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In this article,we present the approximate solution of the D-dimensional Schrödinger equation for deformed generalized Deng-Fan plus
deformed Eckart potential using parametric Nikiforov-Uvarov method. We obtain the bound state energy eigenvalues and the corresponding
wave function for arbitraryl state. Special cases of this potential are also discussed.
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1. Introduction

The solutions of the Schrödinger equation (SE) have been ex-
tensively studied in recent times. These solutions play a vital
role in quantum mechanics since they contain all necessary
information governing the quantum mechanical system un-
der consideration. However, apart from the S-wave only few
potentials are exactly solvable forl 6= 0 such as harmonic
potential [1], Coulomb potential [2] and others [3]. Most
of the potentials for the description of physical systems are
not exactly solvable forl 6= 0. Nonetheless, many authors
have applied different approximation to the centrifugal term
and obtained analytical approximation to thel-wave solu-
tions of the Schr̈odinger equation with some exponential-like
type potential [4-10]. These potentials include the Morse po-
tential [11] Manning-Rosen, Scarf Poschl-Teller and Rosen
Morse potentials [12,13]. Various methods have been used to
obtain the exact or approximate solutions of the Schrödinger
equation for some exponential-type potential. These methods
include the Nikiforov-Uvarov method NU [14,15], factoriza-
tion method [16,17], asymptotic iteration method [18,19] and
others [20]. Recently, many researchers have developed in-
terest in D-dimensional solutions [21-25,43,44].

In the present work, we attempt to investigate the de-
formed generalized Deng-Fan potential plus deformed Eckart
potential. Following the work of other authors [21-25,43] ,
we solved the SE for this potential in D-dimensions using
parametric Nikiforov-Uvarov method. The potential under
investigation is

V (r) = V0

(
c− be−αr

1− qe−αr

)2

− V1e
−αr

1− qe−αr
+

V0e
−αr

(1− qe−αr)2
(1)

V0, V1, V2 are potential depths,q is the deformation parame-
ter which will take values of 1 and -1, b and c are adjustable
constant,α is the range of the potential. If we setq = c = 1,

V1 = V2 = 0, the potential reduces to that of the Deng-Fan
potential [26,33] withb = eαrc − 1 whererc is the equi-
librium internuclear distance and withV0 = 0 the potential
becomes Eckart potential [27-29]. We display the behaviour
of this potential with forq = ±1 in Fig. 1-2.

FIGURE 1. Variation of the potential as a function ofr for
V0 = 4 Mev, V1 = 0.1 Mev, V2 = 0.5 Mev q = 1, c = 0.5,
b = 0.4 and various values ofα = 1.0, 0.9 and 0.8 fm−1.

FIGURE 2. Variation of the potential as a function ofr for
V0 = 4 Mev, V1 = 0.1 Mev, V2 = 0.5 Mev q = −1, c = 0.5,
b = 0.4 and various values ofα = 10, 9 and 8 fm−1.
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Three special cases can be obtained from this potential as
follows:
(i) Settingc = 0, q = −1, V2 = 0, b = 1 Eq. (1) reduces to

VGWS =
−V1e

−αr

1 + e−αr
+

V0e
−αr

(1 + e−αr)2
(2)

which is known as generalized Woods-Saxon poten-
tial [30,31] which is used to describe interaction between nu-
clei [32]. ForV0 = 0 we obtain the Woods-Saxon potential
as

VWS(r) =
−V1e

−αr

1 + e−αr
(3)

(ii) SettingV0 = c = V2 = 0 andq = 1 Eq. (1) reduces to

VH(r) =
−V1e

−αr

1− e−αr
(4)

which is known as Hulthen potential [9,34]
(iii) If and q = 1 Eq. (1) reduces to

VMR(r) = b2V0

(
e−αr

1− e−αr

)2

(5)

which is a known form of Manning-Rosen potential for
A=0 [35].

In this work, the centrifugal term will be approximated
as [36]

1
r2
≈ ωe−αr

1− qe−αr
+

λe−αr

(1− qe−αr)2
(6)

ω and λ are adjustable dimensionless parameter. This ap-
proximation scheme is valid for large and smallα. To show
that Eq. (6) is a good approximation scheme we compare
1/r2 and the approximation scheme with different values of
αin Figs. 3-4 forq = 1, −1 respectively.

The organization of the paper is as follows: In Sec. 2,
we give a brief review of the Nikiforov-Uvarov method in
its parametric form. In section 3, we highlight the SE in D-
space. In Sec. 4, we present the bound state solution of the
SE in D-dimension. In Sec. 5 we give a brief discussion.
Finally a brief conclusion is given in Sec. 6.

FIGURE 3. Comparison between1/r2 and the approximation
scheme as functions ofr for ω = 5.00, λ = 0.53, q = 1 and
various values ofα = 1.0, 0.9 and 0.8 fm−1.

FIGURE 4. Comparison between1/r2 and the approximation
scheme as functions ofr for ω = 5.00, λ = 0.53, q = −1 and
various values ofα = 10, 9 and 8 fm−1.

2. Review of Nikiforov-Uvarov method and its
parametric form

The Nikiforov-Uvarov method (NU) is based on the solution
of a generalized second order linear differential equation with
special orthogonal function [14,37]. The SE

ψ′′(r) + [E − V (r)]ψ(r) = 0 (7)

can be solved by the NU method by transforming this
equation into hypergeometric-type using the transforma-
tion s=s(x)

ψ′′(s) +
τ̃(s)
σ(s)

ψ′(s) +
σ̃(s)
σ2(s)

ψ(s) (8)

In order to find the solution to Eq. (8) we set the wave
function as

ψ(s) = ϕ(s)χn(s) (9)

Substituting Eq. (9) into Eq. (8) reduces Eq. (2) to

σ(s)χ′′n(s) + τ(s)χ′n(s) + λχn(s) = 0 (10)

where the wave functionϕ(s) is a logarithmic function

ϕ′(s)
ϕ(s)

=
π(s)
σ(s)

(11)

whereχn(s) is the hypergeometric-type function which sat-
isfies the Rodrigue relation

χn(s) =
Bn

ρ(s)
dn

dsn
[σn(s)ρ(s)] (12)

andBn is the normalization constant and the weight function
ρ(s) satisfies the condition

(σ(s)ρ(s))′ = τ(s)ρ(s) (13)

Rev. Mex. Fis.59 (2013) 229–235



BOUND STATE SOLUTIONS OF DEFORMED GENERALIZED DENG-FAN POTENTIAL PLUS DEFORMED ECKART. . . 231

The requiredπ(s) andλ for the NU method are defined
as

π(s) =
σ′ − τ̃

2
±

√(
σ′ − τ̃

2

)
− σ̃(s) + kσ(s) (14)

and
λ = k + π′(s) (15)

respectively. It is necessary that the term under the square
root sign in Eq. (13) be the square of a polynomial. The
eigenvalues in Eq. (15) take the form

λ = λn = −nτ ′ − n (n− 1)
2

σ′′, n = 0, 1, 2 . . . (16)

where
τ(s) = τ̃(s) + 2π(s) (17)

The derivative of Eq. (16) is less than zero for bound
state. The energies are obtained by comparing Eqs. (15)
and (16).

The parametric generalization of the NU method that
is valid for both central and non-central exponential po-
tential [38] can be derived by comparing the generalized
hypergeometric-type equation.

ψ′′(s) +
(c1 − c2s)
s (1− c3s)

ψ(s)

+
1

s2 (1− c3s)
2

[−ξ1s
2 + ξ2s− ξ3

]
ψ(s) = 0 (18)

Comparing Eq. (8) and Eq. (18) we obtain the following
parametric polynomials

τ̃(s) = (c1 − c2s) (19)

σ̃ = −ξ1s
2 + ξ2s− ξ3 (20)

σ(s) = s (1− c3s) (21)

Substituting Eq. (19), Eq. (20) and Eq. (21) into Eq. (14)
we obtain,

π(s) = c4 − c5s

±
√

[(c6 − c3k±) s2 + (c7 + k±) s + c8] (22)

where

c4 =
1
2

(1− c1) , c5 =
1
2

(c2 − 2c3) ,

c6 = c2
5 + ξ1, (23)

c7 = 2c4c5 − ξ2, c8 = c2
4 + ξ3 (24)

Also

k± = − (c7 + 2c3c8)± 2
√

c8c9 (25)

where

c9 = c3c7 + c2
3c8 + c6 (26)

Hence, the functionπ(s) becomes

π(s) = c4 + c5s−
[
(
√

c9 + c3
√

c8) s−
√

(c8)
]

(27)

From the relation in Eq. (17) we have

τ (s) = c1 + 2c4 − (c2 − 2c5) s

− 2 [(
√

c9 + c3
√

c8) s−√c8] (28)

and

τ ′(s) = −2c5 − 2(
√

c9 − c3
√

c8) (29)

Solving Eqs. (15) and (16), we obtain the parametric en-
ergy equation as

(c2 − c3)n + c3n
2 − (2n + 1) c5 + (2n + 1)

× [
√

c9 + c3
√

c8] + c7 + 2c3c8 + 2
√

c8c9 = 0 (30)

The weight function is obtained as

ρ(s) = sc10 (1− c3s)
c11 (31)

And together with Eq. (12) we obtain

χn(s) = P (c10,c11)
n (1− 2c3s) (32)

whereP
(c10,c11)
n are the Jacobi polynomials and the super-

scriptsc10 andc11 are given by

c10 = c1 + 2c4 + 2
√

c8 (33)

c11 = 1− c1 − 2c4 +
2
c3

√
c9 (34)

The other part of the wave function is obtained from
Eq. (11) as

ϕ (s) = sc12 (1− c3s)
c13 (35)

where

c12 = c4 +
√

c8 (36)

c13 = −c4 +
1
c3

(
√

c9 − c5) (37)

Thus the total wave function becomes

ψn(s) = NnSc12 (1− c3s)
c13 P (c10,c11)

n (1− 2c3s) (38)

whereNn is the normalization constant.
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3. Schr̈odinger Equation in D-dimension

The D-dimension space SE is [39]

~2

2µ

[∇2
D + V (r)

]
Ψnlm (r,ΩD) = EnlΨnlm (39)

where

∇2
D =

1
rD−1

∂

∂r

(
rD−1 ∂

∂r

)
− Λ2

D

r2
(ΩD) (40)

is the Laplacian operator. The second term of Eq. (40) is the
multidimensional space centrifugal term.ΩD represent the
angular coordinates. The operatorΛ2

D yields hyperspherical
harmonic as its eigenfunction. With this we write the wave
function as

Ψnlm (r,ΩD) = Rnl(r)Y m
l (ΩD) (41)

Rnl is the radial part of the equation andY m
l is the angular

part called hyper-spherical harmonics. TheY m
l (ΩD) obey

the eigenvalue equation

Λ2
DY m

l (ΩD) = l (l + D − 2) Y m
l (ΩD) (42)

Substituting Eqs. (40) and (41) into Eq. (39) we obtain
the radial equation as

1
rD−1

∂

∂r

(
rD−1 ∂R(r)

∂r

)

+
2µ

~2

[
Enl − l + D − 2

r2

]
R(r) = 0 (43)

4. Bound State solution of Schr̈odinger equa-
tion

In order to obtain state solution we have to make the transfor-
mation

R(r) = r−(D−1
2 )U(r) (44)

Substituting Eqs. (1), (6) and (44) into Eq. (43), we de-
rive the bound state SE forl 6= 0 for the potential under con-
sideration as

U ′′(r) +





2µE
~2 − 2µ

~2

[
V0

(
c− be−αr

1−qe−αr

)2

− V1e−αr

1−qe−αr + V0e−αr

(1−qe−αr)2

]

−
[(

(D−1)(D−3)
4 + l(l + D − 2)

)(
ωe−αr

1−qe−αr + λe−αr

(1−qe−αr)2

)]





U(r) = 0 (45)

Using the transformations = e−αr in Eq. (45) we obtain

d2U

ds2
+

1
s

dU

ds
+

1
s2

[
−ε2 +

γs

(1− qs)
− βs

(1− qs)2
− φs2

(1− qs)2

]
U = 0 (46)

This can further be simplified to hypergeometric-type equation as

d2U

ds2
+

(1− qs)
s(1− qs)

1
s2(1− qs)2

[−(q2ε2 + qγ + φ)s2 + (2qε2 + γ − β)s− ε2]U = 0 (47)

where

−ε2 =
2µ

~2α2

(
E − c2V0

)
(48)

γ =
2µ

~2α2

[
2bcV0 + V1 − ω~2

2µ

(
(D − 1)(D − 3)

4
+ l(l + D − 2)

) ]
(49)

β =
2µ

~2α2

[
V2 +

λ~2

2µ

(
(D − 1) (D − 3)

4
+ l (l + D − 2)

) ]
(50)

φ =
2µb2V0

~2α2
(51)

Comparing Eq. (47) and Eq. (18), we obtain the following

c1 = 1, c2 = c3 = q, ξ1 = q2ε2 + qγ + φ, ξ2 = 2qε2 + γ − β, ξ3 = ε2, c4 = 0, c5 = −q

2
,

c6 = q2ε2 + qγ + φ +
q2

4
, c7 = −2qε2 + γ − β, c8 = ε2, c9 = φ + qβ +

q2

4
,

c10 = 1 + 2ε, c11 =
√

1 +
4
q2

(φ + qβ), c12 = ε and c13 =
1
2

[
1 +

√
1 +

4
q2

(φ + qβ)
]
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From Eq. (30), we obtain

εq
nlD =

γ + φ
q

2q (n + σq)
− n + σq

2
(52)

Using Eq. (48) we obtain the energy eignevlaues as

Eq
nlD = −~

2α2

2µ

[
γ + 1

q φ

2q (n + σq)
− n + σq

2

]2

+ c2V0 (53)

where

σq =
1
2

[
1 +

√
1 +

4
q2

(φ + qβ)
]

(54)

From Eq. (35) the first part of the wave function is ob-
tained as

ϕ(s) = sε (1− qs)
1
2

[
1+

√
1+ 4

q2 (φ+qβ)
]

(55)

and the weight function from Eq. (31) as

ρ(s) = s1+2ε (1− qs)
√

1+ 4
q2 (φ+qβ)

(56)

We also obtain the second part of the wave function as

χn(s) = P

(
1+2ε,

√
1+ 4

q2 (φ+qβ)
)

n (1− 2qs) (57)

Thus the total wave function from Eq. (38) is

Uq
nlD(r) = NnlDe−εαr

× (
1− qe−αr

) 1
2

[
1+

√
1+ 4

q2 (φ+qβ)
]

× P

(
1+2ε,

√
1+ 4

q2 (φ+qβ)
)

n

(
1− 2qe−αr

)
(58)

The Jacobi polynomials are reported in several litera-
tures [40-42], where is the normalization constant and is cal-
culated as

Nq
nlD =




q2ε(1 + 2ε)
(
2ε +

√
1 + 4

q2 (φ + qβ) + 2n + 2
)

n!Γ
(
2ε +

√
1 + 4

q2 (φ + qβ) + n + 2
)

2
(√

1 + 4
q2 (φ + qβ) + 2n + 1

)
Γ(2ε + n + 2)Γ

(√
1 + 4

q2 (φ + qβ) + n + 1
)




1
2

(59)

We have used the normalization condition alongside Eq.
ET II 285(5,9) and Eq. ET II 285(5,9) of Ref. 42 to obtain
Eq. (59). The derivation of Eq. (59) is given in the appendix

5. Special cases

We now take a look at the special cases discussed in Sec. 1.
This is done by making adjustment to the constants in the
potential.
(i) Generalized Woods-Saxon potential:If we setV2=c=0,
ω = α2, q = −1, D = 3. Our potential in Eq. (1) reduces
to the generalized Woods-Saxon potential in Eq. (2) and the
energy in Eq. (53) becomes

EGWS
nl = −~

2α2

2µ

{
n + Q

2

−
[

2µ
~2α2

(
b2V0 − V1

)
+ l (l + 1)

2 (n + Q)

]}2

(60)

where

Q =
1
2

[
1 +

√
1 + 4

(
2µb2V0

~2α2
− λ

α2
l(l + 1)

)]
(61)

and the wave function in Eq. (58) becomes

UGWS
nl = Bnle

−ζαr
(
1 + e−αr

) 1
2

[
1+
√

1+4(φ−β)
]

× P

(
1+2ζ,

√
1+4(φ−β)

)

n

(
1 + 2e−αr

)
(62)

where

ζ =
n + Q

2
−

[
2µ
~2α2

(
b2V0 − V1

)
+ l (l + 1)

2 (n + Q)

]
(63)

Bnl is the normalization constant in the GWS model.
If we proceed by settingω = V0 = 0 andλ = −α2,

the potential in Eq. (5) reduces to Woods-Saxon potential in
Eq. (3) and energy becomes

EWS
nl = −~

2α2

2µ

[
n + l + 1

2
− µV1

~2α2 (n + l + 1)

]2

(64)

and the wave function is

UWS
nl = Cnle

−δαr
(
1 + e−αr

)−(l+1)

× P (1+2δ,2l+1)
n

(
1 + 2e−αr

)
(65)

where

δ =
n + l + 1

2
− µV1

~2α2 (n + l + 1)
(66)

(ii) Hulthen potential: If we make the choiceω = V0 =
V2 = c = 0, λ = α2, q = 1 andD = 3 the potential re-
duces to Hulthen potential given in Eq. (4) and the energy
eigenvalues reduces to

EH
nl = −~

2α2

2µ

[
2µV1

~2α2 (n + l + 1)
− n + l + 1

2

]2

(67)
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This consistent with result obtained in [9,36]. The wave
function for the Hulthen potential is obtained from (58) as

UH
nl = Dnle

−ναr
(
1− e−αr

)l+1

× P (1+2ν,2l+1)
n

(
1− 2e−αr

)
(68)

where
ν =

µV1

~2α2 (n + l + 1)
− n + l + 1

2
(69)

(iii) Manning-Rosen potential: Settingω = V0 = V2

= c = 0, λ = α2, D = 3 andq = 1 the potential reduces
to the form of Manning-Rosen potential given in Eq. (5)
whereas the energy becomes

EMR
nl = −~

2α2

2µ

[
µb2V1

~2α2 (n + ρ)
− (n + ρ)

2

]2

(70)

where

ρ =
1
2

[
1 +

√
(2l + 1)2 +

8µb2V0

~2α2

]
(71)

and the wave function is

UMR
nl = Fnle

−ηαr
(
1− e−αr

) 1
2

[
1+

√
(2l+1)2+

8µb2V0
~2α2

]

× P

(
1+2η,

√
(2l+1)2+

8µb2V0
~2α2

)

n

(
1− 2e−αr

)
(72)

where

η =
µb2V1

~2α2 (n + ρ)
− (n + ρ)

2
(73)

The normalization constantsBnl, Cnl, Dnl andFnl can
be obtained from Eq. (59) by making the necessary substitu-
tions.

6. Conclusion

In this work, we study the Deformed generalized Deng-Fan
plus Eckart potential for non-vanishing angular momentum

in D-dimensions with the aid of an approximation scheme us-
ing parametric Nikiforov-Uvarov method. The eigenvlaues
of this potential and that of its special cases – Woods-Saxon,
Hulthen and Manning-Rosen potentials, are obtained and the
wave functions of each potential are expressed in terms of the
Jacobi polynomials.

APPENDIX

Derivation of the Normalization Constant
(Eq. (59))

Let y = 1− 2qe−αr, therefore Eq. (58) becomes

Uq
nlD = NnlD

(
1− y

2q

)ε (
1 + y

2

) 1
2

[
1+

√
1+ 4

q2 (φ+qβ)
]

× p

(
1+2ε,

√
1+ 4

q2 (φ+qβ)
)

n (y) (A.1)

Applying the normalization condition to Eq. (A.1) we
obtain

N2
nlD

(
1
2q

)2ε (
1
2

)[
1+

√
1+ 4

q2 (φ+qβ)
]

×
1∫

−1

(1− y)2ε(1 + y)
√

1+ 4
q2 (φ+qβ)

(1 + y)

×
[
p

(
1+2ε,

√
1+ 4

q2 (φ+qβ)
)

n (y)

]2

dy = 1 (A.2)

We have used the interval of the Jacobi polynomials,
[1,-1], in the integral. Writing(1 − y) as[2 − (1 − y)] and
expanding Eq. (A.2) we obtain,

N2
nlD

(
1
q

)2ε (
1
2

)[
1+2ε+

√
1+ 4

q2 (φ+qβ)
] {

2

1∫

−1

(1− y)2ε(1 + y)
√

1+ 4
q2 (φ+qβ)

[
P

(
1+2ε,

√
1+ 4

q2 (φ+qβ)
)

n (y)

]2

dy

−
1∫

−1

(1− y)1+2ε(1 + y)
1+

√
1+ 4

q2 (φ+qβ)

[
P

(
1+2ε,

√
1+ 4

q2 (φ+qβ)
)

n (y)

]2

dy

}
= 1 (A.3)

We now use the standard orthogonal integrals of Jacobi polynomials as follows

1∫

−1

(1− y)α−1(1 + y)β
[
P (α,β)

n (y)
]2

dy =
2α+βΓ(α + n + 1)Γ(β + n + 1)

n!αΓ(α + β + n + 1)
(A.4)

1∫

−1

(1− y)α(1 + y)β
[
P (α,β)

n (y)
]2

dy =
2α+β+1Γ(α + n + 1)Γ(β + n + 1)

n!αΓ(α + β + n + 1)
(A.5)
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Equations (A.4) and (A.5) are respectively invoked from Eqs. ET II 285(6) and ET II 285 (5,9) of Ref. 42 (pages 806
and 807 respectively).α andβ in Eqs. (A.4) and (A.5) have nothing to do with theα andβ in this work. Comparing the
superscripts of Eqs. (A.4) and (A.5) with that of Eq. (A.3), we obtain the normalization constant as given Eq. (59) as

Nq
nlD =




q2ε(1 + 2ε)
(
2ε +

√
1 + 4

q2 (φ + qβ) + 2n + 2
)

n!Γ
(
2ε +

√
1 + 4

q2 (φ + qβ) + n + 2
)

2
(
1 +

√
1 + 4

q2 (φ + qβ) + 2n + 1
)

Γ(2ε + n + 2)Γ
(√

1 + 4
q2 (φ + qβ) + n + 1

)
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