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Exploring solutions for Type-II superconductors in critical state
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An analytical solution is found for magnetic induction in a type-II superconducting plate in parallel geometry. In this study, critical current
density is modeled following the Ming Xuet al.,approach which requires the adjusting parametersn andB∗. A symmetry relation between
the generating equations of theH > 0 andH < 0 cases is presented, as well as an equivalence between vertical and power laws for a
superconductor in steady state. We present a systematic procedure for identifying magnetic induction profiles and we analyze the physical
characteristics of the superconducting plate whenn andB∗ vary. Specifically, we present flat surface plots of the penetration field, dou-
ble penetration field, critical current density and, finally, an application of our results to calculate the shielding field, which prevents the
occurrence flux jumps.
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1. Introduction

Over the last forty years, it has been well established that the
macroscopical magnetic response of irreversible type-II su-
perconductors is controlled by two fundamental processes:
the flux pinning due to vortices with deffects or inhomo-
geneities interactions and theflux-line cuttingdue to adja-
cent plane vortex interactions. The latter occurs when the
applied magnetic field contains several components or vari-
able orientation. Both phenomena have been studied employ-
ing models based on Bean theory [1]: The Double General-
ized Critical-State model [2,3], the Two-Velocity Hydrody-
namic model [5,6], the Optimal Control model [4], the El-
liptic Flux-Line-Cutting Critical-State model [7], and, most
recently, the Elliptic-Extended Flux-Line-Cutting Critical-
State model [8]. These models employ a material equation
based on the fact that an electric fieldE can exist inside a
sample in the superconducting state, and the magnitude of
the supercurrent densityJ can possess a finite critical value
Jc, that persists even in absense ofE.

Bean proposed that a superconductor can hold a limited
superconducting current densityJc(B) and analyzed its mag-
netic properties by solving Ampéres law,

∇×H = ±J, (1)

where|J| = Jc. Any electromotive force greater than this
value will cause the supercurrent to flow locally and the ma-
terial enter a resistive state.

It is of interest to study the electromagnetic properties of
type-II superconductors subjected to slowly increased exter-
nal magnetic fieldsH. Flux distribution can fall into a variety
of metaestable states, which change only when the magnitude
of the local current densityJ exceeds the critical current den-
sityJc = Jc(B). The material can relax through a succession

of steady or quasi-steady states, even though flux transport
occurs in the interior due to vortex bundling induced by the
Lorentz forceFL = J × B, once the pinning forceFp is
overcome.

From current-voltage curves analysis, is well known that
changes in magnetic flux inside the superconductor will gen-
erate an electric field. Flux movement resists through a fric-
tion force due to pinning centers, together with a viscous
force, although the latter is usually less than the former. IfJc

is exceeded during transport measurements an electric field
E is detected due to the presence of electrostatic charges at
the terminals array. On the other hand, if there is a flux leak
in a superconducting ring,E is induced due to the abscence
of electrostatic charge, even if local conditions are identical
to those in the transport measurement case.

In the present study, we perform a theoretical study of the
macroscopic properties of type-II superconducting plates in
parallel geometry.

As the external magnetic field varies in magnitude but not
in direction, it is possible to find analytical solutions if we
consider an infinite sample with finite thickness. We analyze
the stationary state of two standard material relationsE(J).

To the best of the authors’ knowledge, a detailed presen-
tation of how magnetic induction profiles can be obtained has
not yet been carried out. Experimental and theoretical studies
have focused on magnetization and hysteresis curves calcula-
tion [9,11], as well as numerical calculations of the magnetic
induction profiles of HTSC [12]. In the present work, we
employ the Kim-generalized function for the critical current
densityJc(B) to perform both a systematic presentation for
identifying magnetic induction profiles and a detailed analy-
sis of how the superconducting behavior depends on the para-
metricality ofn andB∗.
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2. Steady-State Solutions and theE − J rela-
tionship

The Maxwell equations in a medium are:

∇×H =J + ∂tD (2)

∇×E =− ∂tB (3)

∇ ·D =ρ (4)

∇ ·B =0. (5)

The request for additional equations is well known. These
so-called constitutive relations, for an anisotropic medium,
can be written as follows:

J = ←→σ ·E
D = ←→ε ·E (6)

B = ←→µ ·H

where the conductivity←→σ , permittivity←→ε , and permeabil-
ity ←→µ , are second rank tensors. In our theoretical study, the
superconductor is isotropic; the net electrostatic charge distri-
bution is null; temporal variations of the electrical displace-
ment are negligible, and for the sake of simplicity we assume,
with good approximation, the boundary conditionB ≈ µ0H.

We employ the Bean current-electric field relationship:

J = Jc(B)
E
E

. (7)

This multicomponent model considers thatE‖J and does
not include flux-line cutting effects. To obtain theJ andB
profiles and the magnetization of a superconductor in a steady
state, one of two procedures is generally followed: an an-
alytic one, solving the Amṕeres (1) and materials law (7)
system of equations, applying the condition∂tB = 0, or a
numeric one [3,12], solving the Ampéres (1), Faradays (3)
and (7) system of equations. In the latter, both slow varia-
tions of the surface boundary conditions and small electric
fields are considered; thus the resultingB andJ profiles are
considered quasi-relaxed. In this work we choose a third op-
tion: a combination of the two mentioned above, which will
be detailed below.

Our system is an infinite superconducting plate of thick-
nessD, a scheme is shown in Fig. 1. It is subjected to a mag-
netic fieldH = Hez, surface barriers against flux entrance or
exit are negligible, andHc1 ¿ Hc2. OnceH has penetrated
the sample, a superconducting current densityJ = Jey ap-
pears. If there is no remanent field andH > 0, the current
flows counterclockwise; ifH < 0, it flows clockwise.

Since the magnetic inductionB = Bez only has an
x−component, using Amṕeres law, we obtain∂xB=−µ0Jy.
Furthermore, sinceE‖J, thenE = |E|eJ = E(J)ey, where
eJ = J/J is a unit vector. Therefore, Faradays law is written
as∂tB = −∂xE(J(x)).

FIGURE 1. Scheme of a portion of an infinite type-II superconduct-
ing plate of thicknessD.

Here, we use the vertical law to modelE(J):

E(J) =
{

0 |J | ≤ Jc,
ρ(J − signo(J)Jc) |J | ≥ Jc.

(8)

where

signo(J) =





+1 H > 0, x ∈ [0, D/2]
−1 H > 0, x ∈ [D/2, D]
−1 H < 0, x ∈ [0, D/2]
+1 H < 0, x ∈ [D/2, D]

(9)

Substituting the latter in Faradays law yields:

∂tB = −∂x{ρ(J − signo(J)Jc)},

subsequently, substituting Ampéres law in the previous equa-
tion, we found:

∂tB = −∂x

{
ρ

(
− 1

µ0
∂xB − signo(J)Jc

)}
.

Since the focus of our study is steady-state solutions, we
establish the condition∂tB = 0. This restriction reduces the
problem to solving a first-order non-linear ordinary differen-
tial equation:

dB

dx
+ signo(J)µ0Jc = −µ0C

′

ρ
(10)

We employ the empirical Kim-Anderson generalized law
for current-field relationship proposed by Xuet al.,[13]:

Jc =
Jc0(

1 + B
B∗

)n (11)
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whereJc0 is the maximum value of the critical current den-
sity given by the formula:

Jc(0) =

[(
1 +

Bp

B∗

)n+1

− 1

]
2B∗

(n + 1)µ0d
, (12)

bothn, a real positive, andB∗ are materials parameters. Sub-
stituting (11) into (10) gives

dB

dx
+ signo(J)

µ0Jc0(
1 + B

B∗
)n = −µ0C

′

ρ
.

If it is defined thatC ′ ≡ Jc0ρC, then

B(x)∫

B(x0)

(
1 + B

B∗
)n

C
(
1 + B

B∗
)n

+ 1
dB = −µ0Jc0(x− x0),

for x ∈ [0, D/2], and

B(x′)∫

B(x′0)

(
1 + B

B∗
)n

C
(
1 + B

B∗
)n − 1

dB = −µ0Jc0(x′ − x′0)

for x′ ∈ [D/2, D].

According to the symmetry of the problem and the
isotropy of the material, magnetic induction at the facex = 0
is the same at the facex = D, that is,µ0H = B(x = 0)
= B(x = D).

Thus, we can argue that penetration of magnetic induc-
tion into the material will occur with the same proportion at
both faces, see Scheme 1. This last assertion allow us to write
the relationsx′ = D−x andB(x) = B(D−x). If we choose
x0 = x′0 = D/2 and add the last two relations, we find the
following:

B(x)∫

B(D/2)

{ (
1 + B

B∗
)n

C
(
1 + B

B∗
)n

+ 1
+

(
1 + B

B∗
)n

C
(
1 + B

B∗
)n − 1

}
dB = 0.

Since the previous equation follows for each subinter-
val [B(D/2), B(x)] ⊂ [B(D/2), B(D)], then, the integrand
is equal to zero forB(x) ∈ [B(D/2), B(D)] and, conse-
quently, the integration constant is found to beC = 0. The
latter procedure is analogous for magnetic fieldsH in −ẑ di-
rection, obtaining again the integration constantC = 0.

Given the symmetry of the system, current density flows
in the+ey direction in the intervalx = [0, D/2], and flows
in the−ey direction in the intervalx = [D/2, D], leading to
the following solutions:

(
1 +

B

B∗

)n+1

=





(
1 +

B(x0)
B∗

)n+1

− µ0Jc0(n + 1)
B∗ (x− x0) x ∈ [0, D/2]

(
1 +

B(x′0)
B∗

)n+1

+
µ0Jc0(n + 1)

B∗ (x− x′0) x ∈ [D/2, D]
(13)

In general, one can write the above equation considering the two possible incident magnetic field directions,H > 0 and
H < 0, as follows:

(
1 +

B

B∗

)n+1

=





(
1 +

B(x0)
B∗

)n+1

− sgn(H)
µ0Jc0(n + 1)

B∗ (x− x0) x ∈ [0, D/2]
(

1 +
B(x′0)

B∗

)n+1

+ sgn(H)
µ0Jc0(n + 1)

B∗ (x− x′0) x ∈ [D/2, D]
(14)

For our purposes, it is convenient to define the quantitiesBPB ≡ µ0Jc0D/2 andb>< ≡ 1 + B/B∗, where the>< label
refers to theH > 0 or H < 0 case, respectively. Thus (14) can be written as follows:

bn+1
>< (x)=





bn+1
>< (x0)− sgn(H)

2BPB(n + 1)
DB∗ (x− x0) x ∈ [0, D/2]

bn+1
>< (x′0)+ sgn(H)

2BPB(n + 1)
DB∗ (x− x′0) x ∈ [D/2, D]

(15)

Therefore, all the solutions forbn+1
>< (x) are straight lines with the same slope, and opposite sign depending on the interval

x ∈ [0, D/2] or x ∈ [D/2, D].

3. The characteristicBP and BPP fields

Without a remanent field, the magnetic induction is grad-
ually distributed as the external magnetic fieldH is in-
creased. Once the external field reaches the particular value
µ0H>< = BP><, the so-called penetration field, then mag-

netic induction is completely distributed through the sample.
In our notation, this is equivalent tobn+1

>< (x = D/2) = 1.

Forx ∈ [0, D/2], if x0 = 0 and considering the boundary
condition, we found that
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bn+1
>< (x0) = bn+1

a>< = (1 + µ0H></B∗)n+1.

If |µ0H| < |BP | exists a pointx = x1 such that
bn+1
>< (x1) = 1, then

x1 = sgn(H)
DB∗

2BPB(n + 1)
(bn+1

a>< − 1).

Similarly, forx ∈ [D/2, D], there is a valuex = x′0 = x2

such thatbn+1
>< (x′0) = 1 and, atx = D, bn+1

>< (D) = bn+1
a><,

therefore:

bn+1
a>< = 1 + sgn(H)

2BPB(n + 1)
DB∗ (D − x2)

and

x2 = D − sgn(H)
DB∗

2BPB(n + 1)
(bn+1

a>< − 1) = D − x1.

The penetration fieldbn+1
P>< can be obtained when

x1 = x2 = D/2:

bn+1
P>< = sgn(H)

BPB(n + 1)
B∗ ± 1. (16)

It is easy to show that for external fields|µ0H| > |BP |;
that is, forbn+1

>< (D/2) 6= 1, the magnetic induction at the
center of the sample obeys the following relation:

bn+1
>< (D/2) = bn+1

a>< − bn+1
P>< ± 1.

From this relation, one can argue that the particular value
bn+1
a>< = bn+1

PP><, defined as the double penetration field, and
considering thatbn+1

P>< = bn+1
>< (D/2), it is related to the pen-

etration field as:

FIGURE 2. Scheme of thebn+1
>< (x) profiles at a superconducting

plate in critical state. Observe the pointsx1, x2, bn+1
P>< andbn+1

PP><.
The last two points correspond to the cases where the external field
reaches the first and second penetration field.

bn+1
PP>< = 2bn+1

P>< ∓ 1. (17)

With these results,bn+1
>< takes the form:

bn+1
>< (x) =





bn+1
a>< − sgn(H)

2BPB

DB∗ x x ∈ [0, D/2]

bn+1
>< (x2) + sgn(H)

2BPB

DB∗ (x− x2) x ∈ [D/2, D]
(18)

wherex2 defined as:

x2 =
{

D − x1 |Ba><| < |BP |
x1 = D/2 |Ba><| > |BP |

and

bn+1
>< (x2) =

{
1 x2 6= D/2
bn+1
a>< − bn+1

P>< + 1 x2 = D/2

4. Symmetry relations betweenbn+1
> and bn+1

<

Let us examine thebn+1
>< space. Remember that the symbols

> and< correspond to the casesH > 0 andH < 0, respec-
tively.

Observe that for1 < ba> < bP> one hasbn+1
>

(x = x1) = 1, and the straight linebn+1
< has one of its ends

at the same pointx1. Therefore, the relation between the ap-
plied fields is given bybn+1

a< = 2− bn+1
a> , that is, the applied

fields suffer an inversion sign and a translation or, in other
words, it suffers a reflection overbn+1

>< = 1.

For applied fieldsba> > bP>, it is found that
bn+1
> (D/2) + bn+1

< (D/2) = bn+1
a> + bn+1

a< = α.

Specifically, employing the formula forBP yields
bn+1
P< = 2 − bn+1

P> . Therefore,α must be equal to2, thus
bn+1
a< = 2− bn+1

a> andbn+1
< (D/2) = 2− bn+1

> (D/2).

Finally, addingbn+1
< andbn+1

> for x ∈ [0, D/2], one gets
bn+1
> +bn+1

< = bn+1
a> +bn+1

a< = 2, thus,bn+1
< = 2−bn+1

> . For
x ∈ [D/2, D] it is found thatbn+1

> + bn+1
< = bn+1

> (D/2) +
bn+1
< (D/2) = 2, thus,bn+1

< = 2− bn+1
> .
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FIGURE 3. Symmetry betweenbn+1
> and bn+1

< . The magnetic
induction curves forH > 0 generate the curvesbn+1

< through
a sign inversion plus a translation, given by the formulabn+1

< (x)
= 2 − bn+1

> (x). Under the linear transformationL{f(b) + g(b)}
= L{f(b)} + L{g(b)} such thatL{h(b)} = (h(b))

1
n+1 , one ob-

tains,b< = 2− b>, which preserves the translation and sign inver-
sion.

In conclusion, the magnetic induction curves obtained for
H > 0 are generators of theH < 0 curves, and viceversa,
through an inversion sign and translation described by:

bn+1
< (x) = 2− bn+1

> (x). (19)

This reflection mechanism is illustrated in Fig. 3. No-
tice that when a linear transformationL{f(b) + g(b)}
= L{f(b)} + L{g(b)} is applied to Eq. (19), that is,
L{h(b)} = (h(b))1/(n+1), the resultb< = 2 − b> indicates
that onceb> is known, under an inversion sign and a trans-
lation, theb< distribution can be obtained. This result is of
particular relevance, since we are dealing withn−roots cal-
culation. When magnetic induction takes on negative values,
imaginary values forn−odd and real values forn−even are
obtained. In contrast, sinceb> is strictly greater than zero,
one can always find a uniquen−positive root by employing
our proposal.

5. Power and Vertical Law Equivalence

Modelling theE − J relationship for a type-II superconduc-
tor, is a subject still under study. Frecuently, thevertical law
(presented above) or thepower lawE = Ec(J/Jc)m are
used; these approximations give quite good results.

FIGURE 4. (a)B behavior. Continuous lines are the profiles when
the applied field hasz direction, the dashed lines correspond to
a external field with−z direction. (b) The corresponding current
density curves of (a). For both graphics, the parameters employed
wereB∗ = 0.02 andn = 0.5.

Thepower lawhas proved its effectiveness if one wishes
to study the physics offlux creep, a response of the thermal
energy to both the current driven force and the magnetic flux
density gradient. Flux creep is revealed in two ways: 1) it
drives slow changes in the magnetic induction and 2) causes
measurable resistive voltages.

In classic type-II superconductors, slow flux creep is un-
observable unless the flux density gradient reaches its critical
value. On the other hand, in HTSC, the magnetic flux move-
ment becomes prominent as flux line bundles are thermally
depinned, even at temperatures belowTc. Activation energy
U(J) dependence on the current can be extracted from creep
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FIGURE 5. Scaled magnetic inductionB/BP vs x/D, for
H = Hez > 0, varying the parametern or B∗. (a) B∗ = 0.02
is fixed;n takes the values0, 10−1, 1, 100. (b) n = 1 is fixed with
valuesB∗ = 10−4, 10−2, 100, 102.

measurements, with the power lawE ∼ Jm being the sug-
gested function to model it [14,15]. Moreover, energy dis-
sipation associated with flux creep can produce catastrophic
consequences, originating flux jumps that tend to destroy the
critical state [16]. Therefore, the importance of theE(J)
choice depends on the type-II superconductor, low or high
Tc, and which regime is it in.

Now, substituting the power law in the steady-state equa-
tion and calculating itsm−root, yields:

dB

dx
= −µ0signo(J)Jc

(
C ′

Ec

)1/m

DenotingC ≡ (C ′/Ec)1/m and substituting the current-
field relationship (11) in the latter, one can obtain the same
solution (14) employing the vertical law ifC ≡ 1 is chosen.
Therefore, in the steady-state approximation, both models de-
scribe exactly the same physical environment, making them
indistinguishable.

6. Results
Let us apply the theory of the preceding section to obtain the
magnetic inductionB(x) and current densityJ(x) profiles as
an external fieldH = Hez parallel to the sample plane varies
from 0 to 0.4 T. We consider a model sample with thickness
D = 2.3× 10−4 m, parametersB∗ = 0.02 T, n = 0.5, max-
imum critical current densityJc(0) = 4.48×109 Am−2, and
BPB = µ0Jc0D/2 = 0.65 T.

Figure 4 shows theB andJ behavior forH > 0 (contin-
uous curves) andH < 0 (dashed curves). In panel (a) one
can observe the magnetic induction profiles when the exter-
nal field has partially penetrated the superconducting plate,
when it reaches the penetration field (labeledBP ), and the
double penetration field (labeledBPP ). As the applied field
is increased, theB profiles tend toward lines with constant
slope; the corresponding critical current density, see panel
(b), which starts with the maximum critical current valueJc0,
where the magnetic field has not been penetrated, tends to-
ward constant values along the thickness sample, belowJc0.

Figure 5 shows theB profiles when the applied field cor-
responds to the penetration fieldBP>, varying the parame-
ter n with fixed B∗. Observe, at panel (a), the dimension-
lessB/BP critical-state profiles asn is increased one order
of magnitude, from zero to100, for a fixedB∗ = 0.02T.
Starting from the Bean case (forn = 0), for a poor type-
II superconductor (forn = 10), where the profile tends to-
ward a uniform field case. On the other hand, Fig. 5(b)
showsB/BP profiles varying the parameterB∗ with fixedn.
In this case, to appreciate differences between theB/BP

FIGURE 6. Surface plot of dimensionless penetration field
BP /BPB atx = D/4.
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FIGURE 7. Surface plot, atx = D/4, of the ratio of the first pene-
tration field,BP , to the double penetration field,BPP .

FIGURE 8. Surface plot of dimensionless differenceBP /BPB −
Jc/Jc0 atx = D/4.

critical-state profiles, one should select decreasing values of
B∗ varying it two orders of magnitude from102 to 10−4

with fixed n = 1. We obtain a Bean profile forB∗ large
(B∗ = 102T) and, asB∗ diminishes, the changing rate of
the profiles tending to a poor type-II superconductor case is
slower than the case whenn varies for a fixedB∗.

As Ming Xu et. al. [13] suggested, the material parame-
tersn andB∗ may be related to intrinsic and extrinsic proper-
ties of the superconductor. In the following section, we study
how physical properties are modified as the parametersn and
B∗ vary. We focus in the caseH > 0 to obtain the sur-
face plot viewed from above (the so-calledpseudocolor plot
in Matlab) of both dimensionless penetration fieldBP /BPB

and the double penetration fieldBPP /BP , and the difference
between the dimensionless penetration field less the dimen-
sionless critical current density,BP /BPB − Jc/Jc0, all at
x = D/4.

In the framework of this theory, the penetration field is
obtained as a function of the parametersn,B∗, the intrinsic
propertyJc, the extrinsic propertyD andBPB . However,
according to the expressions presented in this paper, there
is ambiguity in the parametersn andB∗ selection because
one can find an infinity of values forn andB∗ which cor-
respond to a single penetration field value. This is observ-
able in Fig. 6. Theoretically, the maximum value that can be
reached isBPB , and, the minimum value is zero; the latter
result may be physically inadmisible as the minimum value
of the magnetic field is the first critical field,Hc1. Let us ob-
serve the blue zone, which corresponds to cases close to the
limiting Bean case, while the red zone is associated with a
poor type-II superconductor, where the critical current den-
sity tends to dissapear. The interest zone, where the magnetic
induction profiles are not straight lines, is the color gradient.
In the graphic there are two regions where the relation be-
tween parametersn andB∗ is approximately linear. On the
other hand, there is a bending at the color gradient zone in
the interval10−2 / n / 1 and10−4 / B∗/BPB / 1.

Since the surface plot for the dimensionless double pene-
tration field has a similar structure to the dimensionless pen-
etration field one, then, to distinguish them, we present the
surface plotBP /BPP in the Fig. 7. Of course, this quotient
is less than the unity; the graphic shows a blue zone where
BPP = 2BP , which corresponds to superconducting states
very similar to those of the Bean case. The red gradient zone
suggests us thatBPP tends toBP ; this value corresponds
to a poor type-II superconductor. Observe that states differ-
ent than the Bean case or a poor type-II superconductor are
better defined at the color gradient zone, where the correla-
tion between the parametersn andB∗ is simple, than at the
zone obtained for the penetration field. The surface plot of
the dimensionless critical current density, that is, the quo-
tientJc/Jc0 has also a structure similar to that of the surface
plot of BP /BPB . Therefore, is better to graph the difference
BP /BPB − Jc/Jc0, presented in Fig. 8. It is evident that the
main deviations are generated fromn > 1 andB∗/BPB > 1.

Finally, as an example to show the utility of our results,
we present results of a property of the superconducting ma-
terials in Fig. 9: the shielding field ability∆Hsh. It is al-
ready known that when a magnetic field is applied to a su-
perconductor, and its magnitude is increased by certain∆H,
current density diminishes, the size of the such an increase
may produce magnetic instabilities, and consequently, may
generate flux jumps. Given the instability criterium, that is,
if ∆Hsh > ∆H the field configuration becomes unstable,
∆Hsh can be found by the equation:

∆Hsh =

D/2∫

0

∆Jcdx (20)

where∆Jc is the change in critical current density associated
with an external fieldH increase fromH to H + ∆H.

Figure 9 presents an example of the shielding field ability
∆Hsh for B∗ = 1, 10−1, 10−2, 10−3, 10−4, a fixedn = 1,
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FIGURE 9. Shielding field ∆Hsh curves for fixedn = 1,
∆H/HPB varyingB∗ = 1, 10−1, 10−2, 10−3, 10−4.

and∆H/HPB = 10−4. The orange curve (forB∗ = 1)
represents a stable system for all the external field values.

7. Summary

We have theoretically investigated how the parametersn and
B∗, corresponding to the Kim-Anderson generalized func-
tion Jc(B), affect the physical characteristics of magnetic in-
duction in a type-II superconductor.

In contrast to previous works, we have obtained a colored
map or pseudocolor plot which clearly shows the pair of pa-
rameteresn andB∗ that describe a range from a Bean-like
type-II superconductor to a poor one. Between these limit-
ing cases, we found a rich area with a color gradient corre-
sponding to equivalent states. Therefore, ambiguity persists
regarding the choise of values forn andB∗.

We consider that additional theoretical studies are
needed. Specifically within this framework, the hysteresis
curve could contribute to a better understanding of the phys-
ical meaning of then andB∗ parameter pair.
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Yampolskĭı, and F. Perez Rodriguez,JETP84 (1997) 1063.

6. S.E. Savel’ev, L.M. Fisher, V.A. Yampolskiı̆ JETP85 (1997)
1063.

7. C. Romero-Salazar and F. Pérez-Rodŕıguez,Appl. Phys. Lett.
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