Time-resolved microwave conductivity (TRMC) a useful characterization tool for charge carrier transfer in photocatalysis: a short review

C. Colbeau-Justin

Laboratoire de Chimie Physique, CNRS UMR 8000, Univ. Paris-Sud, 91405 Orsay, France

M. A. Valenzuela Lab. Catálisis y Materiales, ESIQIE-Instituto Politécnico Nacional, Zacatenco, 07738, México D.F., México. e-mail: mavalenz@ipn.mx

Received 4 October 2012; accepted 14 January 2013

We provide a brief introduction about photocatalysis and the reaction mechanism for charge-carrier dynamics focusing in the situation and application of Time Resolved Microwave Conductivity (TRMC) as a useful characterization technique of irradiated semiconductors.

Keywords: Semiconductors; microwave conductivity; photocatalysis.

En el presente trabajo de revisión se describen brevemente los fundamentos de fotocatálisis y los mecanismos de reacción en la dinámica de los portadores de carga enfocándose en el estado y aplicaciones de la conductividad de microondas resuelta en el tiempo (TRMC) como una técnica útil de caracterización de semiconductores irradiados.

Descriptores: Semiconductores; conductividad de microondas; fotocatálisis.

PACS: 81.05.Hd; 72.20.Jv; 82.50.Hp

1. Introduction

A new approach to design and control chemical processes at the molecular level has opened new opportunities in the development of new nanocatalysts [1-3], fuel and solar cells [4-6], nanocomposites with special optical, electrical, magnetic and mechanical properties [7-9] and nanoporous materials [10-12], among others. This development has given rise to a new interaction between engineering and molecular sciences trying to understand the relationship between molecular structure and properties [13,14]. The use of novel synthesis methods (*e.g.* physico-chemical methods with the bottomup approach) as well as the application of conventional and sophisticated characterization techniques for the bulk and the surface of solids has been very useful in order to get new nanomaterials with specific applications [15-17].

As it is well known, chemical process design is based in the concept of unit operations, which have been well described by the fundamentals of transport phenomena [14,18]. Consequently, there are three basic transfer process (i.e. momentum, heat and mass transfer) that can be used to explain all unit operations required by the conventional chemical industry [18]. However, as mentioned above, for the new and flourishing processes and products industry involving nanostructure compounds, another fundamental transfer process has completed the crossword which is called charge-carrier transfer [19]. Obviously, this concept has been largely used in the fields of electrochemistry, electrostatics and electronics. Nevertheless, thinking in the solution of many problems for new advanced technologies at the molecular level, it is strongly necessary to consider the charge-carrier transfer processes [20].

In particular, catalytic and photocatalytic systems include

a complex reaction mechanism involving physical (*e.g.* mass transfer, adsorption, etc;), chemical (*e.g.* surface reaction, poisoning, etc.) but also charge-carrier generation and transport, with or without light irradiation, which must be understood as a whole process with the possibility to determine the controlling step [21]. The starting points to understand the fundamentals of charge-carrier transfer are the band models and transport processes which from a theoretical point of view have been already well established and are out of the scope of this review article [22]. However, it is worth noting

FIGURE 1. Schematic representation of photophysical and photochemical processes over a photon activated semiconductor particle. (p) photogeneration of charge-carriers; (q) surface recombination; (r) recombination in the bulk; (s) diffusion of acceptor and reduction on the surface of the SC; (t) oxidation of donor on the surface of the SC. Adapted with permission from Ref. 24. Copyright 2008 Elsevier.

FIGURE 2. Statistics of TRMC data: (a) comparison between papers published in TRMC with those in TRMC/photocatalysis; (b) main disciplines of study of TRMC. Source: Scopus 2011.

that in the electric conduction in solids or charge-carrier transfer, the number of carriers is linked to the generation processes, while the mobility is related to the transport processes. In a photocatalytic reaction, charge-carriers are generated upon light irradiation of a semiconductor, then, can get trapped or recombined or they can take part in several redox reactions, as shown in Fig. 1 [23,24]. These are ultra fast processes occurring on the femto, pico and nano time scales, which are currently studied by time-resolved techniques such as absorption spectroscopy, diffuse reflectance, electron spin resonance, microwave conductivity, among others [25-27].

According to the IUPAC definition, Time Resolved Microwave Conductivity (TRMC) is a technique allowing the quantitative and qualitative detection of radiation-induced charge separation by time-resolved measurement of the changes in microwave absorption resulting from the production and decay of charged and dipolar molecular entities [27]. This is a contactless and noninvasive in situ characterization technique for semiconductors and semiconductors devices that offers the possibility to obtain information on chargecarrier transfer [28-48]. TRMC has been used since the 70's mainly in the characterization of semiconductors with applications in optoelectronics. Charge-carrier recombination dynamics, effective mobility of the carriers formed, carrier lifetimes and trapping, among other information is obtained for the application of this technique [28-48]. In spite of the high amount of published works in fundamental or applied photocatalysis aspects, around 1500 articles per year, a few amounts of works devoted to the characterization of chargecarrier kinetics in semiconductors useful in photocatalysis have been reported, as shown in Fig. 2a. Note in Fig. 2b that most papers have been oriented to the fields of material science, chemistry and physics.

The present work is divided in two parts; firstly, an overview of photocatalysis emphasizing the importance of charge carrier transfer in the reaction mechanism is presented. Thereafter, the fundamentals and equipment of TRMC are described and finally a representative study cases using TRMC linked with semiconductors used in photocatalysis are discussed.

2. Photocatalysis: a brief overview

Semiconductor photocatalysis has been studied extensively since the decade of 70's focusing in the degradation of a great number of pollutants [49,50], water splitting/CO₂ reduction [51,52], and organic syntheses [53,54]. However, a wide range of opportunity for topics in research and development are now being studied mainly with the use of titanium dioxide in all its modalities [50]. For example, a detailed list of areas of application of photocatalysis and its specific topics which are now in research and development steps have recently reported [55]. Note that the photocatalytic degradation of pollutants and the solar energy conversion are both of the major relevance, however, the development of new photocatalytic materials and coatings are impacting as a new flourishing construction industry [55].

Although TiO_2 has been the most used semiconductor due to its inherent photoactivity, photochemical stability, nontoxicity and cost-effective material, it has a serious disadvantage in comparison with other semiconductors that are activated with visible light. A heterogeneous photocatalytic reaction involves the combination of photochemistry and catalysis, meaning that both light and semiconductor material are inevitable to enhance the rate of kinetically slow reactions. For instance, semiconductors used for the photocatalytic degradation of organic molecules are usually metal oxides or metal sulfides that carry out a complete mineralization process:

Organic Pollutant+O₂ $\xrightarrow{h\nu \ge E_g}$ mineralized products (1)

This process takes into account the oxidation and reduction potentials as well as the energy of the band gap of the

FIGURE 3. Valence and conduction band positions of semiconductors at pH=0. Adapted with permission from Ref. 58. Copyright 2004 American Chemical Society.

semiconductor. The photogenerated valence band holes (h_{vb}^+) are useful to create hydroxyl radicals (OH•) and conduction band electrons (e_{cb}^-) to reduce molecular oxygen to superoxide. The energy of the band gap (E_g) is the energy of light needed to excite an electron to the conduction band and is usually measured in the order of few electron-volts. Figure 4 depicts the valence and conduction band position of some se-

lected semiconductors as well as the relevant redox couples. Note that the position of valence and conduction bands of a semiconductor determines the reaction pathway. For instance, the photo-oxidation and photoreduction of water is possible thermodynamically with CdS (E_g = 2.4 eV), however, if we use Fe₂O₃ with an E_g =2.3 eV, it is only possible to carry out the photo-oxidation reaction. It is worth noting that oxidation and reduction must occur simultaneously due to different couples that can be present and should maintain a photocatalytic cycle. Organic compounds and water are two potential reductants, while oxygen and metal ion are two potential oxidants in photocatalytic process [56]. Some illustrative examples of redox reactions taking place during a true photocatalytic reaction can be found in Ref. 57.

Considering a photocatalytic reaction taking place in aqueous solution, three processes are involved in the system: mass transfer, adsorption/interfacial reactions and ultrafast processes inside the illuminated semiconductor, Fig 4. Indeed, a unified quantitative model for a specific photocatalytic reaction must include all competitive processes that occur from femto- to milliseconds. Focusing in the process oc-

FIGURE 4. Elementary reactions in TiO₂ photocatalysis with corresponding timescales. Adapted with permission from Ref. 23. Copyright 2010 Elsevier.

curring inside the particle (*i.e.* charge-carriers generation, trapping and recombination steps), these reactions take place in the range of femto- to microseconds giving rise to a valuable trapping electrons and holes for the interfacial reactions and of course for the undesirable recombination reaction. This part of the whole process is very useful for the interpretation and understanding of mechanisms in photocatalysis. On the other hand, to build a comprehensive kinetic model (usually the classical Langmuir-Hinshelwood) a deep knowledge of the charge-carriers generation and transport would help to clarify the relationship between the photodegradation rate and the illumination intensity [60]. Several techniques have been used to study the ultrafast processes in illuminated semiconductors and a summary of the most important results is reported in Ref. 23.

Although many efforts have been devoted to study the charge transfer mechanisms in traditional photocatalysts (*e.g.* TiO_2 anatase or rutile phases), it is still difficult to discuss a more sophisticated photocatalytic systems made of thin films of nanotubes or nanowires that exhibit peculiar optical and electronic properties [22]. Therefore, the employment of TRMC method together with other macroscopic techniques and the corresponding kinetic studies using advanced photocatalytic materials irradiated with visible light, offer the possibility for developing promising pollution remediation technologies.

3. Time-Resolved Microwave Conductivity (TRMC)

3.1. Fundamentals

The TRMC [59-61] method is based on the measurement of the change of the microwave power reflected by a sample induced by laser pulsed illumination of this sample. The relative change, $(\Delta P(t)/P)$ of the reflected microwave power is caused by a variation $\Delta \sigma(t)$ of the sample conductivity induced by the laser. For small perturbations of conductivity, a proportionality between $\Delta P(t)/P$ and $\Delta \sigma(t)$ has been established:

$$\frac{\Delta P(t)}{P} = A\Delta\sigma(t) = Ae\sum_{i}\Delta n_{i}(t)\mu_{i}$$
(2)

 $\Delta n_i(t)$ is the number of excess charge-carriers *i* at time *t*, μ_i is the mobility of charge-carrier *i*. The sensitivity factor *A* is independent of time, but dependent on the microwave frequency and on the conductivity of sample.

For the present work, the Eq. (2) can be reduced to mobile electrons in the conduction band and holes in the valence band. Trapped species can be neglected because of their small mobility.

$$\frac{\Delta P(t)}{P} = A\Delta\sigma(t) = Ae\left(\Delta n(t)\mu_n + \Delta p(t)\mu_h\right) \quad (3)$$

 $\Delta n(t)$ is the number of excess electrons, μ_n is the mobility of electrons, $\Delta p(t)$ and μ_h are the corresponding properties of

holes. The TRMC signal $(\Delta P(t)/P \text{ or } I(t))$ obtained by this technique is called (microwave) photoconductivity, it allows to follow directly, on the 10^{-9} - 10^{-3} s time scale, the decay of the number of electrons and of the holes after the laser pulse by recombination or trapping of the charge-carriers.

3.2. Equipment

The principle of the measurements is to place the powder sample inside a wave-guide, to proceed to its illumination by a UV pulsed laser, and then to follow the temporal evolution of microwave power reflected by the sample. The incident microwaves are generated by a Gunn diode in the Ka band (28-38 GHz). The experiments are frequently carried out at 31.4 GHz. The reflected microwaves are detected by a Schottky diode. The signal is amplified and displayed on a digitizer [33]

Pulsed light source is a Nd:YAG laser giving an IR radiation at $\lambda = 1064$ nm with a 10 Hz frequency. Full width at half-maximum of one pulse is 10 ns. UV light is obtained by tripling (355 nm) or quadrupling (266 nm) the IR radiation. The maximum light energy density received by the sample is 1.3 mJ/cm^2 for both wavelengths.

3.3. Study cases

In order to get a better understanding of the correlation between structural, textural and electronic properties of TiO_2 powders and their photocatalytic activities, the photocatalysis mechanism must be considered separately in two linked parts (photo and catalysis). The first part (photo part) concerns phenomena linked to light-materials interaction which includes photons absorption, charge-carrier creation and dynamics, and also surface trapping. The second part (catalysis part), concerns phenomena linked to surface radicals formation and surface reactivity *i.e.* the interaction between H₂O, O₂, organic pollutant and the oxide surface.

For the photo part, the most effective structural parameter on photocatalysis is the crystalline quality [36]. Actually, the oxidant radicals, which are the active species in photocatalysis are formed when the charge-carriers created by absorbed UV-photons are trapped in the surface. Thus, recombination and bulk trapping phenomena that decrease chargecarrier lifetimes and prevent their arrival to the surface, penalize the formation of the oxidant radical. Yet, recombination and bulk trapping are promoted by defects, doping elements, and impurities or amorphous domains. Consequently, to enhance the charge-carrier lifetimes, the crystalline quality should be as high as possible. Thus, for titania, the TRMC measurements can be considered as indicator of the level of crystalline quality. High values of I_{max} and slow decay indicate an important amount of charge-carriers created with long lifetimes, and reveal a high crystalline quality.

For the catalysis part, the specific surface area is the most effective structural parameter. Indeed, photocatalysis is an interfacial reaction. Thus, higher specific surface area induces

Photocatalyst	Type of study	Comments	Year [Ref
$MoSe_2, MoS_2$	Effect of Pt and halogens	$Pt/MoSe_2$ and halogens/ MoS_2	1990 [28
and platinized or	on the dynamics of	dramatically shorten the lifetimes	
halogenated samples	excess charge carriers	of excess charge carriers	
Al ₂ O ₃ , MgO, TiO ₂	Mobility evaluation	Influence of Pt	1991 [29
powders	and charge-carrier	covering, isopropanol	
	dynamics obtained by	and Cr ³⁺	
	electronic irradiation.	doping	
TiO_2	Full understanding of the bulk	Charge recombination is	1991 [30
(Degussa P25)	and surface electronic	retarded in presence	
	processes taking place in	of isopropanol due to	
	suspensions of TiO ₂	surface hole scavenging	
TiO ₂ (Degussa P25),	Charge carrier recombination	TRMC conductivity signals were	1994 [31
Q-TiO2,Fe3+-doped	dynamics and photo-oxidation	assigned to electrons remaining in	
Q-TiO ₂	of chloroform	the semiconductor lattice after hole	
		transfer. The electron-transfer rates	
		were consistent with the	
		photoreactivity results	
TiO ₂ (Degussa P25),	Effect of adsorbates	Charge carrier dynamics results	1994 [32
Q-TiO ₂	(inorganic, organic) and light	showed a different photoelectro-	
	intensity on charge-carrier	chemical mechanisms of TiO ₂	
	dynamics	and Q-TiO ₂	
Nanocrystalline	Influence of chemical	An increase in the photogenerated	2003 [33
porous	treatments on the	charge carrier concentration as well	
TiO ₂ films	photoinduced charge	as a decrease in the recombination	
	carrier kinetics	process was detected by the	
		chemical treatments with Ti	
		isopropoxide or $TiCl_4$	
TiO_2	Effect of doping and	Doping favored charge carrier	2003 [34
(rutile doped	thermal treatments on	recombination. Thermal treatments	
with Cr and Nb	charge-carrier	of anatase at high temperatures	
and anatase)	lifetimes	increased the lifetimes	
TiO ₂ prepared	Effect of the preparation	TiO ₂ aerogels treated at high	2004 [35
by sol-gel (xero	method on opto-electronic and	temperatures showed the highest	
and aero gels)	photocatalytic properties	lifetimes and photocatalytic	
		conversion of phenol	
Nanocrystalline	Effect of the preparation	The highest lifetime and	2004 [36
TiO ₂ prepared	method on opto-electronic and	photocatalytic conversion of phenol	
y hydrothermal method	photocatalytic properties	was found with sample containing 15% rutile +85% anatase	
TiO ₂	Determination of trap density	The mobility of electrons	2004 [37
and dve-sensitized	decay kinetics and charge	within the TiO_2 matrix are	2004 [37
nanocrystalline TiO ₂	separation efficiency under	independent of dye addition	
<u>-</u> <u>-</u>	UV and Vis light	····	

TABLE I. (Cont.)

Photocatalyst	Type of study	Observations	Year [Ref.]
TiO_2 , porphyrin- TiO_2 ,	Determination of the number	The presence of macrocycles	2005 [38]
Cu-porphyrin- TiO ₂	and lifetimes of the	increases the number and lifetime	
	photoinduced excess	of the charge carriers which	
	charge carriers	correlates with the	
		photocatalytic activity	
Commercial TiO ₂	Study of charge-carrier	With Pt samples; at short times	2006 [39]
(Degussa P25,	dynamics related with	fewer charge carriers are formed	
Sachtleben UV100,	photocatalytic activity	which recombine faster; at long	
Millennium PC50) and		times, platinization had different	
platinized forms		effects depending the type of TiO_2	
Dye-sensitized	Effect of the particle	Dye adsorbed on 20 nm TiO ₂ had	2007 [40]
nanocrystalline TiO ₂	size on the electron	100% injection efficiency,	
	injection efficiency	attributed to an increase in electron	
		mobility (by occupation of traps)	
TiO ₂ P25 powder	Effect of surface treatments	Surface treatment by adsorption	2007 [41]
and films	on opto-electronic properties	of oxalic acid increases the decay.	
		TiO ₂ powders and films presented	
		the same behaviour	
TiO ₂ (P25 and sol-gel)	Effect of type of TiO_2 and Pt	Under UV irradiation platinum acts	2008 [42]
modified with Pt ions	precursor on optoelectronic and	as a charge scavenger hindering	
and Pt clusters	photocatalytic properties	charge recombination.	
CdS-coated mesoporous	Photoinduced charge	There was no injection of electrons	2008 [43]
TiO ₂ and ZrO ₂	injection from CdS to TiO ₂	from CdS to ZrO ₂ . The quantum	
	and ZrO_2	yield for electron injection in	
		TiO ₂ was close to unity	
TiO ₂ Hombikat	Effect of Au deposition	High electron affinity of	2009 [44]
UV100, Au/TiO ₂	on the opto-electronic	Au lowers the lifetime	
	properties of TiO ₂	of mobile electrons	
nanocrystalline TiO ₂	Quantitative study of solvent	Acetonitrile had the highest	2009 [45]
films sensitized with	effect on electron	efficiency. Results were explained	
black dyes	injection efficiency	in terms of interactions between the	
		black dye and the –CN	
		groups of the solvent	
TiO ₂ Hombikat	Determination	Samples with particle sizes	2010 [46]
UV100 calcined from	of opto-electronic	up to an average of 15 nm contain a	
200 to 800°C	properties	large concentration of trapping sites	
TiO ₂ Hombikat	Determination of opto-	Gold does not	2011 [47]
UV100, Au/TiO ₂	electronic properties at	induce visible light	
	300 and 530 nm	activity of anatase	
TiO ₂ Millennium	Study of charge-carrier	Pd does not induce visible	2012 [48]
PC series modified with	dynamics related with	light activity, but increases	
Pd nanoparticles	photocatalytic activity	UV light activity	

=

FIGURE 5. (a) TRMC signals on TiO₂ powders - (b) Evolution of percentage of photodegradated phenol in time. Adapted with permission from Ref. 35. Copyright 2004 Elsevier.

higher number of accessible active sites and consequently better reactivity. Some works have used the TRMC method to understand the relation between synthesis conditions, structural and microstructural parameters, and photoactivity. Table I shows several studies reported from 1990 to 2012 where charge-carrier dynamics related with photocatalytic activity were followed by TRMC. Indeed, most studies are devoted to titania (mainly, Evonik, ex-Degussa P25) but also advanced TiO₂ nanostructures modified by small amount of metal and composite semiconductors are included.

TRMC preliminary studies were focused to understand the charge transfer kinetics in terms of charge-carrier generation, charge-carrier trapping, charge carrier recombination, and electron and hole transfer. Moreover, recent studies are aimed to know the relationship between the transfer and separation of the charge carriers on the enhancement of the photocatalytic efficiency. The effect of preparation method of the semiconductor, the addition of noble metals and the study of plasmonic structures as well as graphene semiconductor interaction are important ways to enhance the charge separation and to suppress the recombination.

The next section will be devoted to discuss our work in the synthesis of TiO_2 , the characterization by TRMC and its correlation with photocatalytic activity.

3.4. Supercritical drying [35]

Various TiO_2 powders have been synthesized by sol-gel method followed by drying in supercritical CO₂ (areogels).

The properties of these powders were compared to those of other powders elaborated by classical sol-gel method (xero-gels). Comparatively to the other synthesis parameters (sol-gel parameters, thermal treatment...), the drying procedure seems to be the most influential on the final properties of TiO_2 powders. Both, structural and photocatalytic properties are dramatically modified by the drying method.

Thus, the crystallite diameter of xerogels is perceptibly higher than that of aerogels, and the corresponding specific

FIGURE 6. Degree of degraded phenol after 90 min illumination. Adapted with permission from Ref. 36. Copyright 2004 Elsevier.

TABLE 11. Phase composition and surface area of utania synthesized by hydrothermal method. Adapted from Ref. 56.						
Reference	Precursor, T, t	Phase composition of synthesized samples	BET m ² /g (\pm 5%)			
S1	TiOSO ₄ 250°C, 6 h	Anatase 100%	79			
S2	TiOSO ₄ ,250°C, 10 min	Anatase 100%	43			
S 3	$TiOSO_4,250^\circ C$, 6 h	Anatase-85% Rutile-15%	78			
C1	$H_2 TiO(C_2 O_4)_2$, 250°C, 6 h	Anatase 100%	25			
C2	H ₂ TiO(C ₂ O ₄) ₂ , 250°C, 10 min	Anatase-95% Rutile-5%	43			
С3	$H_2TiO(C_2O_4)_2$, 150°C, 6 h	Rutile 100%	79			
N1	$TiO(NO_3)_2, 250^{\circ}C, 6 h$	Rutile-95% Anatase-5%	22			

TABLE II. Phase composition and surface area of titania synthesized by hydrothermal method. Adapted from Ref. 36

surface areas are very low. The catalysis aspect is therefore, clearly promoted by supercritical drying. Nevertheless, the TRMC results show that the electronic properties depend on the nature of the gel. The photo aspect may be promoted or slightly damaged by supercritical drying.

In the case of a nitric acid based gel (N-series), the surface areas of the aerogel (NA550) and xerogel (NX550) are, respectively, 63 m²/g and 3 m²/g. Figure 5a shows that NA550 presents a higher and slower TRMC signal compared to NX550 which evidences more charge-carriers with longer lifetimes in the aerogel. The supercritical drying clearly promotes both, photo and catalysis parts, explaining the important difference in the phenol photodegradation observed on Fig. 5b As can be seen, 8.7 and 92.2%, of degradation after 75 min of illumination was obtained for NX550 and NA550. In the case of a hydrochloric acid based gel (C-series), the TRMC shows a weak decrease of the electronic properties which is not enough to go against the improvement of photocatalytic properties by supercritical drying.

3.5. Hydrothermal synthesis [36]

Nanocrystalline titania has been prepared by hydrothermal treatment of aqueous $TiOSO_4$, $H_2TiO(C_2O_4)_2$, and

FIGURE 7. TRMC signals on TiO_2 powders. Adapted with permission from Ref. 36. Copyright 2004 Elsevier.

 $TiO(NO_3)_2$ solutions. The photoactivity of the obtained powders has been evaluated on phenol photodegradation (Fig. 6) and interpreted in terms of structural (Table II) and electronic properties using TRMC (Fig. 7).

S1, S2 and C1 are pure anatase samples. Concerning the photo part, the TRMC evidences three parallel decays with different intensities. C1 shows the best crystalline quality, then S2 and follows S1. Concerning the catalysis part, the opposite order is observed, S1 shows the best surface area, then S2 and follows C1. The photocatalytic activity is the result of these two combined parameters. S2 presents the best "average" crystalline quality and specific surface, its activity is higher than those of S1 and C1.

N1 and C3 are mostly rutile samples. In this case, the specific surface does not play any role. The photo part is the dominant effect. The rutile crystal structure implies a lower mobility of charge-carriers than in anatase structure. This explains the TRMC measurements showing that the charge-carriers recombine during the pulse and are not available for photocatalysis. The low value of activity observed with N1 sample is due to the small amount of anatase phase.

C2 and S3 samples mostly contain anatase but have an admixture of rutile (95/5 and 85/15 % anatase/rutile respectively). As explained above, rutile itself is a low-active phase. However, commercial TiO₂ P25 (Evonik), considered as one of the best photocatalyst, is also a mixture (75% anatase - 25% rutile) and good interparticle contacts are formed between anatase and rutile particles in water. The junction created by the two semiconductors helps the charge-carrier separation. It means that the carriers created in the rutile part do not rise up photoactivity like in the pure phase. The rutile phase of P25 plays only the role of charge separator and provides sites for oxidation. As described above, this separation of charge-carriers could take place for C2 and mainly for S3 samples.

The synthesized C2 powder morphology is constituted of not hard-grained aggregates containing separated rutile and anatase nanoparticles. Probably, this kind of aggregation does not allow creating the charge-carriers separation in C2 like in the case of P25. In addition, C2 contain only \sim 5% of rutile. This fact is confirmed by TRMC experiment. The number of charge-carriers created is not very large compared to pure anatase samples; the effect of the rutile phase is measured on the decay but may not be really influent because recombination phenomena during the pulse are still observed. Furthermore, its specific surface is average (43 m²/g). The activity of C2 is lower than that of C1, S2 or S1.

In the case of S3 (15% rutile), this sample consists of hard-grained aggregates of separated rutile and anatase nanoparticles. It supposes that in S3 sample good contacts are formed between anatase and rutile particles similarly to P25. This is confirmed by TRMC experiment. The number of charge-carriers created is not very high but the effect of rutile phase on the decay is quite essential. The created charge carriers have a long lifetime. Almost no recombination during the pulse is observed. Taking into account the high specific surface area of this sample (78 m²/g), it is believable that S3 is the best photocatalyst among the samples obtained by hydrothermal method.

4. Conclusions

Semiconductor photocatalysis has been exhaustively studied in the last three decades for many applications. Currently, there are already successful commercial applications in the field of environment and energy. However, hot topics such as water splitting and CO_2 photoconversion (artificial photosynthesis) remain elusive despite numerous research works. In general, efficiency improvements for the photocatalytic reactions are highly expected by the use of new advanced nanostructured materials able to work with visible light.

This review has highlighted the importance of chargecarrier transfer process in a photocatalytic reaction and the relevance to the global efficiency. Specially, charge-carrier generation, trapping and recombination, ultrafast processes that occur at very short times (femto-nano seconds) after irradiation of semiconductors, have a marked influence on the photocatalytic efficiency. TRMC studies reported here have focused on studying the charge transfer kinetics on photocatalytic reactions using TiO₂ and other semiconductors as a tool to understand how it could be increased efficiency.

Acknowledgments

The present research was supported by CONACYT – Project No. 153356 and SIP-IPN No. 20123458. MAV grate-fully thanks for the warm hospitality extended to him at the Laboratoire de Chimie Physique of the Université Paris-Sud, France.

- 1. A. Z. Moshfegh, J. Phys. D: Appl. Phys. 42 (2009) 233001.
- 2. B. Roldan Cuenya, Thin Solid Films 518 (2010) 3127.
- 3. S. B. Kalidindi and B. R. Jagirdar, ChemSusChem. 5 (2012) 65.
- 4. F. Jaouen et al., Ener. Environ. Sci. 4 (2011) 114.
- 5. J. Yum, P. Chen, M. Grätzel, and M.K.Nazeeruddin, *Chem. Sus. Chem.* **1** (2008) 699.
- B. D. Alexander, P. J. Kulesza, I. Rutkowska, R. Solarska, and J. Augustynski, *J. Mater. Chem.* 18 (2008) 2298.
- 7. R. Pfaendner, Polymer Degrad.Stab. 95 (2010) 369.
- 8. C. Sanchez, B. Leveau, F. Chaput, and J. P. Boilot, *Adv.Mater*. **15** (2003) 1969.
- 9. M. Orilall, M. Christopher, and W. Ulrich, *Chem.Soc.Rev.* 40 (2011) 520.
- G. A. Tompsett, W. C. Conner, and K. S. Yngvesson, *Chem. Phys. Chem* 7 (2006) 296.
- J. Jianwen, B. Ravichandar and H. Zhongqiao, *Chem. Soc. Rev* 40 (2011) 3599.
- S. Polarz and B. Smarsly, J.Nanoscience Nanotech. 2 (2002) 581.
- H. M. Chawla, *Introduction to Molecular Engineering* (CRC Press; Boca Raton, FL, 2007).
- 14. E. L. Cussler and G. D. Moggridge, *Chemical Product Design* (Cambridge University Press: Cambridge, U.K. 2001).
- 15. X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, *Annu. Rev. Phys. Chem.* **60** (2009) 167.

- 16. K. Maeda et al., Chem. Eur. J. 16 (2010) 7750.
- 17. W. Abidi and H. Remita, *Recent Patents on Engineering* **4** (2010) 170.
- R. B. Byrd, W. Stewart, and W. E. Lightfoot, *Transport Phenomena* (Wiley: New York 2002).
- 19. V. Balzani, *Electron Transfer in Chemistry*, (ed.) Wiley-VCH: Weinheim, (2001).
- 20. D. M. Adams et al., J. Phys. Chem. B, 107 (2003) 6668.
- 21. B. Ohtani, J. Photochem.Photobiol.C: Photochem. Rev. 11 (2010) 157.
- 22. J. Tyczkowski, *Ind.Eng.Chem.Res.* **49** (2010) 9565 and references therein.
- 23. D. Friedmann, C. Mendive, and D. Bahnemann, *Appl.Catal. B* :*Env.* **99** (2010) 398.
- 24. U. I. Gaya, and A. H. Abdullah, J.Photochem.Photobiol. C:Photochem.Rev. 9 (2008) 1.
- 25. G. Rothenberger, J. Moser, M. Graetzel, N. Serpone, and D. K. Sharma, *J.Am. Chem.Soc.* **107** (1985) 8054.
- D. W. Bahnemann, M. Hilgendorff, and R. Memming, J.Phys.Chem.B 101 (1997) 4265.
- 27. IUPAC Compendium of Chemical Terminology 68 (1997) 2280.
- K. M. Schindler, M. Bikholz, and M. Kunst, *Chem.Phys.Lett.* 173 (1990) 513.
- 29. J. M. Warman et al., Int. J. Rad. Appl. Instr. C. 37 (1991) 433.
- J.M. Warman, M. P. de Haas, P. Pichat, and N. Serpone, *J.Phys.Chem.* 95 (1991) 8858.

- S. T. Martin, H. Herrmann, W. Choi, and M. Hoffmann, J.Chem.Soc.Faraday.Trans. 90 (1994) 3315.
- 32. S. T. Martin, H. Herrmann, and M. Hoffmann, *J.Chem.Soc.Faraday.Trans.* **90** (1994) 3323.
- C. Colbeau-Justin, M. Kunst, and D. Huguenin, J. Mater. Sci. 38 (2003) 2429.
- 34. Y. Lin, X. R. Xiao, W. Y. Li, W.B. Wang, X. P. Li, and J. Y. Cheng, J.Photochem.Photobiol. A : Chem. 159 (2003) 41.
- S. Boujday, F. Wünsch, P. Portes, J. F.Bocket, and C. Colbeau-Justin, Sol. Ener. Mater.Sol.Cells 83 (2004) 421.
- Y. V. Kolenko, B. R. Churagulov, M. Kunst, L. Mazerolles, and C. Colbeau-Justin, *Appl. Catal. B :Env.* 54 (2004) 51.
- J.E. Kroeze, T.J. Savenije, and J.M. Warman, *J.Am.Chem.Soc.* 126 (2004) 7608.
- 38. G. Mele et al., J. Phys. Chem. B, 109 (2005) 12347.
- C. A. Emilio, M.I. Litter, M. Kunst, M. Bouchard, C. Colbeau-Justin, *Langmuir*, 22 (2006) 3606.
- 40. R. Katoh, A. Huijser, K. Hara, T. M. Savenije, and L. D. A. Siebbeles, *J.Phys.Chem. C* **111** (2007) 10741.
- 41. M. Kunst, F. Goubard, C. Colbeau-Justin, and F. Wünsch, *Mater.Sci.Eng.C* 27 (2007) 1061.
- 42. E. Kowalska, H. Remita, C. Colbeau-Justin, J. Hupka, and J. Belloni, *J.Phys.Chem. B.* **112** (2008) 1124.
- 43. J. Piris et al., J. Phys. Chem. C 112 (2008) 7742.
- 44. R. Katoh, M. Kasuya, A. Furube, N. Fuke, N. Koide, and L. Han, *Sol. Ener. Mater.Sol.Cells*, **93** (2009) 698.
- 45. J.T. Carneiro, T.J. Savenije, J.A. Moulijn, and G. Mul, *J.Phys.Chem. C* **114** (2010) 327.
- 46. R. Katoh, A. Furube, K.I. Yamanaka, and T. Morikawa, *Phys.Chem.Lett.* 1 (2010) 3261.

- 47. J.T. Carneiro, T.J. Savenije, J.A. Moulijn, and G. Mul, *J.Photochem.Photobiol. A: Chem.* **217** (2011) 326.
- 48. O. Tahiri Alaoui et al., J. Photochem. Photobiol. A: Chem 242 (2012) 34
- D.M. Blake, Bibliography of Work on the Heterogeneous Photocatalytic Removal of Hazardous Compounds from Water and Air, Update Number 3 to January 1999, National Renewable Energy Laboratory, USA.
- O. Carp, C. L. Huisman, and A. Reller, *Prog. Solid State Chem.* 32 (2004) 33.
- X. Chen, S. Shen, L. Guo, and S. S. Mao, *Chem. Rev.* 110 (2010)6503.
- 52. A. Mills, and M.A. Valenzuela, Rev. Mex. Fis. 50 (2004) 287.
- M.A. Valenzuela, E. Albiter, O.Rios-Berny, I.Cordova, and S.O.Flores, J.Adv.Oxid.Tech. 13 (2010) 321.
- Y. Shiraishi, and T. Hirai, J.Photochem.Photobiol.C:Rev. 9 (2008) 157.
- 55. W. Choi, Catal. Surv. Asia 10 (2006) 16.
- 56. D. Chen, M. Shivakumar, and A.K. Ray, *Dev. Chem. Mineral Process.* **8** (2000) 505.
- 57. M. I. Litter, Appl. Catal. B: Env. 23 (1999) 89.
- 58. T.L. Villarreal, R. Gomez, M. Gonzalez, and P. Salvador, *J. Phys. Chem. B* **108** (2004) 20278.
- 59. M. Kunst and G. Beck, J. Appl. Phys. 60 (1986) 3558.
- 60. M. Kunst and G. Beck, J. Appl. Phys. 63 (1988) 1093.
- J. M. Warman and M. P. De Haas, *in Pulse Radiolysis* (Chapter 6, CRC Press 1991) p. 101.