We employ the Bean current-electric field relationship:

Here, we use the vertical law to modg(.J):

- where
J= JC(B)E' (1) +1 H>0, z€l0,D/2]
This multicomponent model considers ti&tJ and does signa(J) = j Z z 8: xc {oD/g/ﬁ] ©)
not include flux-line cutting effects. To obtain tieand B +1 H<0, ze€l[D/2, D]

profiles and the magnetization of a superconductor in a steady
state, one of two procedures is generally followed: an an-  sypstituting the latter in Faradays law yields:

alytic one, solving the Amgres (1) and materials law (7)

system of equations, applying the conditigy3 = 0, or a OB = —0,{p(J — signdJ)J.)},

numeric one [3,12], solving the Anmapes (1), Faradays (3)

and (7) system of equations. In the latter, both slow variasubsequently, substituting Arages law in the previous equa-
tions of the surface boundary conditions and small electrigion, we found:

fields are considered; thus the resultiBgandJ profiles are

considered quasi-relaxed. In this work we choose a third op- B = —0, {p (13363 _ sigan)Jc) } _

tion: a combination of the two mentioned above, which will

be detailed below.

Our system is an infinite superconducting plate of thick-
nessD, a scheme is shown in Fig. 1. Itis subjected to a mag-
netic fieldH = He,, surface barriers against flux entrance or
exit are negligible, andf,, < H,,. OnceH has penetrated Ul equation:
the sample, a superconducting current density Je, ap-

Since the focus of our study is steady-state solutions, we
establish the conditio; B = 0. This restriction reduces the
problem to solving a first-order non-linear ordinary differen-

/
pears. If there is no remanent field alld > 0, the current 2—5 + signd J)poJ. = —MOC (20)
flows counterclockwise; iHl < 0, it flows clockwise.

Since the magnetic inductioB = Be. only has an We employ the empirical Kim-Anderson generalized law
z—component, using Aréyes law, we obtaift, B=—p0.Jy.  for current-field relationship proposed by X%tial.,[13]:
Furthermore, sinc&||J, thenE = |E|e; = E(J)e,, Where
e; = J/Jis aunit vector. Therefore, Faradays law is written J. = Jeo (11)
aso,B = —0,E(J(x)). ¢ (1+ & )n
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whereJ, is the maximum value of the critical current den- According to the symmetry of the problem and the

sity given by the formula: isotropy of the material, magnetic induction at the face 0
1 is the same at the face = D, that is,uoH = B(z = 0)
B 2B* — —
Je(0) = [ {1+ 22 1| —=—, @z ~Bla=D) , -
B* (n+ 1)pod Thus, we can argue that penetration of magnetic induc-

- . tion into the material will occur with the same proportion at
bothn, areal positive, and* are materials parameters. Sub- poth faces, see Scheme 1. This last assertion allow us to write

stituting (11) into (10) gives the relationss’ = D—x andB(x) = B(D—=z). If we choose
; . X
dB . J. c’ zo = z{, = D/2 and add the last two relations, we find the
22 1 signg.J) 1O = _ ot following:
dx (1+ &) p
B(x) n n
Ifitis defined thatC” = .J.opC, then T+ ) PR N
B(z) . Cl+E)"+1 c+E£) - '
(1 + B*) B(D/2)
/ %CHB = —poJeo(T — T0), ) ) . )
5 C1+£) +1 Since the previous equation follows for each subinter-
(x0) val [B(D/2), B(z)] C [B(D/2), B(D)], then, the integrand
forz € [0, D/2], and is equal to zero foB(z) € [B(D/2), B(D)] and, conse-
) quently, the integration constant is found to@e= 0. The
B(z") (1 T: )n latter procedure is analogous for magnetic figlfigh — 2z di-
%dB = —poJeo(z’ — ) rection, obtaining again the integration constant 0.
B! C(l + B*) -1 Given the symmetry of the system, current density flows
’ in the +e, direction in the intervak: = [0, D/2], and flows
forz’ € [D/2, D]. in the —e,, direction in the intervak = [D/2, D], leading to
| the following solutions:
B n+1 ; 1
B\ "t <1 + gﬁ*o)) - %(x —x9) x€[0,D/2]
(1 + B*> - EIR T (13)
<1 + ) TR U "OB* (zr—af) x€[D/2,D]

In general, one can write the above equation considering the two possible incident magnetic field dirBctiofisand
H < 0, as follows:

n+1
( B )n+1 (1 + BJ;ﬁO) - sgr(ﬂ%(x —x) x€[0,D/2
1 + * = / n+1 (14)
B <1+ ng?)) —&-Sgr(H)%(x—xg) e [D/2,D]

For our purposes, it is convenient to define the quantifieg = poJ.0D/2 andb~ . = 1 + B/B*, where the>< label
refers to thed > 0 or H < 0 case, respectively. Thus (14) can be written as follows:

2Bpp(n+1)

D?*
2Bpp(n+1)
DB*

b2 (wo)— Sgr(H)

b2 (wf )+ sgn(H)

Bt () o) we Db 1)

(x —zp) =« €[D/2,D)

Therefore, all the solutions fa£~! (x) are straight lines with the same slope, and opposite sign depending on the interv
z €[0,D/2]orx € [D/2,D].

3. The characteristic Bp and Bpp fields

ith field. th ic induction i dneticinduction is completely distributed through the sample.
Without a remanent field, the magnetic induction is grad- oyr notation, this is equivalent 8+ (z = D/2) = 1.

ually distributed as the external magnetic fietfl is in-
creased. Once the external field reaches the particular value Forz € [0, D/2], if 2o = 0 and considering the boundary
woH~ = Bps <, the so-called penetration field, then mag- condition, we found that
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b2t (o) = U3t = (1 + poH></B*)" . » n+l
If |uoH| < |Bp| exists a pointr = z; such that H>O bPP>
b2t (z1) = 1, then ;
DB*
=sgnH)————— (b7 —1).
T gl'( )2BPB(TL+1)( a>< ) n+l
bP>
Similarly, forz € [D/2, D], thereis avalue = z(, = x5
such that2t!'(z)) = 1 and, atr = D, b2t (D) = b3L,
therefore:
" 2Bpp (77, + 1)
et =1+ SQF(H)T(D —x2) 1
and
DB*
2y =D —SgMH) ;= (0pil — 1) = D — ;. n+1
2BPB(’II+1) >< —bP<
The penetration fieldb’,.". can be obtained when
1 = T = D/Q:
bps < =SgnH)—F—— 1. (16) Z Pp<
It is easy to show that for external fieltig)H| > |Bp; 0 D/Z D
that is, forb”t!(D/2) # 1, the magnetic induction at the
center of the sample obeys the following relation: FIGURE 2. Scheme of thé2%!(z) profiles at a superconducting
plate in critical state. Observe the points 2, b%5". andbphl _.
Vet (D/2) = il — ot £ 1. The last two points correspond to the cases where the external field
reaches the first and second penetration field.
From this relation, one can argue that the particular value
bl = biptl _, defined as the double penetration field, and
iHar ntl _ gn+l o
considering thalyp>< = b1 (D/2), itis related to the pen- bppse = 2bp5L F 1. (17)
etration field as:
| With these resultst! takes the form:
2Bpp
bitl — sgn(H) T z €[0,D/2]
@) ={ DB (18)
DIt (x2) + SQUH) 57 (r —22) @ € [D/2,D)]
wherez, defined as: |
D—x |Bas<| < |Bp| at the same point;. Therefore, the relation between the ap-
27 21=D/2  |Bawc| > |Bp| plied fields is given byt! = 2 — 73, that is, the applied
fields suffer an inversion sign and a translation or, in other
and words, it suffers a reflection ovéf ! = 1.
bt (1) = { 1 » » z2 # D/2 For applied fieldsb,~ > bp~, it is found that
n T
i bas< —bpsc+1 22 =D/2 b (D/2) + 02N (D/2) = b + bt =«

Specifically, employing the formula forBp vyields
bptl = 2 — btl. Therefore,a must be equal t@, thus

n+1l _ _ n+1> n+1 _ _ pn+1
Let us examine th&”t' space. Remember that the symbolsba< =2=box andb T (D/2) = 2 =657 (D/2).

> and< correspond to the casés > 0 andH < 0, respec- Finally, addingbZJrl andv2*! for x € [0, D/2], one gets
tively. bt ppntt = prdt 4ttt = 2, thus it = 227 For

Observe that forl < b,» < bps one hasbZt'  z € [D/2,D]itis found thath ™ + b2 = p2T1(D/2) +
(z = z;) = 1, and the straight ling”*! has one ofitsends ~ b""*(D/2) = 2, thus, b =2 — p2+.

4. Symmetry relations betweerb” ™ and 5
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3 — p—
n+l
P>
2 —
1
0
n+l n+l
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- \I\‘ 1
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FIGURE 3. Symmetry betweenZ"™ andb™*'. The magnetic
induction curves forH > 0 generate the curvelﬁ;+1 through

a sign inversion plus a translation, given by the formalla* (z)

= 2 — b2 (x). Under the linear transformatiah{ f (b) + g(b)}

= L{f(b)} + L{g(b)} such thatL{h(b)} = (h(b))=+T, one ob-
tains, b = 2 — b~, which preserves the translation and sign inver-
sion.

In conclusion, the magnetic induction curves obtained for

H > 0 are generators of th < 0 curves, and viceversa,
through an inversion sign and translation described by:
bit(z) =2 — b (). (19)
This reflection mechanism is illustrated in Fig. 3. No-
tice that when a linear transformatioh{f(b) + ¢(b)}
= L{f(b)} + L{g(b)} is applied to Eq. (19), that is,
L{h(b)} = (h(b))"/(»*1) the resulth. = 2 — b~ indicates

that onceb~. is known, under an inversion sign and a trans-

lation, theb. distribution can be obtained. This result is of
particular relevance, since we are dealing withroots cal-

culation. When magnetic induction takes on negative values,

imaginary values fon—odd and real values for—even are

obtained. In contrast, sinde. is strictly greater than zero,
one can always find a unique-positive root by employing
our proposal.

5. Power and Vertical Law Equivalence

Modelling the E — J relationship for a type-Il superconduc-
tor, is a subject still under study. Frecuently, trestical law
(presented above) or th@ower lawE = E.(J/J.)™ are
used; these approximations give quite good results.

127

0.5

o)

]

e

FIGURE 4. (a) B behavior. Continuous lines are the profiles when
the applied field hag direction, the dashed lines correspond to
a external field with—z direction. (b) The corresponding current
density curves of (a). For both graphics, the parameters employed
were B* = 0.02 andn = 0.5.

Thepower lawhas proved its effectiveness if one wishes
to study the physics dfux creep a response of the thermal
energy to both the current driven force and the magnetic flux
density gradient. Flux creep is revealed in two ways: 1) it
drives slow changes in the magnetic induction and 2) causes
measurable resistive voltages.

In classic type-1l superconductors, slow flux creep is un-
observable unless the flux density gradient reaches its critical
value. On the other hand, in HTSC, the magnetic flux move-
ment becomes prominent as flux line bundles are thermally
depinned, even at temperatures belBw Activation energy
U(J) dependence on the current can be extracted from creep

Rev. Mex. Fis59 (2013) 123-130
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DenotingC = (C’/E.)"/™ and substituting the current-
field relationship (11) in the latter, one can obtain the same
solution (14) employing the vertical law @ = 1 is chosen.
Therefore, in the steady-state approximation, both models de-
scribe exactly the same physical environment, making them
indistinguishable.

6. Results

Let us apply the theory of the preceding section to obtain the
magnetic inductiorB(z) and current density (z) profiles as

an external fieldd = He, parallel to the sample plane varies
from 0 to 0.4 T. We consider a model sample with thickness
D =2.3 x 10~* m, parameter®* = 0.02 T, n = 0.5, max-
imum critical current density,.(0) = 4.48 x 10° Am~2, and
Bpp = podeoD/2=0.65T.

Figure 4 shows thé& and.J behavior forH > 0 (contin-
uous curves) and/ < 0 (dashed curves). In panel (a) one
can observe the magnetic induction profiles when the exter-
nal field has partially penetrated the superconducting plate,
when it reaches the penetration field (labeled), and the
1 double penetration field (labeldslop). As the applied field
is increased, thé3 profiles tend toward lines with constant
slope; the corresponding critical current density, see panel
0.8 (b), which starts with the maximum critical current valig,
where the magnetic field has not been penetrated, tends to-
ward constant values along the thickness sample, bélgw
0.6 Figure 5 shows thé profiles when the applied field cor-
responds to the penetration fielt}--., varying the parame-
ter n with fixed B*. Observe, at panel (a), the dimension-
04 . = lessB/Bp critical-state profiles as is increased one order
—D =) of magnitude, from zero ta0°, for a fixed B* = 0.02T.

% 0 Starting from the Bean case (far = 0), for a poor type-
02 = B =10 Il superconductor (for, = 10), where the profile tends to-
- —% ward a uniform field case. On the other hand, Fig. 5(b)
(b) B =10 showsB/Bp profiles varying the parameté&™* with fixed n.
_B*:lo-zl In this case, to appreciate differences between®Bidp

B S B P‘

0 0.5

/D BP/BPB
10
FIGURE 5. Scaled magnetic inductioB/Bp vs x/D, for 10

H = He. > 0, varying the parameter or B*. (a) B* = 0.02
is fixed; n takes the value8, 10™*,1,10°. (b)n = 1 is fixed with
valuesB* = 107%,1072,10°, 10%.

measurements, with the power law~ J™ being the sug- E

gested function to model it [14,15]. Moreover, energy dis- & IOO
sipation associated with flux creep can produce catastrophic*m
consequences, originating flux jumps that tend to destroy the

critical state [16]. Therefore, the importance of th¢J)

choice depends on the type-ll superconductor, low or high

T., and which regime is it in. .10

Now, substituting the power law in the steady-state equa- 10 10 0 10 0
tion and calculating iten—root, yields: 10 10 10
n
dB _ . N c’ 1/m FIGURE 6. Surface plot of dimensionless penetration field
o= —posigna J) J. L. Bp/Bpp atz = D/A4.
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BP/BPP

10

10

10 10
n

FIGURE 7. Surface plot, at = D/4, of the ratio of the first pene-
tration field, Bp, to the double penetration fiel&pp.

10-10

. B,/Bpoy - I/,
10
@
s 10"
m
-10
10 0
10" 10" 10"

n

FIGURE 8. Surface plot of dimensionless different® /Bpp —
JC/JC() atr = D/4
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In the framework of this theory, the penetration field is
obtained as a function of the parameters3*, the intrinsic
property J., the extrinsic propertyD and Bpg. However,
according to the expressions presented in this paper, there
is ambiguity in the parameters and B* selection because
one can find an infinity of values for and B* which cor-
respond to a single penetration field value. This is observ-
able in Fig. 6. Theoretically, the maximum value that can be
reached isBpg, and, the minimum value is zero; the latter
result may be physically inadmisible as the minimum value
of the magnetic field is the first critical field{,;. Let us ob-
serve the blue zone, which corresponds to cases close to the
limiting Bean case, while the red zone is associated with a
poor type-ll superconductor, where the critical current den-
sity tends to dissapear. The interest zone, where the magnetic
induction profiles are not straight lines, is the color gradient.
In the graphic there are two regions where the relation be-
tween parameters and B* is approximately linear. On the
other hand, there is a bending at the color gradient zone in
the intervall0=2 $n < 1and10~* < B*/Bpp S 1.

Since the surface plot for the dimensionless double pene-
tration field has a similar structure to the dimensionless pen-
etration field one, then, to distinguish them, we present the
surface plotBp/Bpp in the Fig. 7. Of course, this quotient
is less than the unity; the graphic shows a blue zone where
Bpp = 2Bp, which corresponds to superconducting states
very similar to those of the Bean case. The red gradient zone
suggests us thaBpp tends toBp; this value corresponds
to a poor type-ll superconductor. Observe that states differ-
ent than the Bean case or a poor type-ll superconductor are
better defined at the color gradient zone, where the correla-
tion between the parametetsand B* is simple, than at the
zone obtained for the penetration field. The surface plot of
the dimensionless critical current density, that is, the quo-
tient J./J.o has also a structure similar to that of the surface
plot of Bp/Bpp. Therefore, is better to graph the difference
Bp/Bpp — J./Je0, presented in Fig. 8. Itis evident that the
main deviations are generated frem> 1 andB*/Bpg > 1.

Finally, as an example to show the utility of our results,

critical-state profiles, one should select decreasing values ¢¥€ present results of a property of the superconducting ma-

B* varying it two orders of magnitude from0? to 10—*
with fixed n = 1. We obtain a Bean profile foB* large

terials in Fig. 9: the shielding field abilitAHgp,. It is al-
ready known that when a magnetic field is applied to a su-

(B* = 10°T) and, asB* diminishes, the changing rate of perconductor, and its magnitude is increased by cerdih
the profiles tending to a poor type-l1l superconductor case igurrent density diminishes, the size of the such an increase

slower than the case whernvaries for a fixedB*.

may produce magnetic instabilities, and consequently, may

As Ming Xu et. al. [13] suggested, the material parame- 9enerate flux jumps. Given the instability criterium, that is,
tersn and B* may be related to intrinsic and extrinsic proper- if AH,, > AH the field configuration becomes unstable,
ties of the superconductor. In the following section, we study? Hs, can be found by the equation:

how physical properties are modified as the parametersd

B* vary. We focus in the cas# > 0 to obtain the sur-
face plot viewed from above (the so-callpseudocolor plot

in Matlab) of both dimensionless penetration figlgd / Bp g

D/2

AH,, = / AJ.dz (20)
0

and the double penetration fiekl-»/ Bp, and the difference  whereA J. is the change in critical current density associated
between the dimensionless penetration field less the dimenvith an external fieldd increase fromH to H + AH.

sionless critical current density3p/Bpp — J./J0, all at
x=D/4.

Figure 9 presents an example of the shielding field ability
AHg, for B* =1,107%,1072,1072, 1074, a fixedn = 1,

Rev. Mex. Fis59 (2013) 123-130
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* _and

— B /BPB—IO
B /BPB=10 :

——— /BPB=10 .

o )
B /BPB:10

0 Ln ]
— B /BPB_m

o
B /BPB—IO

— -2
10 10 10
H/HPB
FIGURE 9. Shielding field AH,, curves for fixedn = 1,
AH/Hpgp varyingB* =1,107%,1072,1073,10™*.

andAH/Hpp = 10~*. The orange curve (foB* = 1)
represents a stable system for all the external field values.

7. Summary

We have theoretically investigated how the parameteaad
B*, corresponding to the Kim-Anderson generalized func-
tion J.(B), affect the physical characteristics of magnetic in-
duction in a type-1l superconductor.

In contrast to previous works, we have obtained a colored
map or pseudocolor plot which clearly shows the pair of pa-
rameteres: and B* that describe a range from a Bean-like
type-1l superconductor to a poor one. Between these limit-
ing cases, we found a rich area with a color gradient corre-
sponding to equivalent states. Therefore, ambiguity persists
regarding the choise of values forand B*.

We consider that additional theoretical studies are
needed. Specifically within this framework, the hysteresis
curve could contribute to a better understanding of the phys-
ical meaning of the: and B* parameter pair.
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