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A theorem allowing the derivation of deterministic evolution equations from
stochastic evolution equations. tensorial, spinorial, and other extensions
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The proof of a new extension of a theorem that allows to construct deterministic evolution equations from a set of discrete stochastic evolution
equation is developed. The present extension allows to handle evolution equations of dynamical variables that are tensors of any rank. Due
that the almost paradigmatic field that uses tensors is relativity, an illustrative example is given and the equations that allows to find the
geodesics is derived from a set of discrete stochastic evolution equations. Extension to dynamical variables described by spinor indices or
“arbitrary labels” are given.

Keywords: Evolution equations; stochastic processes.

La demostracíon de una nueva extensión de un teorema, que permite la construcción de ecuaciones de evolución deterministas a partir
de un conjunto de ecuaciones de evolución discretas estocásticas, es desarrollada. La extensión presente, permite manejar ecuaciones de
evolucíon de variables dińamicas que son tensores de cualquier rango. Como el más paradigḿatico campo que usa tensores es la relatividad,
un ejemplo ilustrativo es dado y las ecuaciones que permiten hallar las geodésicas es derivado de un conjunto de ecuaciones de evolución
discretas estocásticas. Extensiones a variables dinámicas descriptas porı́ndices espinoriales o “etiquetas arbitrarias” son dados.

Descriptores: Ecuaciones de evolución; procesos estocásticos.

PACS: 05.45.Ra

1. Introduction

A lot of work concerning the derivation of evolution equa-
tion that evolve Markovianly as well as non-Markovianly
was done during decades. An illustrative list, including both
type of equations, can be found in Refs. 1 to 23. In this
paper, perhaps the generalist version of the proof of a theo-
rem that allows to obtain continuum deterministic evolution
equations from a set of discrete stochastic evolution equa-
tions, is derived. The dynamical variables used are tensors of
any rank that may be in general complex numbers and conse-
quently wide variety of problems may be studied with the
present approach. This paper, together with another three
[24-26], must be viewed as companions papers and in each
of them some features and examples were worked in some
detail to show the basic steps that allows the construction
of the deterministic differential equations. The present ap-
proach allows to handle models whose dynamical variables
evolves Markovianly as well as non-Markovianly and can be,
in general, a mix of different types as in Ref. 24 where the
equations of quantum electrodynamics were derived. On the
other hand, in the present work the differential equations for
the geodesics is also derived from a non-Markovian discrete
stochastic evolution equations.

The paper is organized as follows. In Sec. 2 an intro-
duction of the evolution rules corresponding to models with
an updating of the dynamical variables that depends on the
values of the dynamical variables at an arbitrary many pre-
vious time steps and with subsets that are of different type,
is considered. In Sec. 3 a theorem allowing to connect two
sets of stochastic evolution equations with another two sets

that contain deterministic weights is proved. For the cases of
non-Markovian discrete stochastic evolution equations, con-
taining sets of different types of dynamical variables, this
connection is proved. The Markovian case, can be obtained
as a special one, with updating that depends just on the first
previous time step. In Sec. 4 the general procedure will be
applied to obtain the differential equation for the geodesics.
In the appendix, for the sake of completeness, the derivation
is made by standard procedures. In Sec. 5 a discussion of the
possible extension of the theorem to evolution equations con-
taining spinor indices and in general to dynamical variables
of arbitrary sets of labels are sketched to show the possibili-
ties of the use of the theorem. The conclusions are given at
the end of this section.

2. Stochastic evolution updating for a set of
complex dynamical variables that are com-
ponents of tensors: Basic definitions

A four-dimensional lattice Λ consisting of a set of
points x, with periodic boundary conditions in an interval
[−L0i/2, +L0i/2] for i = 1, ..., 4 (L0i being finite or in-
finite), will be considered, and a set of complex dynami-

cal variablesq
(r0)r1...rαs0
(s0)s1...sβs0

(t,x) will be used to describe the
value of each dynamical variable belonging to the types0 in
a realizationr0, that are components of a tensorrαs0

time
contra-variant andsβs0

times covariant, of orderαs0 + βs0 ,
at coordinatex = x1, x2, x3, x4 and at evolution param-
eter t. The separation between sites or lattice constant is
a1, a2, a3, a4 and the separation between two successive up-
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dates isa0. The length of the lattice corresponding to
each coordinate isLi = aiL0i and sites of the lattice is
M = (2L01 + 1)(2L02 + 1)(2L03 + 1)(2L04 + 1). The
evolution equation for the set of dynamical variable can be
expressed, as in Ref. [24], in the following general form

q
(r0)r1...rαs0
(s0)s1...sβs0

(t + a0,x) = q
(r0)r1...rαs0
(s0)s1...sβs0

(t,x)

+ G
(r0)
(s0)

(t, ..., t− lka0, X0, ..., Xl0k
, Xj , Xξ),

∀s0 ∈ {1, ..., S}, t ≥ 0,x ∈ Λ, (1)

whereG denote the set of rules that define a given model,S is
the different many types of variables andX0,...,Xl0k

denote
the set of complex dynamical variables

q
(r0)r1...rαs0
(s0)s1...sβs0

(t,x), .., q(r0)r1...rαs0
(s0)s1...sβs0

(t− l0ka0,x),

respectively. The set of both discrete and continuous stochas-
tic variables that confer stochasticity to the evolution equa-

tions areXj = {j} andXξ = {ξ}, respectively. Note that
both, j = j(r0)(t) andξ = ξ(r0)(t), depend on the partic-
ular realizationr0 and on the evolution parametert. Below,
usually the dependence ont is neglected and inj also the
dependence onr0, to save printing. The sets of dynamical
variables depends on the particular realizationr and previous
time t, ..., t − l0ka0. The previous times isk + 1 and the set
is l0α = 0, ..., k, for any0 ≥ α ≥ k. The stochastic variables
are chosen in such a way that all of them are statistically in-
dependent and a factorization of each product that contain
stochastic variables is then possible. Let us assume, for the
sake of simplicity, that the set ofS dynamical variables are
separated in subsets ofS1 andS2 dynamical variables such
thatS = S1 +S2. Moreover, let us assume that amount of el-
ements ofS1 andS2, is one for each subset and the two types
of dynamical variables ares0 = 1, 2. Both two subset corre-
spond to dynamical variables that evolves Non-Markovianly.
The stochastic evolution equations of the form

q
(r0)rα1

(1)sβ1
(t + a0,x) = q

(r0)rα1

(1)sβ1
(t,x) +

∑

{s01,l1}
w

(r0)
s01,l1

q
(r0)rαs01
(s01)sβs01

(t− l01a0,x11 + ∆x11)

+
∑

{s01,s02,l2}
w

(r0)
s01,s02,l2

q
(r0)rαs01
(s01)sβs01

(t− l01a0,x11 + ∆x11)× q
(r0)rαs02
(s02)sβs02

(t− l02a0,x12 + ∆x12) + ...,

∀ s01, s02, ... ∈ {1, 2}, t ≥ 0, x1, ..., x4 ∈ Λ,

q
(r0)rα2

(2)sβ2
(t + a0,x) = q

(r0)rα2

(2)sβ2
(t,x) +

∑

{s02,l1}
w

(r0)
s02,l1

q
(r0)rαs02
(s02)sβs02

(t− l01a0,x11 + ∆x11)

+
∑

{s02,s01,l2}
w

(r0)
s02,s01,l2

q
(r0)rαs02
(s02)sβs02

(t− l01a0,x11 + ∆x11)× q
(r0)rαs01
(s01)sβs01

(t− l02a0,x12 + ∆x12) + ...,

∀ s01, s02, ... ∈ {1, 2}, t ≥ 0, x1, ..., x4 ∈ Λ, (2)

where the short hand notationrαs0 = r1...rαs0
, sβs0 = s1...sβs0

for s0 = 1, 2 and

x1γ + ∆x1γ = x1 + l1γa1, x2 + l2γa2, x3 + l3γa3 + l4γa4,

for anyγ, was used. To it derive the non-Markovian deterministic equations, Eq. (2) will be used as the starting set of stochas-
tic evolution equations. The short hand notationl1 = l01, l11, l21, l31, l41 andl2 = l01, l11, l21, l31, l41, l02, l12, l22, l32, l41
was also used to save printing. The equations amounts toM = SM . The stochastic weights and the dynamical vari-
ables, in Eq. (2), are labeled with an indexr0 emphasizing that the value depends on a specific realization. The stochastic
weights can, in general, be a complex number with a realw

′(r0)
s01,...s0k,lk

and an imaginary partw
′′(r0)
s01,...s0k,lk

, for anyk, with

lk =l01, l11, l12, l13, ..., l0k, l1k, l2k, l3k. To be more formal, an arbitrary weight can be denoted byw
(r0)
u whereu is some set of

indicesu1, ..., uρ, non-necessarily of the same type, as in Eq. (2). A general expression of a weight as a product of Kronecker
deltas and Heaviside’s functions can be written as

w(r0)
u =

∏

{k′}
δik′ ,jk′


∏

{v′}
θ
(
Pv′ − ξ

(r0)
v′

)

 θ

(
P
′
c′ − ξ

′(r0)
c′

)

+ i
∏

{k′′}
δik′′ ,jk′′


 ∏

{v′′}
θ
(
Pv′′ − ξ

(r0)
v′′

)

 θ

(
P
′′
c′′ − ξ

′′(r0)
c′′

)
. (3)
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where{k′} and{v′} are sets of indexes that are used to label
discrete and continuous factors, respectively. These indexes
correspond to the real part of the complex weightw

(r0)
u . c′

denote the index that connect the real part of the stochastic
weight with the real part of the deterministic weight of some
other approach. In the same way,{k′′}, {v′′} andc′′ denote
the indexes corresponding to the imaginary part ofw

(r0)
u . The

imaginary unit isi.
There are some key questions that allows the construc-

tion of deterministic evolution equations from an average
over realizations of a stochastic evolution equation. First,
the stochastic weights must be expressed as products of some
delta- and theta-functions whose arguments contain discrete
as well as continuous stochastic variables, respectively. The
definition of these functions are:δx,y is equal to1 if x = y
and0 otherwise, andθ (x− y) is equal to1 if x− y ≥ 0 and
0 if x − y < 0, for anyx andy. Second, all these stochastic
variables (discrete and continuous) are statistically indepen-
dent, allowing the factorization of the averages. Third, two
of the theta-functions, corresponding to the real and imagi-
nary part of the stochastic weights, contain in its argument
the functionsP

′
c′ andP

′′
c′′ that allows to connect the average

over realizations of all the stochastic weights with the de-
terministic weights of any other deterministic approach (e.g.
master equation, etc). For the interpretation of these func-
tions that define the weights see the first example in Sec. 4
of [24].

The above general definition of a generic stochastic
weight allows to demonstrate the following theorem.

3. A theorem connecting the average over re-
alizations of the stochastic weights with the
deterministic weights

In the general case, corresponding to an updating that de-
pends on more than one previous time steps, the theorem
and the proof can be made in an almost verbatim way, with
the appropriate changes in the notation, that the one made in
Ref. [25]. For the sake of completeness it is reproduced the
theorem and the proof below.

Theorem. A set of deterministic evolution equations
is obtained after an average over realizations of a set of
stochastic evolution equations as those given inEq. (2)with
stochastic coefficients of the general form of those given in
Eq. (3). The connection with a set of deterministic evolu-
tion equation, obtained with other approach, is made after
an appropriate election of the functionsP

′
c′andP

′′
c′′ .

Proof. The proof is obtained in two steps in a very simple
way. First, using standard results of statistical mechanics (see
the appendix of [24]), the general deterministic equations are
obtained after average over realizations on both two sides of
Eq. (2), in the following general form

qrα1
(1)sβ1

(t + a0,x) = qrα1
(1)sβ1

(t,x) +
∑

{s01,l1}
ws01,l1q

rαs01
(s01)sβs01

(t− l01a0,x11 + ∆x11)

+
∑

{s01,s02,l2}
ws01,s02,l2 q

rαs01
(s01)sβs01

(t− l01a0,x11 + ∆x11)

× q
rαs02
(s02)sβs02

(t− l02a0,x12 + ∆x12) + ...,

∀s01, s02, ... ∈ {1, 2}, t ≥ 0, x1, ..., x4 ∈ Λ,

qrα2
(2)sβ2

(t + a0,x) = qrα2
(2)sβ2

(t,x) +
∑

{s02,l1}
ws02,l1 q

rαs02
(s02)sβs02

(t− l01a0,x11 + ∆x11)

+
∑

{s02,s01,l2}
ws02,s01,l2 q

rαs02
(s02)sβs02

(t− l01a0,x11 + ∆x11)

× q
rαs01
(s01)sβs01

(t− l02a0,x12 + ∆x12) + ...,

∀s01, s02, ... ∈ {1, 2}, t ≥ 0, x1, ..., x4 ∈ Λ, (4)

where
ws01,l1 = w

(r0)
s01,l1

, ws02,l1 = w
(r0)
s02,l1

, ...

are the weights corresponding to the product of one, two,... dynamical variables. Note that it was used a (1,0)-closure for
the product of two dynamical variables, that is the simplest closure that can be used in the infinite hierarchy of evolution
equations. The deterministic weights can be written in the usual formws01,...,s0k,lk = w

′
s01,...,s0k,lk

+ i w
′′
s01,...,s0k,lk

and
ws02,...,s0k,s01,lk = w

′
s02,...,s0k,s01,lk

+ i w
′′
s02,...,s0k,s01,lk

. Note that the factorization of the averages over realization was used
because it was assumed that the discrete and continuous stochastic variables in allw’s are statistically independent and also
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are independent of all the dynamical variables. For a demonstration that the product of two functions of complex stochastic
variables factorizes, see the appendix of [24].

Second, the last step needed to obtain the connection between two approaches is to make an average over realizations on
both two sides of Eq. (3). The result is

w
(r0)
u =

∏

{k′}
δik′ ,jk′


∏

{v′}
θ
(
Pv′ − ξ

(r)
v′

)

 θ

(
P
′
c′ − ξ

′(r)
c′

)

+ i
∏

{k′′}
δik′′ ,jk′′


 ∏

{v′′}
θ
(
Pv′′ − ξ

(r)
v′′

)

 θ

(
P
′′
c′′ − ξ

′′(r)
c′′

)

=
∏

{k′}

1
Mk′


∏

{v′}
Pv′


 P

′
c′ + i

∏

{k′′}

1
Mk′′


 ∏

{v′′}
Pv′′


 P

′′
c′′ , (5)

whereMk′ andMk′′ are the amount of element of thek-th
discrete set. Note that it was assumed that all the intervals of
variation of all the continuous stochastic variables is[0, 1]. If
some of the intervals is different, the result of Eq. (56) in the
appendix of [24] must be used. The connection with another
approach is easily obtained. Equating the coefficients of the

expressions of the weights
(
w

(r0)
u = wc

)
, P

′
c′ andP

′′
c′′ can

be found as

P
′
c′ =

w′c∏
{k′}

1
Mk′

(∏
{v′} Pv′

) , (6)

P
′′
c′′ =

w′′c∏
{k′′}

1
Mk′′

(∏
{v′′} Pv′′

) , (7)

where w′c and w′′c are the real and imaginary part ofwc,
respectively. If the deterministic evolution equation is ex-
pressed as a partial differential equation as those given in
the example in Sec. 4,P

′
c′ andP

′′
c′′ , in Eqs. (6,7), must be

multiplied bya0 to recover the correct deterministic weights.
These expressions allows to establish the complete equiva-
lence with the deterministic weights corresponding to some
other approach.

4. Illustrative example

The usual way to obtain the geodesics is by using of a varia-
tional approach (see Appendix). In this section the use of

the results of the theorem will be applied to obtain the evolu-
tion equations for the geodesics.

4.1. The discrete stochastic evolution rules approach to
obtain relativistic evolution equations

In order to obtain the evolution equations for the geodesics
that provides the deterministic evolution obtained in the Ap-
pendix, let us to identify the two tensors that are needed in
this case. The first type of dynamical variableq

(r0)
(1)k(t), is the

coordinate itselfx(r0)
k (t) and depend solely on the evolution

parametert. The second dynamical variable is the metric
quv
(2)(x) or q(2)uv(x) that solely depend on the coordinates

usually written asguv(x) or guv(x) for anyu andv, but do
not on t or on the realizationsr0. Note that the coordinate
is a co-variant tensor of rank one and the metric is a tensor
of rank two. Because of the fact that exist just one tensor
that evolves stochastically just one equation is needed. An-
other feature to note is that in the argument of the metric the
variablesxu, for anyu, are the coordinate obtained after an
average over realizations

xu = xu(t) = x
(r0)
u (t).

With the above consideration the discrete stochastic evolution
equation can be written as

x
(r0)
k (t + a0) = x

(r0)
k (t) + w

(r0)
1,1,0,0,0x

(r0)
k (t− a0)− w

(r0)
1,2,0,0,0x

(r0)
k (t− 2a0)− w(r0)

s1,2
gkh(x) (ghi(xj + a1)− ghi(xj))

×
(
x

(r0)
i (t)− x

(r0)
i (t− a0)

)(
x

(r0)
j (t)− x

(r0)
j (t− a0)

)
− w(r0)

s1,2
gkh(x) (ghj(xi + a1)− ghj(xi))

×
(
x

(r0)
i (t)− x

(r0)
i (t− a0)

)(
x

(r0)
j (t)− x

(r0)
j (t− a0)

)
− w(r0)

s1,2
gkh(x) (−gij(xh + a1)− gij(xh))

×
(
x

(r0)
i (t)− x

(r0)
i (t− a0)

)(
x

(r0)
j (t)− x

(r0)
j (t− a0)

)
, (8)
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where it was used the short hand notation

guv(x) = guv(x1, x2, x3, x4),

guv(xk + a1) = guv(x1, ..., xk + a1, ..., x4)

for any1 < k < 4 orguv(xk+a1) = guv(x1+a1, ..., x4) and
guv(x4 + a1) = guv(x1, ..., x4 + a1) for k = 1 andk = 4,
respectively. Note that Eq. (8) was not written in the usual
form given in the previous sections. It was written in a com-
pact way because all the weightsw’s, in the three summands
below the first line, are equals and all of them are obtained af-
ter successive permutation of indices. Note that also a short
hand notations1,2, for the set of subindexes, was used. Of
course, if the last three summands were expanded the usual
form is easily obtained. The weights are

w
(r0)
1,1,0,0,0 = θ

(
P1,1,0,0,0 − ξ

(r0)
1,1,0,0,0

)
,

w
(r0)
1,2,0,0,0 = θ

(
P1,2,0,0,0 − ξ

(r0)
1,2,0,0,0

)

and

w(r0)
s1,2

= θ
(
Ps1,2 − ξ(r0)

s1,2

)
.

The next step to obtain the deterministic equation as Eq. (17)
is to do an average over realizations on both two side of
Eq. (8) obtaining

xk(t + a0) = xk(t)

+ w1,1,0,0,0xk(t− a0)−w1,2,0,0,0xk(t− 2a0)

− ws1,2g
kh(x) (ghi(xj + a1)− ghi(xj))

× (xi(t)− xi(t− a0)) (xj(t)− xj(t− a0))

− ws1,2g
kh(x) (ghj(xi + a1)− ghj(xi))

× (xi(t)− xi(t− a0)) (xj(t)− xj(t− a0))

− ws1,2g
kh(x) (−gij(xh + a1)− gij(xh))

× (xi(t)−xi(t−a0)) (xj(t)−xj(t− a0)) , (9)

where, as it was done in previous sections, in the dynamical
variables and weights the indexr0 was dropped after the av-
erage over realizations. Also, the factorization and the (1,0)-
closure was used. The averaged weights are

w1,1,0,0,0 = P1,1,0,0,0, w1,2,0,0,0 = P1,2,0,0,0

andws1,2 = Ps1,2 . The last steps necessary to obtain the
differential equations as Eq. (17) are to do a Taylor series
expansion up toO(a2

0) andO(a1) and then equating coeffi-
cients with Eq. (17). The Taylor series expansion gives

w1,1,0,0,0xk(t)− w1,2,0,0,0xk(t)− a0w1,1,0,0,0
dxk(t)

dt
+ 2a0w1,2,0,0,0

dxk(t)
dt

− a0
dxk(t)

dt

+
1
2
a2
0w1,1,0,0,0

d2xk(t)
dt2

− 2a2
0w1,2,0,0,0

d2xk(t)
dt2

− 1
2
a2
0

d2xk(t)
dt2

− 1
2
a2
0a1ws1,2g

kh

(
∂ghi

∂xj
+

∂ghj

∂xi
− ∂gij

∂xh

)
dxi(t)

dt

dxj(t)
dt

+ O(a3
0) + O(a2

1) = 0. (10)

It is not difficult to see that the values of the weights that give the same equation as Eq. (17), except for an irrelevant factor
−2a2

0, arew1,1,0,0,0 = 1, w1,2,0,0,0 = 1 andws1,2 = 4/a1. Note that in this case all the weights are real numbers. Finally,
The connecting parametersPu, for anyu, areP1,1,0,0,0=1, P1,2,0,0,0=1 andPs1,2=4/a1. Note that the “physical reason” of
the election of the terms in Eq. (10), as well as in Eq. (17), is that solely terms linear ind2xk(t)/dt2 and products of the form
(dxi(t)/dt)(dxj(t)/dt) are those that allows the principle of general covariance [27].

5. Conclusions and other possible generalizations

An extension of the general approach to the case where dynamical variables are tensors of arbitrary rank and of different type
was analyzed and a theorem, previously proved for Markovian as well as Non-Markovian evolution equations, was extended.
The Markovian case can be obtained as a non-Markovian case where the updating depends on the first previous time step.
Another possible generalization is the construction of evolution equations of other “mathematical objects” as spinors. It is
simple to see that the evolution equations looks like

q
(r0)Rα1
(1)Sβ1

(t + a0,x) = q
(r0)Rα1
(1)Sβ1

(t,x) +
∑

{s01,l1}
w

(r0)
s01,l1

q
(r0)Rαs01
(s01)SβS01

(t− l01a0,x11 + ∆x11)

+
∑

{s01,s02,l2}
w

(r0)
s01,s02,l2

q
(r0)Rαs01
(s01)Sβs01

(t− l01a0,x11 + ∆x11)q
(r0)Rαs02
(s02)Sβs02

(t− l02a0,x12 + ∆x12) + ...,

∀s01, s02, ... ∈ {1, 2}, t ≥ 0, x1, ..., x4 ∈ Λ,
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q
(r0)Rα2

(2)Sβ2
(t + a0,x) = q

(r0)Rα2

(2)Sβ2
(t,x) +

∑

{s02,l1}
w

(r0)
s02,l1

q
(r0)Rαs02
(s02)Sβs02

(t− l01a0,x11 + ∆x11)

+
∑

{s02,s01,l2}
w

(r0)
s02,s01,l2

q
(r0)Rαs02
(s02)Sβs02

(t− l01a0,x11 + ∆x11)q
(r0)Rαs01
(s01)Sβs01

(t− l02a0,x12 + ∆x12) + ...,

∀s01, s02, ... ∈ {1, 2}, t ≥ 0, x1, ..., x4 ∈ Λ, (11)

whereR andS are sets of spinor indices. Note that it was used a slightly different notation of that used, for example, in
Ref. [28]. Even for the case of dynamical variables that posses a mix of tensor and spinor indices, the evolution equations
looks like

q
(r0)rα1Rα1

(1)sβ1Sβ1
(t + a0,x) = q

(r0)rα1Rα1

(1)sβ1Sβ1
(t,x) +

∑

{s01,l1}
w

(r0)
s01,l1

q
(r0)rαs01R

αs01
(s01)sβS01S

βS01

(t− l01a0,x11 + ∆x11)

+
∑

{s01,s02,l2}
w

(r0)
s01,s02,l2

q
(r0)rαs01R

αs01
(s01)sβs01S

βs01

(t− l01a0,x11 + ∆x11)q
(r0)rαs02R

αs02
(s02)sβs02S

βs02

(t− l02a0,x12 + ∆x12) + ...,

∀ s01, s02, ... ∈ {1, 2}, t ≥ 0, x1, ..., x4 ∈ Λ,

q
(r0)rα2Rα2
(2)sβ2Sβ2

(t + a0,x) = q
(r0)rα2Rα2
(2)sβ2Sβ2

(t,x) +
∑

{s02,l1}
w

(r0)
s02,l1

q
(r0)rαs02R

αs02
(s02)sβs02S

βs02

(t− l01a0,x11 + ∆x11)

+
∑

{s02,s01,l2}
w

(r0)
s02,s01,l2

q
(r0)rαs02R

αs02
(s02)sβs02S

βs02

(t− l01a0,x11 + ∆x11)q
(r0)rαs01R

αs01
(s01)sβs01S

βs01

(t− l02a0,x12 + ∆x12) + ...,

∀ s01, s02, ... ∈ {1, 2}, t ≥ 0, x1, ..., x4 ∈ Λ, (12)

wherer and s designates the sets of tensor indices andR
andS the spinor ones. More generally, the theorem is also
valid for evolution equations containing whatever set of la-
bels. The reason is that the factorization and the use of a
(1,0)-closure sill is possible and consequently determinis-
tic evolution equations can also be obtained. Examples of
two-components (spinors) or four-components (four-vectors)
“mathematical objects” with a slightly different notation can
be found in the second example in Refs. [24] and [26], re-
spectively.

This paper must be understood, presently, as part of four
companion papers (the other three are given in Refs. [24-26])
each of them showing different features and were planned in
such a way that the illustrative examples show an increas-
ing technical difficulties. In the present case the evolution
equations of tensors was applied to obtain the deterministic
evolution equations for the geodesics.

Finally, it must be emphasized that another extension of
the present theorem is possible, to include evolution of func-
tions of the dynamical variables.Another possibility (and per-
haps the most important to be used in physical problems) is
the evolution equation for the Lagrangian. Of course in this
case the evolution equations to be obtained are the Euler-
Lagrange equations. This extension will be submitted else-
where [29].

Appendix

For the sake of completeness, the geodesics are obtained us-
ing the usual variational approach. The lengthL of a curve
from A to B can be obtained by

L =

B∫

A

ds =

t1∫

t2

√
gijx′ix

′
jdt, (13)

wheres is the arc,gij = gij(x1, x2, x3, x4) is the metric ten-
sor,xi = xi(t) is the space-time coordinate andx′i = dxi/dt.
After performing the first variation ofL the corresponding
Euler equations are

∂F

dxi
− d

dt

∂F

dx′i
= 0 i = 1, ..., 4, (14)

whereF =
√

gijx′ix
′
j . After introducingF in Eq. (14) it can

be obtained

1
2F

gijx
′
ix
′
j −

d

dt

(
gihx′i + ghjx

′
j

2F

)
= 0

i = 1, ..., 4. (15)
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Because of the fact that Eq. (15) is valid for any parame-
ter t, it is possible to maket = s thenF = 1 and

1
2
gij,hx′ix

′
j −

1
2

(
gihx′′i + ghjx

′′
j

)

− 1
2

(gih,j + ghj,i)x′ix
′
j = 0 i = 1, ..., 4, (16)

where guv,w = ∂guv/∂xw for any u, v and w. Because
ghj = gjh thengihx′′i = ghjx

′′
j and after multiplying byghk

and summing overh it is obtained the differential equations
for the geodesics as

x′′k + Γk
ijx

′
ix
′
j = 0 k = 1, ..., 4, (17)

where the Christoffel symbolΓk
ij is

Γk
ij =

1
2
ghk (gjh,i + ghi,j − gij,h) . (18)
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