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A theorem allowing the derivation of deterministic evolution equations from
stochastic evolution equations. tensorial, spinorial, and other extensions

G. Costanza
Departamento de BBica, Universidad Nacional de San Luis,
Chacabuco 917, 5700 San Luis, Argentina.

Received 1 June 2012; accepted 16 November 2012

The proof of a new extension of a theorem that allows to construct deterministic evolution equations from a set of discrete stochastic evolution
equation is developed. The present extension allows to handle evolution equations of dynamical variables that are tensors of any rank. Dut
that the almost paradigmatic field that uses tensors is relativity, an illustrative example is given and the equations that allows to find the
geodesics is derived from a set of discrete stochastic evolution equations. Extension to dynamical variables described by spinor indices ol
“arbitrary labels” are given.
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La demostradin de una nueva extedsi de un teorema, que permite la constrancile ecuaciones de evolani deterministas a partir
de un conjunto de ecuaciones de evdbucdiscretas estasticas, es desarrollada. La exténspresente, permite manejar ecuaciones de
evolucbn de variables dizimicas que son tensores de cualquier rango. Comasgparadigratico campo que usa tensores es la relatividad,
un ejemplo ilustrativo es dado y las ecuaciones que permiten hallar lagésieasles derivado de un conjunto de ecuaciones de emoluci
discretas esta@sticas. Extensiones a variablesatiricas descriptas pandices espinoriales o “etiquetas arbitrarias” son dados.

Descriptores: Ecuaciones de evolumi; procesos estasticos.

PACS: 05.45.Ra

1. Introduction that contain deterministic weights is proved. For the cases of
non-Markovian discrete stochastic evolution equations, con-
A lot of work concerning the derivation of evolution equa- t@ining sets of different types of dynamical variables, this
tion that evolve Markovianly as well as non-Markovianly connection is proved. The Markovian case, can be obtained
was done during decades. An illustrative list, including both@S @ Special one, with updating that depends just on the first
type of equations, can be found in Refs. 1 to 23. In thisprev?ous time step. In _Sec. 4the gen_eral procedure wiII_ be
paper, perhaps the generalist version of the proof of a thedpplied to obtain the differential equation for the geodesics.
rem that allows to obtain continuum deterministic evolution!n the appendix, for the sake of completeness, the derivation
equations from a set of discrete stochastic evolution equds Made by standard procedures. In Sec. 5 a discussion of the
tions, is derived. The dynamical variables used are tensors ®ossible extension of the theorem to evolution equations con-
any rank that may be in general complex numbers and consd&ining spinor indices and in general to dynamical variables
quently wide variety of problems may be studied with the‘?f arbitrary sets of labels are sketched to sh_ow the po_ssibili—
present approach. This paper, together with another thre€s of the use of the theorem. The conclusions are given at
[24-26], must be viewed as companions papers and in eadh€ end of this section.
of them some features and examples were worked in some
detail to show the basic steps that allows the constructio . . .
of the deterministic differential equations. The present ap<- Stochastic eVO_luuon u_pdatlng for a set of
proach allows to handle models whose dynamical variables ~complex dynamical variables that are com-
evolves Markovianly as well as non-Markovianly and canbe, ~ ponents of tensors: Basic definitions
in general, a mix of different types as in Ref. 24 where the
equations of quantum electrodynamics were derived. On th& four-dimensional lattice A consisting of a set of
other hand, in the present work the differential equations fopoints x, with periodic boundary conditions in an interval
the geodesics is also derived from a non-Markovian discreté—Loi/2,+Lo; /2] for i = 1,...,4 (Lo; being finite or in-
stochastic evolution equations. finite), will be considered, and a set of complex dynami-

. . . . (ro)ri...ra, ) .
The paper is organized as follows. In Sec. 2 an intro-cal variablesy ) " *** (¢, x) will be used to describe the

duction of the evolution rules corresponding to models withvalue of each dynamicoal variable belonging to the typén

an updating of the dynamical variables that depends on tha realizationr,, that are components of a tensor, time
values of the dynamical variables at an arbitrary many preeontra-variant andg, = times covariant, of ordet, + fs,,
vious time steps and with subsets that are of different typeat coordinatex = x1,xs, 23,24 and at evolution param-

is considered. In Sec. 3 a theorem allowing to connect twater¢. The separation between sites or lattice constant is
sets of stochastic evolution equations with another two sets;, as, a3, a4 and the separation between two successive up-
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dates isag. The length of the lattice corresponding to tions areX; = {j} and X, = {{}, respectively. Note that
each coordinate i€; = a;Lo; and sites of the lattice is both,j = j(")(t) and¢ = ¢()(t), depend on the partic-
M = (2Lo1 + 1)(2Lo2 + 1)(2Los + 1)(2Los + 1). The ular realization-y and on the evolution parameter Below,
evolution equation for the set of dynamical variable can beusually the dependence ans neglected and i also the
expressed, as in Ref. [24], in the following general form dependence on, to save printing. The sets of dynamical

(T0)T1--T g (T0)P1--Tasg variables depends on the particular realizati@md previous
(50)51.--55,, (t+ao,x) = U(s0)s1...5p,, (t,%) timet,...,t — logag. The previous times i& + 1 and the set
(r0) islpa =0, ..., k, forany0 > « > k. The stochastic variables
+ G(so)(t7 vyt = lka0, Xos oo Xigp, Xy Xe), are chosen in such a way that all of them are statistically in-

dependent and a factorization of each product that contain
Voo € {1, Sht 2 0,x € 4, @ stochastic variables is then possible. Let us assume, for the
whereG denote the set of rules that define a given maflés,  sake of simplicity, that the set of dynamical variables are
the different many types of variables ai@,...,.X;,, denote  separated in subsets §f and S, dynamical variables such
the set of complex dynamical variables thatS = S; +S,. Moreover, let us assume that amount of el-
(ro)r1--Tasg (o)1 Tasg ements ofS; andSs, is one for each subset and the two types
(s )SL»-Sﬁso( ), 2 U(so)s1.550 of dynamical variables ar&, = 1, 2. Both two subset corre-
respectively. The set of both discrete and continuous stochaspond to dynamical variables that evolves Non-Markovianly.

tic variables that confer stochasticity to the evolution equa- The stochastic evolution equations of the form
|

(t - loka07 X),

G a0 3) = g )+ 3D Wl T (1 lorag, %1y + Axi)

(1)sp1 so1,11 (801)8p501
{so01,11}

(TO) (To)ra‘sOl (TU)PQSO2

+ Z Wy 150202 Lso1)span, (t = lorao,x11 + Axy1) X Uson)spay (t — lo2ag, X12 + Ax12) + ...,

{s01,502,12}

V So01, 802, .- € {1,2},ﬁ >0,21,...,x4 €A,

q(ro)raz(tJraO’X) _ qg?s);:?(t’x) + Z w(ro) q(ro)rasoz (t — lorag, x11 + Axq1)

(2)sp2 502,11 1(502)8650,
{502,11 }

+ Z w(m) q(TO)I'aso2 (t — lo1a0,x11 + AXll) X qg:sl);‘:;:)gl (t — logao, X192 + AXlg) + ceny

502,501,124(502)8850,
{s02,501,12}

VSOl,SOQ,...E{1,2},t20,$1,...,$4EA, (2)
where the short hand notatiop,, = T1-Tau, s SBsy = S1---88,, for s = 1,2 and
X1y + AXyy = 21 + l1ya1, T2 + l2ya2, 23 + l3,a3 + 1404,

for any~, was used. To it derive the non-Markovian deterministic equations, Eq. (2) will be used as the starting set of stochas-
tic evolution equations. The short hand notatlpn= lo1, 111, lo1, I31, 41 andl, = Lo, L1, 21, 131, La1, Loo, Lio, L9o, 130, 141

was also used to save printing. The equations amounis{te= SM. The stochastic weights and the dynamical vari-
ables, in Eq. (2), are labeled with an indexemphasizing that the value depends on a specific realization. The stochastic
weights can, in general, be a complex number with aﬂesélll‘j? and an imaginary parnb (ro) , for any k, with

S0k, 1k 801;-:-S0k;lk
I, =lo1, l11, 12, 113, -, Lok, L1k, L2k, I35 TO be more formal, an arbitrary weight can be denoted;iﬁfl) whereu is some set of
indicesuy, ..., u,, non-necessarily of the same type, as in Eq. (2). A general expression of a weight as a product of Kronecker

deltas and Heaviside’s functions can be written as

) = T o | TL0 (R —07) ) o (22— 0)
{k'} {v'}

i [T S | TT 0 (P =€) 0 (P2 = €257). @3)
{k""} {v"’}
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where{k’} and{v’} are sets of indexes that are used to label The above general definition of a generic stochastic
discrete and continuous factors, respectively. These indexageight allows to demonstrate the following theorem.
correspond to the real part of the complex Weig,bﬁf‘)). d
denote the index that connect the real part of the stochastic
weight with the real part of the deterministic weight of some )
other approach. In the same w4y}, {v”} and¢” denote 3. A theorem connecting the average over re-
the indexes corresponding to the imaginary partf’. The alizations of the stochastic weights with the
imaginary unit isi. deterministic weights

There are some key questions that allows the construc-
tion of d(_eter_ministic evolution _equation_s from an average|n the general case, corresponding to an updating that de-
over reahza’gons.of a stochastic evolution equation. F"Stpends on more than one previous time steps, the theorem
the stochastic weights must be expressed as products of SOm&q the proof can be made in an almost verbatim way, with
delta- and theta-functions whose arguments contain discreig appropriate changes in the notation, that the one made in

as well as continuous stochastic variables, respectively. Thges [25]. For the sake of completeness it is reproduced the
definition of these functions aré;. , is equal tol if z = ¥y {re0rem and the proof below.

ando otherwise, and (z — y) is equal tol if x —y > 0 and L . .
(@ —y) g roY= Theorem. A set of deterministic evolution equations

0if x —y < 0, for anyz andy. Second, all these stochastic . btained aft lizati f t of
variables (discrete and continuous) are statistically indeper{—S obtained after an average over realizations of a set o

dent, allowing the factorization of the averages. Third, twoStOChaStIC evolution equations as those giveRdn (2)with

of the theta-functions, corresponding to the real and im(,igi_stochastic coefficients of the general form of those given in

nary part of the stochastic weights, contain in its argument:q' (3). T_he connc_actlon \.N'th a set of determ|n|st|c evolu-
the functionsP’, and P, that allows to connect the average 10" €duation, obtained with other approach, is made after
over realizations of all the stochastic weights with the de 2" appropriate election of the functiod,and 7.,

terministic weights of any other deterministic approach (e.g.  Proof. The proof is obtained in two steps in a very simple
master equation, etc). For the interpretation of these funcway. First, using standard results of statistical mechanics (see

tions that define the weights see the first example in Sec. the appendix of [24]), the general deterministic equations are
of [24]. obtained after average over realizations on both two sides of

|  Eg. (2), in the following general form

qal)lsm (t + a0, x) = q](rla)lsm (t,%) + Z Wso1,1 qra:;()l (t — lo1ao, X11 + Ax11)

(801)Sﬁ501
{s01,11}

Tasgy .
+ E Wsor,s0212 9(s01)80g, (t —lorag, x11 + Ax11)
{501,502,12}

r

X q(asu2 (t—lozao,Xlg-i-AXn) =+ ..

802)5[1502

Vs01, S02, --- € {1,2},t >0,21,...,x4 €A,

Tas
qz‘g)?SBQ (t + o, X) - q](r;)zs[n (t7 X) + . § }w502711 q(5020)25,8302 (t — lol(lo, X11 + Axll)
so2,11

Tasgo
+ E Wsoz,s01.02 U(sps)spag, (t = lorao, x11 + Ax11)

{s02,s01,12}
X qzjoslo)lsgSOI (t —lo2ao, X12 + Axy2) + ...,
Vso1, 802, .- € {1,2},t > 0,21, ...,z4 €A, (4)

where _

Wso1,1; = wég??h? Wsgo,l; = wgg?m
are the weights corresponding to the product of one, two,... dynamical variables. Note that it was used a (1,0)-closure for
the product of two dynamical variables, that is the simplest closure that can be used in the infinite hierarchy of evolution
equations. The deterministic weights can be written in the usual foym . .1, = wg, o1 T8 Weyy g0, @N
Wioa,....s085501 1 = w;w’”.’sOk,SOhlk W0, sor, 001, NOtE that the fgctorigation c_)f the averages over realization was used
because it was assumed that the discrete and continuous stochastic variablessimia| statistically independent and also
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are independent of all the dynamical variables. For a demonstration that the product of two functions of complex stochastic
variables factorizes, see the appendix of [24].

Second, the last step needed to obtain the connection between two approaches is to make an average over realizations on
both two sides of Eq. (3). The resultis

wf = T8 (10 (B —€0) ) o (L )

{k'} {v'}

i TT B | TL 0 (P —€00) | 0 (P —€47)
{kl’} {,U//}

1 S 1 p
=11 o 12| P +i ][] o 11 2| P (5)

{k'} {v'} {k} {v"'}

where M, and M,» are the amount of element of tleth
discrete set. Note that it was assumed that all the intervals &ﬁe results of the theorem will be applied to obtain the evolu-
variation of all the continuous stochastic variablef)id]. If tion equations for the geodesics.

some of the intervals is different, the result of Eg. (56) in the

appendix of [24] must be used. The connection with another

approach is easily obtained. Equating the coefficients of thé-1.  The discrete stochastic evolution rules approach to

expressions of the weigh(&uq(fO) _ wc>, P;' and Pz;:’ can obtain relativistic evolution equations

be found as , In order to obtain the evolution equations for the geodesics
pc', = We , (6) that provides the deterministic evolution obtained in the Ap-

> 1 : : . .
ITie v (H{v,} PU,> pgnd|x, let us tg identify the two Fensor; that )are peeded in

. this case. The first type of dynamical varlal:p[é;’,C (t), is the
Pc/ﬁ, = - Ye , (7)  coordinate itselﬁ:;”’)(t) and depend solely on the evolution
[ 505 (T Por arametert. The second dynamical variable is the metric
{k"} M, {v”} p Y

wherew/, and w! are the real and imaginary part of,, 4 (X) O g(2)4,(x) that solely depend on the coordinates

i uv
respectively. If the deterministic evolution equation is ex_usually written ?Eg (T.) or g”“(x)l\for anﬁ/u ahndv, blg.do
pressed as a partial differential equation as those given iHOt ont or on the realizations,. Note that the coor Inate
IS a co-variant tensor of rank one and the metric is a tensor

the example in Sec. 4, andP,,, in Egs. (6,7), must be i B  the fact that exist |
multiplied bya to recover the correct deterministic weights. of rank two. Because of the fact that exist just one tensor

These expressions allows to establish the complete equivlihat evolves stochastically just one equation is needed. An-

lence with the deterministic weights corresponding to som ther feature to note is that in the argument of the metric the
other approach variablesz,,, for anyu, are the coordinate obtained after an

average over realizations
4. lllustrative example 0 = 2(t) = 200 (0).

The usual way to obtain the geodesics is by using of a varia-
tional approach (see Appendix). In this section the use of With the above consideration the discrete stochastic evolution

|  equation can be written as

2y (£ + a0) = 7 (1) + w0 T 0,071 ") (F = a0) — w3} 071" (¢t = 2a0) — w{%)g*" (x) (gni(w; + a1) = gni(w;))
% (2 0) = 2™ (= a0)) (a7 (1) = 2" (¢ = a0) ) = w)g" (%) (g0 (s + 1) = gn ()
x (2@ =2l (t = a0)) (a7 (1) = 2 (¢ = a0) ) = wl%) ¢ (%) (=g (@n + 1) — gij(an))

x (#) = 2t = a0)) (27 (1) = 2§ (¢~ a0) ) ®)
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where it was used the short hand notation xp(t 4 ag) = xk(t)

guv(x) = guv(xla Z2,x3, l’4)a + w1717070,056k(t — ao)—w1,27070,0xk(t — 2(10)

Gus (24 1) = Guo (@1, o+ 1, 74) — wey 16" (%) (gni 5 + 1) — gui(z;))
foranyl < k < 40r gy, (zx+a1) = gup(z1+as,...,x4) and
g 2 X (zi(t) —x;(t —a zi(t) —z;(t —a

Juv (g + a1) = guo(21, ..., x4 + a1) for k = 1 andk = 4, (2i(t) il 0)) (5 (?) i 0))
respectively. Note that Eq. (8) was not written in the usual — we, g™ (%) (gnj(zi + a1) — gnj(xi))
form given in the previous sections. It was written in a com-
pact way because all the weightss, in the three summands x (2i(t) — 2i(t = ao)) (2;(t) — z;(t — ao))

below the first line, are equals and all of them are obtained af-

. . e — w9 (%) (=5 (xn + a1) = gij (1))
ter successive permutation of indices. Note that also a short

hand notatiors, 5, for the set of subindexes, was used. Of X (zi(t)—zi(t—ao)) (z;(t)—z;(t —ao)), (9)
course, if the last three summands were expanded the usual
form is easily obtained. The weights are where, as it was done in previous sections, in the dynamical
(7o) o(p _ ¢(ro) variables and weights the indey was dropped after the av-
W1,1,0,0,0 = 1,1,0,0,0 — €1,1,0,0,0 o S
erage over realizations. Also, the factorization and the (1,0)-
closure was used. The averaged weights are
wgrg)OOO_9(P12000_’£Y§)000> g g
and
w1,1,0,0,0 = P1,1,0,0,07w1,2,0,0,0 = P1,2,0,0,0
w(ro) = ( 5(7“0))
31 2 51,2 S1,2

The next step to obtain the deterministic equation as Eq. (1Andw,, , = P, , . The last steps necessary to obtain the
is to do an average over realizations on both two side oflifferential equations as Eq. (17) are to do a Taylor series
Eq. (8) obtaining expansion up t@(a?) andO(a;) and then equating coeffi-

|  cients with Eq. (17). The Taylor series expansion gives

dxy(t dxy(t dx(t
w1,1,0,0,0Ck (t) — W1.2,0,0,0%k(t) — a0W1,1,0,0,0 dt( ) + 2a0w1,2,0,0,0 dt( ) —ap dt( )
1 2 d2$k(t) 9 d2$(}k(t) 1 2d21‘k(t)
+ 500W11000 za— ~ 200W1.2,000 25 T 5% g

Ogni n % _ 891]) du;(t )dxj( ) +0(a )—l—O(al) 0. (10)

1 2
T 0N W29 (8mj ox; oxy, dt dt
It is not difficult to see that the values of the weights that give the same equation as Eq. (17), except for an irrelevant factor
—2ad, arews 10,00 = 1, wi200,0 = 1 andw,, , = 4/a;. Note that in this case all the weights are real numbers. Finally,
The connecting parameter,, for anyu, are P11,0,0,0=1, P1,2,0,00=1 and P, ,=4/a,. Note that the “physical reason” of
the election of the terms in Eq. (10), as well as in Eq. (17), is that solely terms linéar;iit) /dt> and products of the form
(dz;(t)/dt)(dxz;(t)/dt) are those that allows the principle of general covariance [27].

5. Conclusions and other possible generalizations

An extension of the general approach to the case where dynamical variables are tensors of arbitrary rank and of different type
was analyzed and a theorem, previously proved for Markovian as well as Non-Markovian evolution equations, was extended.
The Markovian case can be obtained as a non-Markovian case where the updating depends on the first previous time stej
Another possible generalization is the construction of evolution equations of other “mathematical objects” as spinors. It is
simple to see that the evolution equations looks like

aanet (b a0, %) = qlpaet () + Y wi g(olg (8= lovae, xu1 + Axiy)

so1.11 4 (s01)Sss,
{s01,11}

K Ras Ras
+ Z w'r) q(M) o' (t —lo1ag, x11 + AXn)q((:sz))sB 02 (t — lggag, X12 + Ax12) + ...,

801,802,12 (301)55801
{501,502,12}

Vso1, S02, --- € {1,2},t >0,21,...,24 € A,
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r0)Ra r0)Ra T (ro)Ras
qﬁg%m *(t + ap,x) = qug’ém ?(t,x) + Z wio(;?hQ(sgz)sﬁ;; (t —lo1ao, x11 + Ax11)

{s02,11}

g Ras 7 Ras
+ Z w(?o) q(""U) 02 (t — lolao, X11 + AXll)q((;qsl))SBS?l (t — 102(10, X12 + Axlg) + o

802,801,12 (502)55802
{502,501,l2}

VSOl, S02, ... € {172}7t >0,21,...,24 € A, (11)

whereR andS are sets of spinor indices. Note that it was used a slightly different notation of that used, for example, in
Ref. [28]. Even for the case of dynamical variables that posses a mix of tensor and spinor indices, the evolution equations
looks like

T0)Trasg R
q(m)rmlR”l(t—i-ao,X) (To)ralRal(t7x)+ Z w(To) (ro)rase; R, (t — lorag, X11 + Axqy)

(1)5[518[31 = q(l)S[glsﬁl 501711q(501)5[3501 SBSOI
{so1,11}
R (ro)r. R
(ro) (roJraso1 R | 0)Tas02 Mgy
+ E Wsor,s02.12L(501)5500, ., (t —lorao, x11 + AX11)Q(302)SB502Sﬁ502 (t —lo2ao, x12 + Ax12) + ...\

{s01,502,12}

V'So01, 802, .. € {1,2},t >0,21,...,24 € A,

(ro)razRe _ (ro)razRg (r0) (ro)rasga R,
Q(ggsﬁzém 2(t+ ag,x) = Q(g()]sﬁz;m 2(t,x) + Z ’wsoz,ll D(502)8520,S 22 (t — lp100,X11 + AX11)

{s02,11} Pro2
(ro)rasga R, (ro)rase, R,
oY w 502550055, . (£~ londo, Xa1 + AXll)q(sm)sﬁs;sﬂfl (t = lo2ag, X12 + Ax12) + ...,
{s02,801,12} o2 oL
V S01, S02, -+ € {1,2},7520,1‘1,...,.’)34 €A, (12)

wherer ands designates the sets of tensor indices &d
andS the spinor ones. More generally, the theorem is alsé

valid for evolution equations containing whatever set of Ia—A
bels. The reason is that the factorization and the use of a

(1,0)-closure sill is possible and consequently determinisgor the sake of completeness, the geodesics are obtained us-

tic evolution equations can also be obtained. Examples qhg the usual variational approach' The |en@t|mf a curve
two-components (spinors) or four-components (four-vectorsjrom A to B can be obtained by

“mathematical objects” with a slightly different notation can

ppendix

be found in the second example in Refs. [24] and [26], re- B iy
spectively. L= /ds = /\/gijxﬁ}dta (13)
This paper must be understood, presently, as part of four A fo

companion papers (the other three are given in Refs. [24-26&/ . . :

; . Wheres is the arcg;; = gi;(x1, z2, 3, z4) IS the metric ten-
each of them showing different features and were planned in : . :

. . . sor,xz; = x;(t) is the space-time coordinate af{d= dx;/dt.
such a way that the illustrative examples show an increas; . ) . X
) ) e _—“After performing the first variation of. the corresponding
ing technical difficulties. In the present case the evolut|onE .
. . ; . .Euler equations are
equations of tensors was applied to obtain the deterministiC
evolution equations for the geodesics. oF  doF _
Finally, it must be emphasized that another extension of dx;  dt dx]

the present theorem is possible, to include evolution of func- — ) _ ) _
tions of the dynamical variables.Another possibility (and per-Wherer” = v/gi;xjx’;. After introducingF" in Eq. (14) it can

haps the most important to be used in physical problems) i€ obtained

i=1,..,4, (14)

the evolution equation for the Lagrangian. Of course in this 1 ., d (9T + ghjl';-

case the evolution equations to be obtained are the Euler- opJutiti = < oF > =0
Lagrange equations. This extension will be submitted else-

where [29]. 1=1,...,4. (15)
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Because of the fact that Eq. (15) is valid for any paramewhere the Christoffel symbcﬂfj is

tert, it is possible to makeé = s thenF = 1 and

1 1
39i5n05 = 5 (gini + gnyf)

1

~3 (Ginj + gnji) ria; =0

where gyy w = 0¢uy/0x, for any u,v and w. Because
gnj = gjn thengyyz} = g;x// and after multiplying byy"*

i=1,.. (16)

and summing oveh it is obtained the differential equations

for the geodesics as

" k .0
zy + Iz =0 k=1,...,

4, 17)

) 1 5,
Ik = §ghk (Gjn,i + Gnij — Gij.h) - (18)
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