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In this article,we present the approximate solution of the D-dimensionab8iciyer equation for deformed generalized Deng-Fan plus
deformed Eckart potential using parametric Nikiforov-Uvarov method. We obtain the bound state energy eigenvalues and the correspon
wave function for arbitrary state. Special cases of this potential are also discussed.
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1. Introduction Vi =V, = 0, the potential reduces to that of the Deng-Fan
. o ) potential [26,33] withb = e*" — 1 wherer, is the equi-
The solutions of the Schdinger equation (SE) have been eX- |iprium internuclear distance and witl, = 0 the potential

tensively studied in recent times. These solutions play a vitahecomes Eckart potential [27-29]. We display the behaviour
role in quantum mechanics since they contain all necessany thjs potential with forg = +1 in Fig. 1-2.

information governing the quantum mechanical system un-
der consideration. However, apart from the S-wave only few
potentials are exactly solvable fér# 0 such as harmonic 140 7
potential [1], Coulomb potential [2] and others [3]. Most 1 :
of the potentials for the description of physical systems are ] Vi
not exactly solvable fot # 0. Nonetheless, many authors 100 4 :
have applied different approximation to the centrifugal term ]
and obtained analytical approximation to thevave solu-
tions of the Schidinger equation with some exponential-like
type potential [4-10]. These potentials include the Morse po- 40
tential [11] Manning-Rosen, Scarf Poschl-Teller and Rosen 20 ]
Morse potentials [12,13]. Various methods have been used tc
obtain the exact or approximate solutions of the Sdhrger o o0s  oa
equation for some exponential-type potential. These methods
include the Nikiforov-Uvarov method NU [14,15], factoriza- FIGURE 1. Variation of the potential as a function of for
tion method [16,17], asymptotic iteration method [18,19] and"® = 4 Mev, V1 = 0.1 Mev, 1> = 0.5 Mev ¢ = 1, e =105
others [20]. Recently, many researchers have developed iff-— 0-4 @nd various values af = 1.0, 0.9.and 0.8 fm .
terest in D-dimensional solutions [21-25,43,44].

In the present work, we attempt to investigate the de- 17

160 -

V(r)
8

, 06 0.8 1

formed generalized Deng-Fan potential plus deformed Eckart L
potential. Following the work of other authors [21-25,43], 08 ¢
we solved the SE for this potential in D-dimensions using :
parametric Nikiforov-Uvarov method. The potential under ?0'6 T
investigation is B B

04 1 a=10

be—or \? i e
Vir)=Wlc— ———— £

= (e o) ot 1
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Vo, V1, V2 are potential depthg,is the deformation parame- Figure 2. Variation of the potential as a function of for
ter which will take values of 1 and -1, b and c are adjustablel, = 4 Mev, Vi = 0.1 Mev, 1, = 0.5 Mevg = —1, ¢ = 0.5,
constanty is the range of the potential. If we sgt=c = 1, b = 0.4 and various values ef = 10, 9 and 8 fm*.
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Three special cases can be obtained from this potential as 1%

follows:
(i) Settingc =0, ¢ = —1, Vo, = 0, b = 1 Eq. (1) reduces to 80 1 A

_V'lefar Vbefar 60 4 \\\ 1/rA2

Vews = — — 2) - Ay '

1+e@ (1+e-or) 5 "-,:\\-\ ......... approx(a=10)
which is known as generalized Woods-Saxon poten- *° \\ \ - - - approx(a=8)
. . . . . . Y
tial [30,31] which is used to describe interaction between nu- AN . — Spprolase]
clei [32]. ForV, = 0 we obtain the Woods-Saxon potential 2
as v S

—Vie " 0+ T
Vivs(r) = Tteor 3) 0 0.2 04 . 06 0.8 1

(i) SettingVp = ¢ = V> = 0 andq = 1 Eq. (1) reduces to FIGURE 4. Comparison between/r> and the approximation

scheme as functions effor w = 5.00, A = 0.53, ¢ = —1 and

_Vle—ozr : o
= 4 various values ofy = 10,9 and 8 frm *.

T l—eor

VH(T‘)

which is known as Hulthen potential [9,34]
(iii) Ifand ¢ = 1 Eq. (1) reduces to

e*QT 2
1_e_a> ©)

2. Review of Nikiforov-Uvarov method and its

arametric form
Vir(r) = bV ( P

o _ _ The Nikiforov-Uvarov method (NU) is based on the solution
which is a known form of Manning-Rosen potential for of a generalized second order linear differential equation with

A=0[35]. special orthogonal function [14,37]. The SE
In this work, the centrifugal term will be approximated
as [36] () + [E—V(r)]d(r) =0 @)

1 N we—(X’I' + )\e—(,w (6)

r? 1 —gqeor (l—qe*M)2 can be solved by the NU method by transforming this
w and \ are adjustable dimensionless parameter. This apequation into hypergeometric-type using the transforma-
proximation scheme is valid for large and small To show  tion s=s(xz)
that Eq. (6) is a good approximation scheme we compare
1/r2 and the approximation scheme with different values of "(g) + 2l (s s 8
a{n Figs. 3-4 forg = 1, —1 respectively. Ve + U(S)w (&) + UQ(S)M ) ®)

The organization of the paper is as follows: In Sec. 2,

we give a brief review of the Nikiforov-Uvarov method in
its parametric form. In section 3, we highlight the SE in D-
space. In Sec. 4, we present the bound state solution of the
SE in D-dimension. In Sec. 5 we give a brief discussion.
Finally a brief conclusion is given in Sec. 6.

In order to find the solution to Eq. (8) we set the wave
function as

¥(s) = @(s)xn(s) €)
Substituting Eq. (9) into Eq. (8) reduces Eq. (2) to

7 (s)xn () + 7(8)x0(s) + Axn(s) =0 (10)

100
where the wave functiop(s) is a logarithmic function
80 -
1\ ¢'(s) _ m(s)
W B = —= 11
o By 12 o5) ~ o0s) ()
= “\ .......... approx(a=1) _ _ _ _
40 | Ly wherey,, (s) is the hypergeometric-type function which sat-
BN = = = approx(a=0.9) isfies the Rodrigue relation
20 - \‘\\\ — - —approx(a=0.8) B
TR . _ n Y 1.n 12
0 T T T T
0 0.2 0.4 0.6 0.8 1

FIGURE 3. Comparison betweei /r> and the approximation
scheme as functions of for w = 5.00, A = 0.53, ¢ = 1 and

various values oft = 1.0, 0.9 and 0.8 fm*.

p(s) satisfies the condition

(a(s)p(s))" = 7(s)p(s)
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andB,, is the normalization constant and the weight function

(13)
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The requiredr(s) and \ for the NU method are defined Hence, the functiom (s) becomes
as
s [T : m(s) = i+ es— [(Var +esve)s—Vies)|  @D)
m(s) = 5 + < > —o(s)+ko(s) (14)
From the relation in Eq. (17) we have
and
_ /
A=k+7'(s) (15) 7 () =c1 + 24 — (c2 — 2¢5)
respectively. It is necessary that the term under the square
root sign in Eq. (13) be the square of a polynomial. The —2[(Veg +eav/es) s — es] (28)
eigenvalues in Eq. (15) take the form
) and
A=\, = —n7’ — %a”, n=20,1,2... (16)
7'(8) = —2¢5 — 2(\/cg — c3+/C8) (29)
where
7(s) =7(s) + 27 (s) a7

Solving Egs. (15) and (16), we obtain the parametric en-
The derivative of Eq. (16) is less than zero for boundergy equation as
state. The energies are obtained by comparing Egs. (15)
and (16). _ o (co —c3)n+czn® — (2n+1)cs 4+ (2n + 1)
The parametric generalization of the NU method that
is valid for both central and non-central exponential po- X [\/co + c3+/cs] + c7 + 2c3cs +2¢/cgcg =0 (30)
tential [38] can be derived by comparing the generalized

hypergeometric-type equation. The weight function is obtained as
" (Cl - 023) c
Yis) + s(1—c3s) § p(s) = s (1 —czs)™ (31)
1
m [—€15% + 25 — &3] U(s) = 0 (18) And together with Eq. (12) we obtain
Comparing Eqg. (8) and Eq. (18) we obtain the following Yn(s) = plerosein) (1 — 2¢35) (32)
parametric polynomials "
7(s) = (c1 — c25) (19) where P{“°11) are the Jacobi polynomials and the super-
_ ) scriptscyg ande;; are given by
o=-618"+&s—&3 (20
o(s) = s (1 —c35) (21) cro = c1 +2¢4 +2¢/cs (33)
Substituting Eq. (19), Eq. (20) and Eq. (21) into Eq. (14) ci1=1—c¢; —2c4 + 3\/;9 (34)
we obtain, 3
7(s) =cq —c58 The other part of the wave function is obtained from
Eq. (11) as
+ /[(cs — c3ks) 52 + (¢7 + kx) s + cg (22) . .
©(s) =592 (1 —c38)™" (35)
where
1 where
0415(1701)7 0515(027263),
ce = c: + &1, (23) c12 = ¢4+ /s (36)
1
c7 = 2c4c5 — &2, g = (3421 +&3 (24) C13 = —C4 + ? (\/6 — 65) (37)
3
Also
Thus the total wave function becomes
ky =— (67 + 26308) + 2\/cgcg (25)
where n(s) = NpS2 (1 = e38)* P70 (1 — 2c35)  (38)
cy = c3cr + Cies + o (26)  whereN,, is the normalization constant.
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3. Schrddinger Equation in D-dimension Substituting Egs. (40) and (41) into Eq. (39) we obtain

, . . the radial equation as
The D-dimension space SE is [39]

n? 1 0 ( p_OR(r)
5 (Vb + V)] ot (r,00) = i (39) 7@48rGD1M)
where
2p I+D—-2
s 1 9 (0 _A2 +h2{Enl—2]R(r)=0 (43)
Vo= 5o 7 g ) 2 (o) (40) r

is the Laplacian operator. The second term of Eq. (40) is the

multidimensional space centrifugal terrfil, represent the 4 Bound State solution of Schodinger equa-
angular coordinates. The operato, yields hyperspherical tion

harmonic as its eigenfunction. With this we write the wave

function as ) )
In order to obtain state solution we have to make the transfor-

Wnim (r,2p) = Ru(r)Y,™ (82p) (41)  mation
Ry is the radial part of the equation af{i” is the angular
part called hyper-spherical harmonics. TH& (€2p) obey

the eigenvalue equation o )
o < . Substituting Egs. (1), (6) and (44) into Eq. (43), we de-
ApY™ (Qp) =11+ D =2)¥™ (2p) (42) " rive the bound state SE forZ 0 for the potential under con-
|  sideration as

R(r) = r= (%3 )U(r) (44)

2
2uE  2p __be " _ Vie” " Voe "
h2 h2 |:‘/O (C 1_qe—ar) 1_qe—ar + (1 ge— ar)2

U’ (r)+ U(r)=0 (45)
(D-1)(D=3) —or Ae=oT
[(7 +l(l+D—2)) (1 ge=ar T (T2ge= M)Q)]
Using the transformatios = e~*" in Eq. (45) we obtain
d?U  1dU 1 9 s Bs ¢s?
d52+sds+[_ +(1—q5)_(1—q5)2_(17q5)2 v=0 (46)
This can further be simplified to hypergeometric-type equation as
?U (1—gs) 1 2.2 2 2 2
— - 2 - - = 47
75 8(1_q8)82(1_qs)2[ (Pe"+qv+¢)s” + (2¢e" +v—B)s —e U =0 (47)
where
2p
—e? = =3 (E - V) (48)
2u wh? ((D—1)(D - 3)
= 2 - (== D-2 4
V= a2 bcVy + 4 o ( 1 +I(1+ ) (49)
2 A2 (D —1)(D —3)
2Mb2VO
=" (51)
Comparing Eq. (47) and Eq. (18), we obtain the following
a=1, c=ca=q¢ G=C+qy+¢ &=2"+7-0&=¢" =0, c= *g,
¢ ¢
6=yt o+, or=-2+v-B8, s=¢, w=¢+aef+,

1t 5 6]

4 1
clo=1+2¢ c11= 1+?(¢+QB), ci2 =¢ and @3 =3
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From Eg. (30), we obtain We also obtain the second part of the wave function as
[
Y+ n+o
el o = i d 52 —_—
"D 2 (n+oy) 2 2 Xn(s) = p,S“W”J%W‘”) (1—2¢s)  (57)
Using Eq. (48) we obtain the energy eignevlaues as
2
h2o? v+ 1o n+o
Ep =~ - : Vo (53 i i
nlD o | 2q(n+oy) 5 +c* Vo (53) Thus the total wave function from Eq. (38) is
where T Ul ()= N car
1 r)= e
=gt mera] ey TR
. 4 . . —ar %[1+\/1+%(¢+‘15)]
From Eq. (35) the first part of the wave function is ob- X (1 —qe ) ¢
tained as ( 112 (ptaB)
142e,/1+ 5 (6+4B))
1 4 q _ —ar
QO(S) — & (1 _ qs) 2 [1+\/1+q2 (¢+QB)} (55) x Pp (1 2qe ) (58)
and the weight function from Eq. (31) as
Lo 1+ 2 (+aB) The Jacobi polynomials are reported in several litera-
p(s) =5 (1 qs)\/ ! (56)  tures [40-42], where is the normalization constant and is cal-

| culated as

1

(1 + 2¢) <2€+1/1+%(¢+q5)+2n+2) Il (2e+,/1+(;%(¢+qﬁ)+n+2) :
NY = (59)

Mo 2( 1+;%(¢+qﬁ)+2n+1)F(2€+n+2)F( 1+(;%(¢+qﬂ)+n+1>

We have used the normalization condition alongside Eq
ET 1l 285(5,9) and Eq. ET Il 285(5,9) of Ref. 42 to obtain L/vhere
Eqg. (59). The derivation of Eq. (59) is given in the appendix

C:n+Q_lh352 (b2Vo — Vi) +1(1+1) (63)
5. Special cases 2 2(n+Q)
We now take a look at the special cases discussed in Sec. B,,; is the normalization constant in the GWS model.
This is done by making adjustment to the constants in the If we proceed by settingg = 1, = 0 and\ = —a?,
potential. the potential in Eqg. (5) reduces to Woods-Saxon potential in
(i) Generalized Woods-Saxon potentialif we setV,=c=0, Eg. (3) and energy becomes
w = a? q = —1, D = 3. Our potential in Eq. (1) reduces
to the generalized Woods-Saxon potential in Eq. (2) and the s 2o [n+1+1 % 2 64
energy in Eq. (53) becomes nt T Ty 2 T R2a2(n+1+1) (64)
2.2
ECGWS — _ Wa”[ntQ and the wave function is
" 241 2
U}:VS _ Cn eféar 1 +efar —(1+1)
S (BPVo —VA) +1(1L+1) ? 50 : : ( )
_ 5 (n " Q) ( ) « PT(Ll+26,2l+1) (1 + 267(17") (65)
where where
+1+1 uVi
1 b2V A 5g=" - 66
Q=3 1+\/1+4(;;a20—a21(l+1)> (61) 2 h2a2 (n+ 1+ 1) (66)

(ii) Hulthen potential: If we make the choicey = V;, =
Vo =c=0,\=a?q=1andD = 3 the potential re-
UGWS = Be™¢om (1 + efar)%[“ +4(6=5)] duces to Hulthen potential given in Eq. (4) and the energy

l .
" eigenvalues reduces to
142¢,/1+4(9—5)) (

and the wave function in Eq. (58) becomes

x Pn( 14 2¢7°7) (62)

h2a? 2uVq n+il+1]°

Elf = -
nl 2u [RPa?2(n+1+1) 2

(67)
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This consistent with result obtained in [9,36]. The wavein D-dimensions with the aid of an approximation scheme us-
function for the Hulthen potential is obtained from (58) as ing parametric Nikiforov-Uvarov method. The eigenvlaues
UH — D o-var (1 _ e,w)zﬂ of this potential anq that of its specigl cases — quds—Saxon,

nl nl Hulthen and Manning-Rosen potentials, are obtained and the

x P{1+2v2+1) (1—2e7o7) (68)  wave functions of each potential are expressed in terms of the

Jacobi polynomials.
where
A% n+l+1

V:h20z2(n+l+1)7 2
(i) Manning-Rosen potential:  Settingw = Vp = V;

=c¢=0,)\=a? D = 3andq = 1 the potential reduces L .
to the form of Manning-Rosen potential given in Eq. (5) Derivation of the Normalization Constant

(69)
APPENDIX

whereas the energy becomes (Eq. (59))

2 2 2 2

EMR _ _ ha po’vi - (ntp) (70)  Lety =1—2ge ", therefore Eq. (58) becomes
nl 2u | h2a2 (n+ p) 2
where e 31+ /145 (0+aP)]
1-— 1 2 q
1 2 | 8ub*Vp 71 Ung = Nup <2y> (-12-24)
p = 5 1+ (21 + 1) + W ( ) q
L 142¢,, /14 %5 (¢-+4)

and the wave function is « pg \/ a )(y) (A.1)

2
%{1+\/(2z+1)2+78§§a¥°}

UTJL\ZIR _ Fnle—nar (1 o e—ar)

Applying the normalization condition to Eq. (A.1) we

R ———— obtain
<1+2n,¢(2z+1)2+8:§a‘2’0)
x Py, (1—2e7%7") (72) v 1\2 /1) [+ 1+ & (6+ad)]
where , b\ 2¢ 2
pb*Vi (n+p)
n= h2 2 - 9 (73)
_ ot (np) 2 [T GraB)
The normalization constants,,;, C,,;, D,,; and F,,; can x [(I=y)=(1+y)V = (1+y)

be obtained from Eqg. (59) by making the necessary substitu- 1
tions.

_— 2
1+2¢,, /145 (¢+4P)
_ x [p,(l Vi )(y)] dy=1 (A2)
6. Conclusion
In this work, we study the Deformed generalized Deng-Fan We have used the interval of the Jacobi polynomials,

plus Eckart potential for non-vanishing angular momentum[1,-1], in the integral. Writing(1 — y) as[2 — (1 — y)] and
|  expanding Eq. (A.2) we obtain,

2

2 142e+ 1+i(¢+qﬁ)] 1 — 142 (0ta8d) 2
1 1 [ \/ a 1+ -4 (¢+48) 142,/ 1425 (¢+4b)
Mo (3) () {2 Ja—vpea sy TEE Pt V)| ay

—1

1 S 2
. 14+, /1+ % (¢+4¢8 1+4-2¢, 1+;%(¢+qﬂ)
o /(1 o y)1+2 (1 4 y) \/ P (¢+4B) lp£ \/ )(y) dy =1 (A3)

-1

We now use the standard orthogonal integrals of Jacobi polynomials as follows

1
a+0
Ja-wetap? [P ay = Ze LI a4
-1
1
atp+1 n n
[ v [P ay = F D (A5)
-1
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Equations (A.4) and (A.5) are respectively invoked from Eqgs. ET Il 285(6) and ET Il 285 (5,9) of Ref. 42 (pages 80

235

and 807 respectively)a and in Egs. (A.4) and (A.5) have nothing to do with theand 5 in this work. Comparing the
superscripts of Egs. (A.4) and (A.5) with that of Eqg. (A.3), we obtain the normalization constant as given Eq. (59) as

® N o e

10.
11.
12.
13.
14.

15.
16.

17.
18.
19.
20.
21.

22
23

(1 + 2¢) (25+ 1+;%(¢+q5)+2n+2)n!r(2s+ 1+(;%(¢+qﬁ)+n+2)

q —
NlD_

n

2(1+ 1+;%(¢+qﬂ)+2n+1)r(2e+n+2)r( 1+(;%(¢>+q/3)+n+1)
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