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Scale-free growing networks and gravity
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We propose a possible relation between complex networks and gravity. Our guide in our proposal is the power-law distribution of the node
degree in network theory and the information approach to gravity. The established bridge may allow us to carry geometric mathematical
structures, which are considered in gravitational theories, to probabilistic aspects studied in the framework of complex networks andvice
versa.
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1. Introduction

Random networks with complex topology describe a wide
range of systems in Nature [1-2]. Recent advances in this
scenario show that most large networks can be described by
mean-field method applied to a system with scale-free fea-
tures. In fact, it is found that in the case of scale-free random
networks, the observed power-law degree distribution is

P (k) ∼ 1
kγ

, (1)

whereP (k) is the probability that a vertex in the network is
connected tok other vertices andγ is a numerical parame-
ter called connectivity distribution exponent. In fact,γ is a
scale-free parameter in the sense that it does not dependent
on a characteristic scale of the network.

Our main goal in this article is to see whether expres-
sion (1) can be related to gravitational arena. If this is the
case then we may argue that we have found a link between
complex networks and gravity. Of course, the idea to see
gravity as a some kind of network system is in fact no new,
since goes back to the work of Penrose [3] (see also Refs. 4
to 9). In this case the concept of spin networks describes a
combinatorial picture of the geometry of space-time. How-
ever most efforts in this direction is concentrated in the idea
to see gravity as spin network. Here, we shall show that it is
not necessary to introduce the spin concept to establish such
a link. We will do this by taking recourse of the connection
proposed in Ref. 10 between gravity and information theory.

2. Complex networks

Random networks with complex topology [1-2] is based in
two principles:

(1) Growth: starting with small number of verticesv0, at
every time stept one adds a new vertex withe (< v0)
edges (that will be connected to the the vertices already
present in the system).

(2) Preferential attachment: When choosing the vertices
to which the new vertex connects, one assumes that the
probabilityΠ(ki) that a new vertex will be connected
to vertexi depends on the connectivity (node degree)
ki of that vertex. Specifically, one has

Π(ki) =
ki

v0+t−1∑
j=1

kj

. (2)

Observe that the sum in (2) goes over all vertices in the sys-
tem except the newly introduced one.

Assuming thatki is continuous parameter one can write

∂ki

∂t
= eΠ(ki). (3)

Thus, considering (2) we have

∂ki

∂t
=

eki

v0+t−1∑
j=1

kj

. (4)

Since
v0+t−1∑

j=1

kj = 2et, (5)

we get formula
∂ki

∂t
=

ki

2t
, (6)

whose solution, with the correct initial condition, is given by

ki(t) = e

(
t

ti

)1/2

. (7)

It is important to observe that in general one has

∂

∂t

v0+t−1∑

j=1

kj 6=
v0+t−1∑

j=1

∂kj

∂t
. (8)
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This is due to the fact the upper limit in the sum
∑v0+t−1

j=1

depends ont. This can be clarified further if, in the continue
limit, instead of the sum

K ≡
v0+t−1∑

j=1

kj , (9)

one writes

K → K =
v0∑

j=1

kj +

t−1∫

ti

k(t)dt. (10)

The probability that a vertex has connectivityki smaller
thank can be written as

P (ki(t) < k) = P

(
ti >

e2t

k2

)
. (11)

Combining (7) and (11) we obtain

P

(
ti >

e2t

k2

)
= 1− P

(
ti ≤ e2t

k2

)

= 1− e2t

k2(v0 + t)
. (12)

Here, we have assumed that the probability density forti is
P (ti) = 1/(v0 + t). So, we get

P (k) =
∂P (ki(t) < k)

∂k
= α

1
k3

, (13)

where

α =
(

2e2t

v0 + t

)
. (14)

Comparing (1) with (13) one sees that in this model the free-
scaling parameterγ becomesγ = 3.

3. Gravitational information theory

Recently, in Ref. 10 it has been shown that Newton’s law of
gravity can be obtained from information theory. The central
idea is to assume that the space, in which one considers the
motion of particles of massm, is a storage of information
and that this information can be storage in certain surfaces
or screens. In particular one may assume that such a surface
corresponds to a sphereS2. Moreover, the information is
measure by bits. Thus, one assumes that the number of bits
N storage in a sphere is proportional to the areaA, that is

N =
A

l2p
, (15)

where
A = 4πr2, (16)

and

lp =

√
G}
c3

, (17)

are the area of a sphere and the Planck’s length, respectively.
Thus using the thermodynamic relation between the force

F and the temperatureT ,

F =
(

2πkBmc

}

)
T, (18)

the equipartition rule for the energy

E =
1
2
NkBT, (19)

and the rest mass equation

E = Mc2, (20)

one obtains that
F = G

Mm

r2
, (21)

which is the familiar Newton’s law of gravitation. Here,M
denotes the mass enclosed by a spherical screenS2 (see Ref.
10 for details).

4. Gravitational complex network

We shall now combine the results of the section 2 and 3. The
central idea is to link (13) and (21). For this purpose let us
write (13) and (21) in form

P ∼ 1
k3

, (22)

and
F ∼ 1

r2
, (23)

respectively. It is evident that these expressions suggest the
identificationsP ←→ F . Consequently one discovers the
possible relation

r ∼ k3/2, (24)

between the radior and the connectivityk.
However the expression (22) is just one of many possibil-

ities [11]. In general, one should have

P ∼ 1
kγ

, (25)

where, as it was mentioned in section 1,γ is just a free-scale
parameter called the connectivity distribution exponent.

It turns out that the scale-free parameterγ is a model de-
pendent. For instance changing the preferential axiom men-
tioned in Sec. 2,γ can have values between2 and infinity.
However, in the observed networks the values ofγ fall only
between2 and3. An interesting possibility to explain this
phenomena was proposed in Ref. 12. According to this work
few scale-free networks are observed because there exists a
natural boundary (cut-off) for the observation of the scale-
free networks.

For our case perhaps the most interesting case is when
γ = 2, because (25) becomes

P ∼ 1
k2

, (26)
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and therefore one can make the identification

r ∼ k, (27)

which is simpler than (24).
We would like to emphasize, the important role played by

formula (15) in these connections. This is a key formula be-
cause it allows us to consider the parameterr as a discrete
statistic quantity. In fact, thanks to this formula one may
identify a randomr with a random connectivityk as in (27).

5. Some general comments

In the previous section it was assumed that the connectivity
k is a continuous real variable. But one may wonder whether
there exist models that it do not use the continuum assump-
tion. In fact, there are two equivalent approaches, namely the
master-equation [13] and the rate-equation approach [14]. In
the first case one considers the probabilityp(k, ti, t) that at
time t a nodei, introduced a timeti, has a degreek. The
master equation is

p(k, ti, t + 1) =
k − 1

2t
p(k − 1, ti, t)

+
(

1− k

2t

)
p(k, ti, t). (28)

It turns out that the degree distributionP (k) can be ob-
tained fromp(k, ti, t) through the formula

P (k) = lim
t−→∞

(
∑

ti
p(k, ti, t))

t
, (29)

(see Ref. 13 for details). In the second case, one focuses on
the averageNk(t) of nodes withk edges a timet. The rate
equation forNk(t) is

dNk(t)
dt

= m
(k − 1)Nk−1(t)− kNk(t)∑

k kNk(t)
+ δkm. (30)

In the asymptotic limit one has

Nk(t) = tP (k), (31)

(see Ref. 14 for details). What it is important is that these two
approaches are equivalent and that both lead to the continuum
theory in the asymptotic limit.

The identification ofk ∼ r given in (27) deserves addi-
tional comments. The connectivityk refers to the number of
edges in a given vertex of a graphG. So if we may relate
r with a given graphG we will be closed to clarifies such a
connection. Following Verlinde [10] let us assume that the
screen associated to the massm is a sphereS2. This sphere
has radiusr and areaA = 4πr2. The central idea in emergent
gravity is to visualize such a sphereS2 as storage of informa-
tion in the form ofN bits, which are linked toA according to
the formula (15). From topology, we know that a sphereS2

is triangulable. This means that a sphere is homeomorphic

to the corresponding polyhedron. It turn out that by a stere-
ographic projection one knows thatS2 ∼ R2 ∪ {∞}. This
means that one can visualize the polyhedron associated with
S2 as a connected graphG drawing in the planeR2 ∪ {∞}.
The equator ofS2 is a circleS1 with radiusr. So our task is
to see whetherr can be related to a kind of distanced(vi, vj)
connecting to verticesvi andvj of the given graphG in the
plane. Fortunately, in Ref. 15 it is discussed an information
processing in complex networks precisely by introducing the
shortest distanced(vi, vj) between verticesvi andvj . More-
over, in a such reference thej-sphere is defined as

Sj(vi,G) = {v | d(v, vj) = j, j ≥ 1}. (32)

By defining the information functional of a graphGP , f :
GP −→ R+, the vertex probability

p(vi) =
f(vi)∑
i f(vi)

(33)

can be introduced. HereGP is constructed from the paths
P j

kj
(vi) and the associated edgesEkj

sets of the set

Sj(vi,G) = {vuj
, vvj

, ..., vxj
}. (34)

It turns out that the functionalf captures structural in-
formation of the underlaying graphG (See Ref. 15 for de-
tails.) Going backwards it must be possible to prove that such
a structural information of the graphG in the planeR2∪{∞}
must be linked to the the bitsN storage on the sphereS2.

6. Final remarks

Our proposed bridge between growing networks and gravity
may help to develop the corresponding formalism in both di-
rections. For instance, starting with growing networks and
using (27) or (24) one may be able to rediscover the ther-
modynamic view of gravity. On the other hand starting with
gravity one may bring concepts, such as geometry, in to the
scenario of evolving networks. And in this direction, perhaps
one may be able to speak of black holes in growing networks.
It is tempting to speculate that one may even have a kind of
Schwarzschild metric for complex networks of the form

ds2 = −
(

1− β

k

)
dt2 +

dk2

(
1− β

k

)

+ k2(dθ2 + sin2 θdφ2). (35)

Of course, in the context of complex networks one can raise
many interesting questions from this proposal, but honestly
we do not have any idea what could be the answer of such a
questions. For instance, thinking about the World Wide Web
network of internet, what is it meaning of the concept of a
black hole? and in particular, what is it the meaning of the
corresponding event horizon associated with (28)? These are
topics of great interest that we leave for further research.
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There are also a number of attractive directions where our
work may find some interest. In particular it may appear in-
teresting to relate our work with matroid theory [16] (see also
Refs. 17 to 18 and references therein). This is because graphs
can be understood as a particular case of matroids [19-20] and
because in this case the concept of duality plays a fundamen-
tal role. So one wonders if matroid-complex networks fusion
(see Ref. 21) may bring eventually interesting and surprising
results in quantum gravity [22].
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comments and the Mathematical, Computational & Model-
ing Sciences Center of the Arizona State University for the
hospitality.

1. R. Albert and A. L. Barabasi,Rev. Mod. Phys.74 (2002) 47.

2. A. L. Barabasi, R. Albert and H. Jeong,Phys. A272 (1999)
173.

3. R. Penrose,Angular momentum: an approach to combinato-
rial space-time; in Quantum theory and beyond, ed. Ted Bastin,
(Cambridge University Press, 1971).

4. R. Penrose and W. Rindler,Spinors and Spacetime(Cambridge
University Press, 1984).

5. C. Rovelli and L. Smolin,Phys. Rev. D52 (1995) 5743; gr-
qc/9505006.

6. J. C. Baez,Class. Quan. Grav.15 (1998) 1827.

7. R. Gambini, J. Lewandowski, D. Marolf and J. Pullin,Int. J.
Mod. Phys. D7 (1998) 97; gr-qc/9710018.

8. R. Gambini, J. Griego and J. Pullin,Phys. Lett. B413 (1997)
260; gr-qc/9703042.
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