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Effects of the velocity slip on a viscous dissipation of mhd flow and heat transfer
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This study deals with the numerical solution of MHD flow and heat transfer to a laminar liquid film from a horizontal stretching surface.
Similarity transformations were used to convert unsteady boundary layer equations to a system of non-linear ordinary differential equations.
The resulting non-linear differential equations were numerically solved, using efficient shooting technique with fourth order Runge—Kutta
method. The effect of Prandtl number, Eckert number, magnetic parameter and heat source/sink parameter and the momentum slip parameter
on various flow and heat transfer characteristics, were graphically shown. It was found that, for high values of unsteadiness parameter, it
reduces the surface temperature which is well in agreement with the earlier published works under some limiting cases. In addition, heat
absorption is one better suited for effective cooling of the sheet. Further, it was noticed that heat generation enhance the temperature in the
boundary layer.
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1. Introduction locity, temperature and concentration boundary conditions.
Slip flow finds applications in case of micro/nano systems,

Boundary layer flow and heat transfer over a thin liquid film such as micro—pump, micro—valve and micro-nozzles,which
on an unsteady stretching sheet has received considerable agrees with slip condition at the boundary wall. The no-slip
tention from researchers because of their numerous practicRPundary condition is the main theory concerned to Navier—
applications in many applications, like coating process andtoke’s equations in fluid dynamics. But in some situations,
design of various heat exchangers and chemical processighere in case of viscoelastic fluids such no slip conditions

equipments, wire and fiber coating, food stuff processing redoes not hold good for study of fluids in motion. No slip
actor fluidization and transpiration cooling. condition cannot be applied, to various viscoelastic and many

The study of flow and heat transfer caused by a stretchingther liquids, which does not obey Newton's viscosity postu-
surface is of great importance in many manufacturing pro-ate’ such as nanofluids, polymer melt generally shows mi-

cesses such as extrusion process, glass blowing, hot rollingroscopic wall slip and in general is governed by a monotone

manufacturing of plastic and rubber sheets, crystal growingr,elation between slip velocity and the traction. The liquids

continuous cooling and fibers spinning [1,2]. In all thesetnat slips at boundary finds applications in various techno-

cases, a study of flow field and heat transfer can be of Sigl_ogic_al problems_ _such as in polishing of artificial heart valves
nificant importance because the quality of the final produc?nd internal cavities.

depends to a large extent on the skin friction coefficient and Sakiadis [3,4] investigated the flow due to a sheet issu-
the surface heat transfer rate. ing with constant speed from a slit into a fluid at rest. This
Boundary layer flow past a stretching sheet is applicaflow was of Blasius type, in which the boundary layer thick-
ble to viscous and some viscoelastic fluid flows with usuan€Ss increased with the distance from the slit. Sarpakaya [3]
no—slip flow boundary condition over many stretching typesVas the first researcher to study the MHD flow of a non-
such as linear and exponential stretching and a small atteféwtonian fluid. Prandt’'s boundary layer theory proved to
tion is given to slip boundary condition, though slip boundaryP€ Of great use in Newtonian fluids as Navier—Stokes equa-
conditions finds prominent applications in various fields oftions can be converted into much simplified boundary layer
science and technology, but fluids with micro—scale or nano-€duation which is easier to handle.
scale dimensions have flow behavior which is completely dif- McCormack and Crane [6] gave a similar solution in a
ferent from usual fluid behavior, and definitely it belongsclosed analytic form for the two dimensional stretching of
to slip flow. So even in case of slip flow regime, the fluid a flat surface with a velocity proportional to the distance
motion depends on Navier-Stoke’s equations, with slip vefrom the slit. In a pioneering work, Crane [7] considered
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the steady two—dimensional flow of a Newtonian fluid caused The main purpose of the present study is to extend the re-
by a stretching elastic flat sheet which moves in its own planeults of [43] by considering the velocity slip effects on the
with a velocity varying linearly with the distance from a fixed viscous dissipation and internal heat generation for MHD
point. This work is extended by many authors to investigatdlow and heat transfer in a thin liquid film on an unsteady
various aspects of the flow and heat transfer occurring in thetretching sheet. Appropriate similarity transformations are
different domains of the fluid, see [8-13]. Wang [14], Ushaapplied to convert the governing partial differential equations
and Sridharan [15], Chen [16,17], Kumari and Nath [18], An-into a system of non—linear ordinary differential equations,
derssonet al. [19,20], Dandapaet al. [21,22] and Dan- which are to be solved by shooting technique with fourth or-
dapat and Ray [23]. In the pioneering work of Wang [14], der Runge—Kutta method. The obtained numerical results are
the flow of a Newtonian fluid in a thin liquid film past an compared with whose published ones in some limiting cases.
unsteady stretching sheet was investigated. He reduced tfiden, the influence of the investigated parameters are plotted
unsteady Navier—Stokes equations to a nonlinear ordinargind discussed.

differential equations by means of similarity transformation
and then solved the same using a kind of multiple shootin
method (see Robert and Shipman [24]). The results in [14] "
were extended by several authors for Newtonian and nonz 1. pescription of the problem

Newtonian fluids using various velocity and thermal bound-

ary conditions [19-26]. Azizt al [26] have neglected the In the present study, we consider a thin elastic liquid film
magnetic field effect and also used the homotopy analysisf uniform thicknesg.(t) lying on the horizontal stretching
method for thin film flow and heat transfer on an unsteadysheet as shown in Fig. 1, where the sheet is set in motion
stretching sheet with internal heating. alongx—axis and the stretching occurs by the action of two

equal and opposite forces along this axis. In addition, the

, Many regearchers devoted to the study concerned fuid motion within the film is primarily caused solely by this
slip flow regime for more than a decade, see for examplestretching Velocity of the sheét is defined as
Refs. [27] to [32]. To mention a few are, Andersson 32 ob- '

tained a closed form solution for fully developed, Navier— Uz f) — bx
Stokes equations, considering the effect of magnetic field, (@.) = (1—at)’
over a stretching sheet. Again, Wang [28] found the closed N o ]
form similarity solution of a complete Navier—Stoke’s equa-Whereb and« are positive constants with dimension of the
tions for the flow, produced by stretching of an elastic sheetlime ¢. This expression reflects the effective stretching rate
with slip effects. Furthermore, Wang [29] investigated slip /(1 — o) increase with time in the range values, where
flow and heat transfer at a stagnation point past a movin§ < @ < 1. By the same manner, the surface temperature
plate. Fanget al. [30] considered the study of slip flow over a 1s(z, t) is expressed by

moving plate with the effect of magnetic field, and obtained 22 X

the solution of the resulting boundary value problem ana- T, (x,t) = Ty — Tret [2] (1—at)" 2, (2)
lytically. Hayatet al [31] extended the problem of various v

other researchers considering the effect of thermal slip conyhereT, is the temperature at the slif,e; can be taken as a
dition in addition to Velocity Sllp condition for flow and heat constant reference temperature such that Trer < T, and
transfer over a stretching sheet, for which suction/injectiony, is the kinematic viscosity. Eq. (2) showed that the sheet
are taken into account. Similarly, Aziz [32] studied momen-temperature decreases frdfp and the amount of tempera-
tum and thermal slip boundary conditions for boundary layetyre reduction along the sheet increases with time. Further,
flow over a flat plate, with constant heat flux boundary con-it is considered that the flow field is exposed to the influence
dition. Further recent details of the Sllp effects can be founcbf an external transverse magnetic field of Stren@&hex_

in Refs. [33] to [37] pressed by

In the literature, there are extensive studies regarding the
production of thin liquid film, see for example [38-42], either
on a vertical wall achieved through the action of gravity. If
the fluid is very viscous, considerable heat can be produced

Mathematical Formulation

1)

-

even though at relatively low speedsg in the extrusion of y -y T f
plastic, and hence the heat transfer results may alter appre — h(t)
ciably due to viscous dissipation. Taking into account this — =t |

point, Abelet al. [43] have investigated the influence of vis- u y force

cous dissipation on heat transfer in a finite liquid film over

a continuously moving surface. They showed that the com-

bined effect of magnetic field and viscous dissipation is toFiGURE 1. Schematic representation of a liquid film on an elastic
enhance the thermal boundary layer thickness. sheet.
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B (z,t) = By (1 — at)_% . (3) inEg. (4) and the velocity components are readily obtained

as:
It is also assumed that induced magnetic field, effect of the

surface tension, latent heat due to evaporation, surface waves w— o _ ( bx ) 7 (n) (13)
and buoyancy are neglected. Furthermore, we considered dy 1—at ’

that the viscous shear stress= y (Ju/0y) and the heat 1

flux ¢ = —k (0T /dy) vanish at the adiabatic free surface (at v = _gﬂ - _ <1 vb t) : Fn). (14)
y=nh), o —a

Therefore, the mathematical problem defined in Egs. (4-

2.2. Governing equation of the investigated model 8) transforms into the following set of ordinary differential

. . : . equations,
Regarding the above assumptions, the basic equation descrl%g

ing the investigated physical model can be written as " Sn\ L , p
P (P ) = (e S) = () =0, (15)
Gu + v _ 0, 4
dv By 0" —Pr |2 (30 +n0) + (2f — )6
du + ou Ou_ 0w oB? (5) 2
at " “ox v@y n U6y2 p “
or T OT  k 9T —0'f+Ecf"| =0, (16)
o "or oy T gy O
Ju 2 and their associated boundary conditions become
W U
+ (5= ) +Q(Ts —Ty), 6
e, (3y> @ 0) ©) F10)=1+Af"(0), f(0)=0, 6(0)=1, (17)
whereu andv are the horizontal and vertical components in f1(B)=0, 0'(B) =0, (18)
andy direction, respectivelyy is the electrical conductivity, 53
p is the densityk is the thermal diffusivityc, is the specific f(B) = ER (19)

heat,u is the dynamic viscosity an@ is the heat source/sink. _ o _
In this study, the representative measure of the film thickneshere a prime denotes the derivative with respect;to
is chosen a$u/b)1/2 so that the scale rat'r@/(v/b)l/Q > 1. S(= «/b) is the dimensionless measure of the unsteadiness,

The associated boundary conditions are given by Pr(= v/k) is Prandtl numberEc(= U?/C, (T; — Tp))
is Eckert numberMn(= oB2/pb) is the magnetic param-

Ou eter, \(= LN /tb/v(1 — at)) is the slip parameter and
—U=NL— = T=T, at : _ , , ,
u-U oy v="0, & ~v(= Q/pcpd) is the dimensionless heat/sink parameter. Fur-
_ _ ther, the dimensionless film thicknessienotes the value of
y=0, where Ny = NVt (7) the similarity variable; at the free surface so that Eq. (12)
T .

? = g— —0 at y=h, ® 9V s\

Yy Y B=———] h (20)

dh v (1l — at)
T at y=h ) Thus, it is determined as an integral part of the boundary

value problem. Now, the film thickness rate can be obtained

2.3. Similarity transformations

We now introduce dimensionless variablgand 6 and the
similarity variablen as

vl = (120 ) e s, (10)
2 3
T(0) =T~ Tt (3 ) (1= a) T, QD)
b\
1= (rtan) v "

It should be mentioned here that the physical stream func-
tion ¢ (z,y,t) automatically assures mass conversion given

from Eqg. (20) as

dh o (v )

d 2 \b(l—at)) °
This means that the kinematic constrainyat h(t), given
in Eq. (9), transforms into the free surface condition (21).

(21)

2.4. Quantities of practical interest

The most important characteristics of flow and heat transfer
are the shear stressand the heat flux;,,on the stretching
sheet that are defined as

ou
Ty = — 22
7 (8y>y=0 (22)
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TABLE |. Comparison of values of skin friction coefficiefi (0) with Mn = 0.0.

Wang [46] Aziz et al. [26] Present work
S 1" 1"
—f"(0) —f"(0) "
8 3 8 =5 8 —1"(0)

0.4 5.122490 1.307785 — — 4.981455 1.134098
0.6 3.131250 1.195155 — — 3.131710 1.195128
0.8 2.151990 1.245795 2.151994 1.245794 2.151990 1.245805
1.0 1.543620 1.277762 1.543616 1.277768 1.543617 1.277769
1.2 1.127780 1.279177 1.127780 1.174986 1.127780 1.279171
14 0.821032 1.233549 0.821032 1.233549 0.821033 1.233545
1.6 0.576173 1.114937 0.576173 1.114937 0.576176 1.114941
1.8 0.356389 0.867414 0.356389 0.867414 0.356390 0.867416

TABLE Il. Comparison of values of surface temperat@ft) and wall temperature gradier®’ (0) with Mn = Ec =~ = 0.0.

Wang [46] Aziz et al. [26] Present work
Pr
—0'(0) —0"(0) /
6(1) 3 6(1) 5 6(1) —6'(0)
S =0.8and3 = 2.15199
0.01 0.960480 0.042042 - - 0.960438 0.042120
0.1 0.692533 0.351378 - - 0.692296 0.351920
0.097884 1.670913 0.097956 1.668746 0.097825 1.671919
0.024941 2.436884 0.025083 2.357904 0.024869 2.443914
0.008785 3.027170 0.008545 2.753984 0.008324 3.034915
S =1.2and3 = 1.127780
0.01 0.982331 0.033458 - - 0.982312 0.033515
0.1 0.843622 0.304962 - — 0.843485 0.305409
0.286717 1.773032 - - 0.286634 1.773772
0.128124 2.638324 - - 0.128174 2.638431
0.067658 3.279744 - - 0.067737 3.280329
or 3. Numerical technique
0=k (%) (23)
y=0

The local skin friction coefficienC’; and the local Nus-
selt numberVu, for fluid flow in a thin film can be expressed

9
—QM (Fz)yzO

as

CfE

Nuyg

pU?

T (W)
Tret ay y=0

1 _
3 (1—at) 20/ (0)Re3/?,

2R EF1(0) (24)

(25)

whereRe, (= Uz /v) is the local Reynolds number afigh
denotes the same reference temperature (temperature diffékt this end, Newton—Raphson scheme is employed to correct

ence) as in Eq. (2).

Due to the non-linear form of the resulting momentum and
thermal boundary layer equations (15) and (16) with bound-
ary conditions (17-19) are numerically solved by shoot-
ing technique with fourth order Runge-Kutta method. The
present BVP is equivalent to a system of five first order differ-
ential equations with six boundary conditions, where the cru-
cial part of the numerical solution is to determine the dimen-
sionless film thicknes8. Egs. (15) and (16) are integrated by
fourth order Runge-Kutta scheme from= 0 to n = (§ with
f(0) =0, f/(0) = 1 and 6(0) = 1 and guessed the trial
values,f”(0), 6’(0) and 3. However, the numerical solution
thus obtained does not generally satisfy the right—-end bound-
ary conditions,f”(8) = 0, ¢/(0) = 0 and f(8) = S5/2.

the three arbitrary guess values such that the obtained solu-
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TABLE IIl. Values of surface temperatufél) for various values ofn, Pr, Ec, v andS.

0(1)
Mn Pr Ec ol
S=08 S=12
0.0 1.0 0.02 0.1 0.118639 0.296847
1.0 0.250815 0.413568
2.0 0.358547 0.495749
3.0 0.439666 0.557227
4.0 0.506920 0.604382
5.0 0.564159 0.642261
6.0 0.605107 0.673786
7.0 0.644046 0.699351
8.0 0.676447 0.721720
1.0 0.001 0.02 0.1 0.997829 0.998886
0.01 0.978616 0.988952
0.1 0.814440 0.897785
1.0 0.225360 0.421320
2.0 0.085194 0.228930
5.0 0.009701 0.061819
10.0 —0.000264 0.012560
100.0 —0.001574 —0.000572
1.0 1.0 0.01 0.1 0.226444 0.422094
0.1 0.216691 0.415427
0.2 0.205854 0.407387
0.5 0.173345 0.384166
1.0 0.119162 0.345464
2.0 0.010796 0.268060
3.0 —0.097570 0.190646
4.0 —0.205937 0.113252
5.0 —0.314303 0.035849
1.0 1.0 0.02 -0.5 0.190930 0.366775
—0.2 0.223926 0.393744
—0.1 0.236696 0.403400
0.0 0.250515 0.413420
0.1 0.265505 0.423823
0.2 0.281804 0.434630
0.5 0.340312 0.469708

tion eventually satisfies the required boundary conditiong}. Results and discussion
(18) and (19).

It should be mentioned here that the iterative process itn the current study, effects of the velocity slip on the vis-
terminated until the relative difference between the currentous dissipation and internal heat generation for MHD flow
and the previous iterative values ¢f/3) matches with the and heat transfer in a thin liquid film on an unsteady stretch-
value of S3/2 up to a tolerance ofl0=6. For further de- ing sheet has been investigated. Then, appropriate similarity
tails on the numerical procedure, the readers are referred toansformations were adopted to convert the governing partial
Refs. [44], [45] and [43]. differential equations of flow and heat transfer into a system

Rev. Mex. Fis62 (2016) 576-585
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14 0.8

h=0.01,0.07,04

i

0.0 T T T

Mn *

FIGURE 2. Velocity profiles for various values of the slip parameter FIGURE 4. Variation of surface temperatutd3) with the mag-
Awith S = 0. netic parameteMn.

FIGURE 5. Variation of surface temperatuf3) with Prandtl
FIGURE 3. Variation of the film thicknes® with unsteadiness pa- numberPr for S = 0.8 (the solid curve) and = 1.2 (the dotted
rameterS whenMn = 0. curve).

tem of non-linear ordinary differential equations. Shooting

technique with fourth order Runge-Kutta method has been
applied to solve the resultant boundary value problem, where
the solution exists only whet < S < 2. It should be men-
tioned here that, although the present results are considered
as an extension of those obtained in Ref. [43] by applying
the velocity slip parameteX, effects of various parameters
influencing the dynamics should be reinvestigated because
presents in the conditions gfequation 15 which is already
included in thed-equation 16. These effects are depicted in
Figs. 2to 13.

On comparing with some published works, Tables | and Il
show an excellent agreement between the present results and
those of Wang [46] and Aziet al. [26]. However, it should
be noted that they have used different similarity transforma-
tions due to which the values ¢f'(0)/4 and—6'(0)/4 in

0.7

0.6
0.5
0.4
oR)
0.3

0.2

0.1

0.m

Ec 1

their papers are the same #50) andé’(0), respectively, of  FIGURE 6. Variation of surface temperatu¢3) with Eckert num-
the present results. berEc.

Rev. Mex. Fis62 (2016) 576-585



582 B. ALKAHTANI, M. SUBHAS ABEL AND E.H. ALY

0.4 et
=

-0.4 02 0.0 0.2 0.4
i

FIGURE 7. \Variation of surface temperaturé(3) with heat
source/sink parametéy.
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FIGURE 8. Variation of the velocity profilesf’(n) for different
values of the magnetic parametefr. when (a)S = 0.8 and (b)
S =1.2.

p=0903678

Pri0.001
Pi=0.0

Pr=0}1

FIGURE 9. Variation of the temperature distributigt{n) for dif-
ferent values of Prandtl numbé?r when (a)S = 0.8 and (b)
S=1.2.

Moreover, whenS — 0, the solution approaches to the an-
alytical solution obtained by Crane [7] with infinitely thick
layer of fluid,i.e. (8 — oo). In addition,S — 2 represents a
liquid film of infinitesimal thicknesgs — 0).

Figure 2 shows the effect of slip parameter, on horizontal
as well as transient velocity profile. It is observed from this
figure that horizontal velocity profil¢g’(n) decreases with in-
crease of slip parameter;, and the opposite trend is noticed
for transient velocity profilef(n). Further, Fig. 3 indicates
the variation of film thicknesg with the unsteadiness param-
eterS. From this figure, it is noticed th@ monotonically de-
creases whef increases, which matches with that reported
by Wang [46] and Abeét al. [43].

The effect of magnetic parametdin, Prandtl number
Pr, Eckert numbelF ¢ and heat source/sink parameteon
the surface temperatufe 3) are illustrated from Figs. 4 to 7,
respectively. Clearly, increasing values of magnetic parame-
ter Mn causes the surface temperature to blow-up monotoni-
cally. Further, small values of Eckert numbétr almost keep
the surface temperature a constant, but enhance the surface

Rev. Mex. Fis62 (2016) 576-585
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FIGURE 10. Variation of the temperature distributiaf(n) for
different values of Eckert numbédtc when (a)S = 0.8 and (b)
S=1.2.

FIGURE 11. Variation of the temperature distributién) for dif-

ferent values of the dimensionless heat/sink parametehnen (a)

S =0.8and (b)S =1.2.

temperature for higher values. However, the opposite effect

is exhibited in case of’r i.e., increasing values aPr de- The effect of magnetic parametéfn on the horizon-
creases the surface temperature. For Prandtl number of ordé@ velocity profiles are depicted in Figs. 8(a) and 8(b) for
unity and below the surface temperaté(g) attains a finite S = 0.8 andS = 1.2, respectively. From these plots, one
value below 1 and the temperature gradients extend all thé&n make out that the increasing values of magnetic parame-
way to the free surface. In the limiting cage: — 0, how-  ter decreases the horizontal velocity. This is expected as the
ever, the dimensionless surface temperature tends toitity applied transverse magnetic field produces a drag in the form
the temperatur@ becomes uniform in the vertical direction Of Lorentz force thereby decreasing the velocity magnitude.
and equalsT,. This is consistent with the trivial solu- Dropping in horizontal velocity is a consequence of increase
tion 6(n) = 1 obtained from the thermal energy Eq. (15) in the magnetic field strength as observeddos 0.8 as well
whenPr = 0. Moreover, at sufficiently high Prandtl number, ass =1.2.

i.e. low thermal diffusivity, the surface temperature remained  Figures 9(a) and 9(b) demonstrate the effect of Prandtl
practically equal to zero. The dimensionless heat/sink panumberPr on temperature profiles for two different values
rameter(y < 0) is to reduce the temperature distribution sig- of unsteadiness parametgr These plots reveal the fact that
nificantly throughout the region g5 > 0) brings about the for a particular value oPr, the temperature increases mono-
temperature increase throughout the entire region. These otsnically from the free surface temperatdreto wall veloc-
served results hold good for different values of unsteadinesisy 7, which concurs with the results of Andersetral. [20].
parameters. The thermal boundary layer thickness decreases drastically

Rev. Mex. Fis62 (2016) 576-585
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100

0.001 0.0 01 1 10 100

Pr

FIGURE 12. Temperature gradientd’ (0) at the sheet as a function
of Prandtl numbePr for S = 0.8 (the solid curve) and = 1.2
(the dotted curve).

)

0.1

0.01

0.01 Ec

FIGURE 13. Temperature gradiertd’ (0) at the sheet as a function
of Eckert numbetEc for S = 0.8 (the solid curve) and = 1.2
(the dotted curve).

for high values ofPr i.e., low thermal diffusivity. From these
figures, we observe that Prandtl numkér speeds up the
cooling of the thin film.

The effect of Eckert numbeF'c on temperature profiles
for two different values of unsteadiness paramétare pro-

jected in Figs. 10(a) and 10(b). The effect of viscous dissi-

pation is to enhance the temperature in the fluid filine.,
increasing values aF'c contributes in thickening of thermal
boundary layer. For effective cooling of the sheet a fluid of
low viscosity is preferable.

Figures 11(a) and 11(b) present the effect of dimension
less heat source/sink parameteon temperature profile for
different values of unsteadiness paramefer In addition,
for v < 0, there is reduction of temperature in the thermal

AS ABEL AND E.H. ALY

Table Ill tabulates the values of surface temperature for
various values ofMn, Pr, Ec and~. This table reveals
that Mn proportionately increases the surface temperature,
whereasPr and Ec decreases the surface temperature.

The dimensionless wall temperature gradiem’(0)
takes a higher value at a large Prandtl numBer The ef-
fect of —6’(0) for S = 1.2 only marginally exceeds that for
S = 0.8whenPr > 1 (see Fig. 12). The dimensionless wall
temperature gradientd’ (0) takes a uniform value at certain
moderate values of Eckert numbgk, while the effect of
—6’'(0) decreases with increasirg: (see Fig. 13).

5. Conclusions

In the presence of the velocity slip, this analysis provides so-
lutions for unsteady viscous incompressible boundary layer
flow of a fluid film over a heated stretching surface in the
presence of a variable transverse magnetic field including the
viscous dissipation and internal heating effect. The current
results reveal that magnetic field and viscous dissipative ef-
fects play a significant role on controlling the heat transfer
from stretching sheet to the liquid film. The important find-
ings pertaining to the present analysis can be epitomized as
follows:

1. The transverse magnetic field suppress the velocity
field which causes enhancement of the temperature
profiles.

The viscous dissipation effect is characterized by Eck-
ert numberEc. Comparing to the results without vis-
cous dissipation, it is seen that the temperature in-
creases, when the fluid is being heatét: > 0) but
decrease when the fluid is being coolétt < 0). This
result reveals the effect of viscous dissipation and en-
hances temperature in the thermal boundary layer re-
gion.

For a wide range oPr, the effect of viscous dissipa-
tion was found to increase the dimensionless free sur-
face temperaturé(1) for the fluid cooling case. The
impact of viscous dissipation d@{1) diminishes in the
two limiting cases:Pr — 0 and Pr — oo, in such
situationsd(1) approaches unity and zero respectively.

The effect of internal heat source/sink is to generate
temperature for increasing positive values and absorb
temperature for decreasing negative values. However,
negative value of this parameter is better suited for
cooling purpose.
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