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This study deals with the numerical solution of MHD flow and heat transfer to a laminar liquid film from a horizontal stretching surface.
Similarity transformations were used to convert unsteady boundary layer equations to a system of non–linear ordinary differential equations.
The resulting non–linear differential equations were numerically solved, using efficient shooting technique with fourth order Runge–Kutta
method. The effect of Prandtl number, Eckert number, magnetic parameter and heat source/sink parameter and the momentum slip parameter
on various flow and heat transfer characteristics, were graphically shown. It was found that, for high values of unsteadiness parameter, it
reduces the surface temperature which is well in agreement with the earlier published works under some limiting cases. In addition, heat
absorption is one better suited for effective cooling of the sheet. Further, it was noticed that heat generation enhance the temperature in the
boundary layer.
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1. Introduction

Boundary layer flow and heat transfer over a thin liquid film
on an unsteady stretching sheet has received considerable at-
tention from researchers because of their numerous practical
applications in many applications, like coating process and
design of various heat exchangers and chemical processing
equipments, wire and fiber coating, food stuff processing re-
actor fluidization and transpiration cooling.

The study of flow and heat transfer caused by a stretching
surface is of great importance in many manufacturing pro-
cesses such as extrusion process, glass blowing, hot rolling,
manufacturing of plastic and rubber sheets, crystal growing,
continuous cooling and fibers spinning [1,2]. In all these
cases, a study of flow field and heat transfer can be of sig-
nificant importance because the quality of the final product
depends to a large extent on the skin friction coefficient and
the surface heat transfer rate.

Boundary layer flow past a stretching sheet is applica-
ble to viscous and some viscoelastic fluid flows with usual
no–slip flow boundary condition over many stretching types
such as linear and exponential stretching and a small atten-
tion is given to slip boundary condition, though slip boundary
conditions finds prominent applications in various fields of
science and technology, but fluids with micro–scale or nano–
scale dimensions have flow behavior which is completely dif-
ferent from usual fluid behavior, and definitely it belongs
to slip flow. So even in case of slip flow regime, the fluid
motion depends on Navier–Stoke’s equations, with slip ve-

locity, temperature and concentration boundary conditions.
Slip flow finds applications in case of micro/nano systems,
such as micro–pump, micro–valve and micro-nozzles,which
agrees with slip condition at the boundary wall. The no–slip
boundary condition is the main theory concerned to Navier–
Stoke’s equations in fluid dynamics. But in some situations,
where in case of viscoelastic fluids such no slip conditions
does not hold good for study of fluids in motion. No slip
condition cannot be applied, to various viscoelastic and many
other liquids, which does not obey Newton’s viscosity postu-
late, such as nanofluids, polymer melt generally shows mi-
croscopic wall slip and in general is governed by a monotone
relation between slip velocity and the traction. The liquids
that slips at boundary finds applications in various techno-
logical problems such as in polishing of artificial heart valves
and internal cavities.

Sakiadis [3,4] investigated the flow due to a sheet issu-
ing with constant speed from a slit into a fluid at rest. This
flow was of Blasius type, in which the boundary layer thick-
ness increased with the distance from the slit. Sarpakaya [5]
was the first researcher to study the MHD flow of a non-
Newtonian fluid. Prandtl’s boundary layer theory proved to
be of great use in Newtonian fluids as Navier–Stokes equa-
tions can be converted into much simplified boundary layer
equation which is easier to handle.

McCormack and Crane [6] gave a similar solution in a
closed analytic form for the two dimensional stretching of
a flat surface with a velocity proportional to the distance
from the slit. In a pioneering work, Crane [7] considered
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the steady two–dimensional flow of a Newtonian fluid caused
by a stretching elastic flat sheet which moves in its own plane
with a velocity varying linearly with the distance from a fixed
point. This work is extended by many authors to investigate
various aspects of the flow and heat transfer occurring in the
different domains of the fluid, see [8-13]. Wang [14], Usha
and Sridharan [15], Chen [16,17], Kumari and Nath [18], An-
derssonet al. [19,20], Dandapatet al. [21,22] and Dan-
dapat and Ray [23]. In the pioneering work of Wang [14],
the flow of a Newtonian fluid in a thin liquid film past an
unsteady stretching sheet was investigated. He reduced the
unsteady Navier–Stokes equations to a nonlinear ordinary
differential equations by means of similarity transformation
and then solved the same using a kind of multiple shooting
method (see Robert and Shipman [24]). The results in [14]
were extended by several authors for Newtonian and non–
Newtonian fluids using various velocity and thermal bound-
ary conditions [19-26]. Azizet al. [26] have neglected the
magnetic field effect and also used the homotopy analysis
method for thin film flow and heat transfer on an unsteady
stretching sheet with internal heating.

Many researchers devoted to the study concerned to
slip flow regime for more than a decade, see for example
Refs. [27] to [32]. To mention a few are, Andersson 32 ob-
tained a closed form solution for fully developed, Navier–
Stokes equations, considering the effect of magnetic field,
over a stretching sheet. Again, Wang [28] found the closed
form similarity solution of a complete Navier–Stoke’s equa-
tions for the flow, produced by stretching of an elastic sheet,
with slip effects. Furthermore, Wang [29] investigated slip
flow and heat transfer at a stagnation point past a moving
plate. Fanget al. [30] considered the study of slip flow over a
moving plate with the effect of magnetic field, and obtained
the solution of the resulting boundary value problem ana-
lytically. Hayatet al. [31] extended the problem of various
other researchers considering the effect of thermal slip con-
dition in addition to velocity slip condition for flow and heat
transfer over a stretching sheet, for which suction/injection,
are taken into account. Similarly, Aziz [32] studied momen-
tum and thermal slip boundary conditions for boundary layer
flow over a flat plate, with constant heat flux boundary con-
dition. Further recent details of the slip effects can be found
in Refs. [33] to [37].

In the literature, there are extensive studies regarding the
production of thin liquid film, see for example [38-42], either
on a vertical wall achieved through the action of gravity. If
the fluid is very viscous, considerable heat can be produced
even though at relatively low speeds,e.g. in the extrusion of
plastic, and hence the heat transfer results may alter appre-
ciably due to viscous dissipation. Taking into account this
point, Abelet al. [43] have investigated the influence of vis-
cous dissipation on heat transfer in a finite liquid film over
a continuously moving surface. They showed that the com-
bined effect of magnetic field and viscous dissipation is to
enhance the thermal boundary layer thickness.

The main purpose of the present study is to extend the re-
sults of [43] by considering the velocity slip effects on the
viscous dissipation and internal heat generation for MHD
flow and heat transfer in a thin liquid film on an unsteady
stretching sheet. Appropriate similarity transformations are
applied to convert the governing partial differential equations
into a system of non–linear ordinary differential equations,
which are to be solved by shooting technique with fourth or-
der Runge–Kutta method. The obtained numerical results are
compared with whose published ones in some limiting cases.
Then, the influence of the investigated parameters are plotted
and discussed.

2. Mathematical Formulation

2.1. Description of the problem

In the present study, we consider a thin elastic liquid film
of uniform thicknessh(t) lying on the horizontal stretching
sheet as shown in Fig. 1, where the sheet is set in motion
alongx–axis and the stretching occurs by the action of two
equal and opposite forces along this axis. In addition, the
fluid motion within the film is primarily caused solely by this
stretching. Velocity of the sheetU is defined as

U (x, t) =
bx

(1− αt)
, (1)

whereb andα are positive constants with dimension of the
time t. This expression reflects the effective stretching rate
b/(1− αt) increase with time in the rangeα values, where
0 ≤ α < 1. By the same manner, the surface temperature
Ts(x, t) is expressed by

Ts (x, t) = T0 − Tref

[
bx2

2υ

]
(1− αt)−

3
2 , (2)

whereT0 is the temperature at the slit,Tref can be taken as a
constant reference temperature such that0 ≤ Tref ≤ T0 and
υ is the kinematic viscosity. Eq. (2) showed that the sheet
temperature decreases fromT0 and the amount of tempera-
ture reduction along the sheet increases with time. Further,
it is considered that the flow field is exposed to the influence
of an external transverse magnetic field of strengthB0 ex-
pressed by

FIGURE 1. Schematic representation of a liquid film on an elastic
sheet.
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B (x, t) = B0 (1− αt)−
1
2 . (3)

It is also assumed that induced magnetic field, effect of the
surface tension, latent heat due to evaporation, surface waves
and buoyancy are neglected. Furthermore, we considered
that the viscous shear stressτ = µ (∂u/∂y) and the heat
flux q = −k (∂T/∂y) vanish at the adiabatic free surface (at
y = h),

2.2. Governing equation of the investigated model

Regarding the above assumptions, the basic equation describ-
ing the investigated physical model can be written as

∂u

∂x
+

∂v

∂y
= 0, (4)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= υ

∂2u

∂y2
− σB2

ρ
u, (5)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

k

ρcp

∂2T

∂y2

+
µ

ρcp

(
∂u

∂y

)2

+ Q(Ts − T0), (6)

whereu andv are the horizontal and vertical components inx
andy direction, respectively,σ is the electrical conductivity,
ρ is the density,k is the thermal diffusivity,cp is the specific
heat,µ is the dynamic viscosity andQ is the heat source/sink.
In this study, the representative measure of the film thickness
is chosen as(υ/b)1/2 so that the scale ratiox/(υ/b)1/2 À 1.
The associated boundary conditions are given by

u− U = N1L
∂u

∂y
, v = 0, T = Ts at

y = 0, where N1 = N
√

t (7)

∂u

∂y
=

∂T

∂y
= 0 at y = h, (8)

v =
dh

dt
at y = h. (9)

2.3. Similarity transformations

We now introduce dimensionless variablesf and θ and the
similarity variableη as

ψ (x, y, t) =
(

υb

1− αt

) 1
2

x f (η) , (10)

T (x, y, t) = T0 − Tref

(
bx2

2υ

)
(1− αt)−

3
2 θ (η) , (11)

η =
(

b

υ (1− αt)

) 1
2

y. (12)

It should be mentioned here that the physical stream func-
tion ψ (x, y, t) automatically assures mass conversion given

in Eq. (4) and the velocity components are readily obtained
as:

u =
∂ψ

∂y
=

(
bx

1− αt

)
f ′ (η) , (13)

v = −∂ψ

∂x
= −

(
υb

1− αt

) 1
2

f (η) . (14)

Therefore, the mathematical problem defined in Eqs. (4-
8) transforms into the following set of ordinary differential
equations,

f ′′′ +
(

f − Sη

2

)
f ′′ − (Mn + S) f ′ − (f ′)2 = 0, (15)

θ′′ − Pr

[
S

2
(3θ + ηθ′) + (2f ′ − γ)θ

− θ′f + Ecf ′′2
]

= 0, (16)

and their associated boundary conditions become

f ′(0) = 1 + λf ′′(0), f(0) = 0, θ(0) = 1, (17)

f ′′(β) = 0, θ′(β) = 0, (18)

f(β) =
Sβ

2
, (19)

where a prime denotes the derivative with respect toη,
S(= α/b) is the dimensionless measure of the unsteadiness,
Pr(= υ/k) is Prandtl number,Ec(= U2/Cp (Ts − T0))
is Eckert number,Mn(= σB2

0/ρb) is the magnetic param-
eter, λ(= LN

√
tb/ν(1− αt)) is the slip parameter and

γ(= Q/ρcpb) is the dimensionless heat/sink parameter. Fur-
ther, the dimensionless film thicknessβ denotes the value of
the similarity variableη at the free surface so that Eq. (12)
gives

β =
(

b

υ (1− αt)

) 1
2

h. (20)

Thus, it is determined as an integral part of the boundary
value problem. Now, the film thickness rate can be obtained
from Eq. (20) as

dh

dt
= −αβ

2

(
υ

b (1− αt)

) 1
2

. (21)

This means that the kinematic constraint aty = h(t), given
in Eq. (9), transforms into the free surface condition (21).

2.4. Quantities of practical interest

The most important characteristics of flow and heat transfer
are the shear stressτsand the heat fluxqson the stretching
sheet that are defined as

τs = µ

(
∂u

∂y

)

y=0

(22)
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TABLE I. Comparison of values of skin friction coefficientf ′′(0) with Mn = 0.0.

Wang [46] Aziz et al. [26] Present work

S

β
−f ′′(0)

β
β

−f ′′(0)

β
β −f ′′(0)

0.4 5.122490 1.307785 − − 4.981455 1.134098

0.6 3.131250 1.195155 − − 3.131710 1.195128

0.8 2.151990 1.245795 2.151994 1.245794 2.151990 1.245805

1.0 1.543620 1.277762 1.543616 1.277768 1.543617 1.277769

1.2 1.127780 1.279177 1.127780 1.174986 1.127780 1.279171

1.4 0.821032 1.233549 0.821032 1.233549 0.821033 1.233545

1.6 0.576173 1.114937 0.576173 1.114937 0.576176 1.114941

1.8 0.356389 0.867414 0.356389 0.867414 0.356390 0.867416

TABLE II. Comparison of values of surface temperatureθ(1) and wall temperature gradient−θ′(0) with Mn = Ec = γ = 0.0.

Wang [46] Aziz et al. [26] Present work

Pr

θ(1)
−θ′(0)

β
θ(1)

−θ′′(0)

β
θ(1) −θ′(0)

S = 0.8 andβ = 2.15199

0.01 0.960480 0.042042 − − 0.960438 0.042120

0.1 0.692533 0.351378 − − 0.692296 0.351920

1 0.097884 1.670913 0.097956 1.668746 0.097825 1.671919

2 0.024941 2.436884 0.025083 2.357904 0.024869 2.443914

3 0.008785 3.027170 0.008545 2.753984 0.008324 3.034915

S = 1.2 andβ = 1.127780

0.01 0.982331 0.033458 − − 0.982312 0.033515

0.1 0.843622 0.304962 − − 0.843485 0.305409

1 0.286717 1.773032 − − 0.286634 1.773772

2 0.128124 2.638324 − − 0.128174 2.638431

3 0.067658 3.279744 − − 0.067737 3.280329

qs = −k

(
∂T

∂y

)

y=0

(23)

The local skin friction coefficientCf and the local Nus-
selt numberNux for fluid flow in a thin film can be expressed
as

Cf ≡
−2µ

(
∂u
∂y

)
y=0

ρU2
= −2Re

− 1
2

x f ′′ (0) (24)

Nux ≡ − x

Tref

(
∂T

∂y

)

y=0

=
1
2

(1− αt)−1/2
θ′(0)Re3/2

x , (25)

whereRex(= Ux/υ) is the local Reynolds number andTref

denotes the same reference temperature (temperature differ-
ence) as in Eq. (2).

3. Numerical technique

Due to the non–linear form of the resulting momentum and
thermal boundary layer equations (15) and (16) with bound-
ary conditions (17-19) are numerically solved by shoot-
ing technique with fourth order Runge-Kutta method. The
present BVP is equivalent to a system of five first order differ-
ential equations with six boundary conditions, where the cru-
cial part of the numerical solution is to determine the dimen-
sionless film thicknessβ. Eqs. (15) and (16) are integrated by
fourth order Runge-Kutta scheme fromη = 0 to η = β with
f(0) = 0, f ′(0) = 1 and θ(0) = 1 and guessed the trial
values,f ′′(0), θ′(0) and β. However, the numerical solution
thus obtained does not generally satisfy the right–end bound-
ary conditions,f ′′(β) = 0, θ′(0) = 0 and f(β) = Sβ/2.
At this end, Newton–Raphson scheme is employed to correct
the three arbitrary guess values such that the obtained solu-

Rev. Mex. Fis.62 (2016) 576–585



580 B. ALKAHTANI, M. SUBHAS ABEL AND E.H. ALY

TABLE III. Values of surface temperatureθ(1) for various values ofMn, Pr, Ec, γ andS.

θ(1)

Mn Pr Ec γ

S = 0.8 S = 1.2

0.0 1.0 0.02 0.1 0.118639 0.296847

1.0 0.250815 0.413568

2.0 0.358547 0.495749

3.0 0.439666 0.557227

4.0 0.506920 0.604382

5.0 0.564159 0.642261

6.0 0.605107 0.673786

7.0 0.644046 0.699351

8.0 0.676447 0.721720

1.0 0.001 0.02 0.1 0.997829 0.998886

0.01 0.978616 0.988952

0.1 0.814440 0.897785

1.0 0.225360 0.421320

2.0 0.085194 0.228930

5.0 0.009701 0.061819

10.0 −0.000264 0.012560

100.0 −0.001574 −0.000572

1.0 1.0 0.01 0.1 0.226444 0.422094

0.1 0.216691 0.415427

0.2 0.205854 0.407387

0.5 0.173345 0.384166

1.0 0.119162 0.345464

2.0 0.010796 0.268060

3.0 −0.097570 0.190646

4.0 −0.205937 0.113252

5.0 −0.314303 0.035849

1.0 1.0 0.02 −0.5 0.190930 0.366775

−0.2 0.223926 0.393744

−0.1 0.236696 0.403400

0.0 0.250515 0.413420

0.1 0.265505 0.423823

0.2 0.281804 0.434630

0.5 0.340312 0.469708

tion eventually satisfies the required boundary conditions
(18) and (19).

It should be mentioned here that the iterative process is
terminated until the relative difference between the current
and the previous iterative values off(β) matches with the
value ofSβ/2 up to a tolerance of10−6. For further de-
tails on the numerical procedure, the readers are referred to
Refs. [44], [45] and [43].

4. Results and discussion

In the current study, effects of the velocity slip on the vis-
cous dissipation and internal heat generation for MHD flow
and heat transfer in a thin liquid film on an unsteady stretch-
ing sheet has been investigated. Then, appropriate similarity
transformations were adopted to convert the governing partial
differential equations of flow and heat transfer into a system
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FIGURE 2. Velocity profiles for various values of the slip parameter
λ with S = 0.

FIGURE 3. Variation of the film thicknessβ with unsteadiness pa-
rameterS whenMn = 0.

tem of non-linear ordinary differential equations. Shooting
technique with fourth order Runge-Kutta method has been
applied to solve the resultant boundary value problem, where
the solution exists only when0 ≤ S ≤ 2. It should be men-
tioned here that, although the present results are considered
as an extension of those obtained in Ref. [43] by applying
the velocity slip parameterλ, effects of various parameters
influencing the dynamics should be reinvestigated becauseλ
presents in the conditions off -equation 15 which is already
included in theθ-equation 16. These effects are depicted in
Figs. 2 to 13.

On comparing with some published works, Tables I and II
show an excellent agreement between the present results and
those of Wang [46] and Azizet al. [26]. However, it should
be noted that they have used different similarity transforma-
tions due to which the values off ′′(0)/β and−θ′(0)/β in
their papers are the same asf ′′(0) andθ′(0), respectively, of
the present results.

FIGURE 4. Variation of surface temperatureθ(β) with the mag-
netic parameterMn.

FIGURE 5. Variation of surface temperatureθ(β) with Prandtl
numberPr for S = 0.8 (the solid curve) andS = 1.2 (the dotted
curve).

FIGURE 6. Variation of surface temperatureθ(β) with Eckert num-
berEc.
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FIGURE 7. Variation of surface temperatureθ(β) with heat
source/sink parameterQ.

FIGURE 8. Variation of the velocity profilesf ′(η) for different
values of the magnetic parameterMn when (a)S = 0.8 and (b)
S = 1.2.

FIGURE 9. Variation of the temperature distributionθ(η) for dif-
ferent values of Prandtl numberPr when (a)S = 0.8 and (b)
S = 1.2.

Moreover, whenS → 0, the solution approaches to the an-
alytical solution obtained by Crane [7] with infinitely thick
layer of fluid,i.e. (β →∞). In addition,S → 2 represents a
liquid film of infinitesimal thickness(β → 0).

Figure 2 shows the effect of slip parameter, on horizontal
as well as transient velocity profile. It is observed from this
figure that horizontal velocity profilef ′(η) decreases with in-
crease of slip parameterλ, and the opposite trend is noticed
for transient velocity profilef(η). Further, Fig. 3 indicates
the variation of film thicknessβ with the unsteadiness param-
eterS. From this figure, it is noticed thatβ monotonically de-
creases whenS increases, which matches with that reported
by Wang [46] and Abelet al. [43].

The effect of magnetic parameterMn, Prandtl number
Pr, Eckert numberEc and heat source/sink parameterγ on
the surface temperatureθ (β) are illustrated from Figs. 4 to 7,
respectively. Clearly, increasing values of magnetic parame-
terMn causes the surface temperature to blow-up monotoni-
cally. Further, small values of Eckert numberEc almost keep
the surface temperature a constant, but enhance the surface

Rev. Mex. Fis.62 (2016) 576–585
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FIGURE 10. Variation of the temperature distributionθ(η) for
different values of Eckert numberEc when (a)S = 0.8 and (b)
S = 1.2.

temperature for higher values. However, the opposite effect
is exhibited in case ofPr i.e., increasing values ofPr de-
creases the surface temperature. For Prandtl number of order
unity and below the surface temperatureθ(β) attains a finite
value below 1 and the temperature gradients extend all the
way to the free surface. In the limiting casePr → 0, how-
ever, the dimensionless surface temperature tends to unityi.e.
the temperatureT becomes uniform in the vertical direction
and equalsTs. This is consistent with the trivial solu-
tion θ(η) = 1 obtained from the thermal energy Eq. (15)
whenPr = 0. Moreover, at sufficiently high Prandtl number,
i.e. low thermal diffusivity, the surface temperature remained
practically equal to zero. The dimensionless heat/sink pa-
rameter(γ < 0) is to reduce the temperature distribution sig-
nificantly throughout the region as(γ > 0) brings about the
temperature increase throughout the entire region. These ob-
served results hold good for different values of unsteadiness
parameterS.

FIGURE 11. Variation of the temperature distributionθ(η) for dif-
ferent values of the dimensionless heat/sink parameterγ when (a)
S = 0.8 and (b)S = 1.2.

The effect of magnetic parameterMn on the horizon-
tal velocity profiles are depicted in Figs. 8(a) and 8(b) for
S = 0.8 andS = 1.2, respectively. From these plots, one
can make out that the increasing values of magnetic parame-
ter decreases the horizontal velocity. This is expected as the
applied transverse magnetic field produces a drag in the form
of Lorentz force thereby decreasing the velocity magnitude.
Dropping in horizontal velocity is a consequence of increase
in the magnetic field strength as observed forS = 0.8 as well
asS = 1.2.

Figures 9(a) and 9(b) demonstrate the effect of Prandtl
numberPr on temperature profiles for two different values
of unsteadiness parameterS. These plots reveal the fact that
for a particular value ofPr, the temperature increases mono-
tonically from the free surface temperatureTs to wall veloc-
ity T0, which concurs with the results of Andersonet al. [20].
The thermal boundary layer thickness decreases drastically
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FIGURE 12. Temperature gradient−θ′(0) at the sheet as a function
of Prandtl numberPr for S = 0.8 (the solid curve) andS = 1.2
(the dotted curve).

FIGURE 13. Temperature gradient−θ′(0) at the sheet as a function
of Eckert numberEc for S = 0.8 (the solid curve) andS = 1.2
(the dotted curve).

for high values ofPr i.e., low thermal diffusivity. From these
figures, we observe that Prandtl numberPr speeds up the
cooling of the thin film.

The effect of Eckert numberEc on temperature profiles
for two different values of unsteadiness parameterS are pro-
jected in Figs. 10(a) and 10(b). The effect of viscous dissi-
pation is to enhance the temperature in the fluid film.i.e.,
increasing values ofEc contributes in thickening of thermal
boundary layer. For effective cooling of the sheet a fluid of
low viscosity is preferable.

Figures 11(a) and 11(b) present the effect of dimension-
less heat source/sink parameterγ on temperature profile for
different values of unsteadiness parameterS. In addition,
for γ < 0, there is reduction of temperature in the thermal
boundary layer region, where as opposite trend is noticed for
γ > 0.

Table III tabulates the values of surface temperature for
various values ofMn, Pr, Ec and γ. This table reveals
that Mn proportionately increases the surface temperature,
whereasPr andEc decreases the surface temperature.

The dimensionless wall temperature gradient−θ′(0)
takes a higher value at a large Prandtl numberPr. The ef-
fect of−θ′(0) for S = 1.2 only marginally exceeds that for
S = 0.8 whenPr > 1 (see Fig. 12). The dimensionless wall
temperature gradient−θ′(0) takes a uniform value at certain
moderate values of Eckert numberEc, while the effect of
−θ′(0) decreases with increasingEc (see Fig. 13).

5. Conclusions

In the presence of the velocity slip, this analysis provides so-
lutions for unsteady viscous incompressible boundary layer
flow of a fluid film over a heated stretching surface in the
presence of a variable transverse magnetic field including the
viscous dissipation and internal heating effect. The current
results reveal that magnetic field and viscous dissipative ef-
fects play a significant role on controlling the heat transfer
from stretching sheet to the liquid film. The important find-
ings pertaining to the present analysis can be epitomized as
follows:

1. The transverse magnetic field suppress the velocity
field which causes enhancement of the temperature
profiles.

2. The viscous dissipation effect is characterized by Eck-
ert numberEc. Comparing to the results without vis-
cous dissipation, it is seen that the temperature in-
creases, when the fluid is being heated(Ec > 0) but
decrease when the fluid is being cooled(Ec < 0). This
result reveals the effect of viscous dissipation and en-
hances temperature in the thermal boundary layer re-
gion.

3. For a wide range ofPr, the effect of viscous dissipa-
tion was found to increase the dimensionless free sur-
face temperatureθ(1) for the fluid cooling case. The
impact of viscous dissipation onθ(1) diminishes in the
two limiting cases:Pr → 0 andPr → ∞, in such
situationsθ(1) approaches unity and zero respectively.

4. The effect of internal heat source/sink is to generate
temperature for increasing positive values and absorb
temperature for decreasing negative values. However,
negative value of this parameter is better suited for
cooling purpose.
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