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A modified trial solution of Wu’s function depending on three parameters and satisfying the boundary conditions, is used as a solution to the
Thomas-Fermi equation using variational methods. The found solution is used to calculate the total ionization energy of atoms, taking into
account a correction to this equation. Our results show that the proposed generalization is much better than Wu'’s one, being in agreement
with other solutions found in literature. Our solution, reproduces conveniently the corresponding numerical solution.
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1. Introduction tential energy is-eV, and it is confined in a neutral atom if

) - its energy is non-positive.e.
From the earliest days of quantum mechanics, it has been

clear that one could not hope to solve most of the physically L eV, 2)
interesting systems exactly, especially those with more par- 2m

ticles. Thus, by 1930 (only three years after the first worksUsing the expression (2) into (1), we can express the electron
of Thomas [1] and Fermi [2], and five years after the adventharge density in terms of the potentia)

of the “new” quantum theory), a large variety of approximate 3

methods had been developed to construct approximate ana- p(r) = —en = ,% (2m§V> ) ©)
Iytical solutions for nonlinear differential equations. There 3 h

has been a great deal of work on rigorous mathematical prolNow the electronic charge densip(r) and the potential
lems in quantum theory, most of it on the fundamentals and/(r) are related via the Poisson equation:

relevant operator theory. )

The Thomas-Fermi equation is a nonlinear ordinary dif- VAV (r) +dmp(r) = 0, (4)
ferential equation for modeling electrons of an atom. In par-  Taking into account the solution of (4), the boundary
ticular, the Thomas-Fermi model is widely used in nuclearconditions are such thdt (r) tends toZe/r whenr — 0
physics, for example, to answer questions related to nuclegCoulomb field), and/(r) tends to zero when tends to in-
matter in neutron stars [3]. In spite of its generality, the ap-inity.
plication of the Thomas-Fermi method is based on the solu-  The Thomas-Fermi equation in its usual form is presented
tion u(z) of the second-order nonlinear differential equationyhen performing a change of variable
which is difficult to determine.

. . . 1/3
The purpose of this model is give a expression for the , _ " /() _ eZu(r) o= ag ( 9? ) 5)
electron density(r), and of course, the electrostatic poten- a’ ro 1287 ’
tial between the nucleus and the cloud of electrons at a disghere 4, — (h?/4r%mee?) = 5.2017721092.10 11

tancer for this. This central potential’(r) dominates the . . (53 A, is the first Bohr radius of the hydrogen atom,
interaction of electrons obeying Fermi-Dirac statistics in ayt 5 distance from the nucleusi, ande are the mass and
volume region considered to be large that does not vary 8Rsharge of electron. ‘
preciably over the size of the region. In this case the electrons g change is also convenient because it eliminates all
mov_e_freely. In this conditions, the electron _kinetic energy iSnumerical constants in Eq. (4) leading to an universal non-
a minimum, and the electrons are packed in phase space fiear second-order ordinary differential equation which de-
densely as possible consistent with the exclusion principle. I§¢ripes all atoms without distinguishing their composition
Pmax IS the maximum value for the electron momentum o numper of electrons. Substituting the changes described
8T in (5) into Eq. (4), we find the Thomas-Fermi equation

= 1
3h3pmax7 ( ) dzu u3/2

wheren is the number of electrons per unit volume. The po- dz?  2'/?

n
=0. (6)
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This new Eq. (6) satisfies From other methods Marincet al. [16], solve the
Thomas-Fermi equation in this case using OHAM (Optimal
u(0) =1, u(o0) =0. (") Homotopy Asymptotic Method), finding a pair of approx-

|imate solutions with good accuracy. These solutions are

An important parameter is the magnitude of the initia ; : ) .
somewhat complicated, introducing many parameters in a

slope combination (or rather a generalization) of solutions found
du(r) previously for other authors by simpler functions. Bougoffa
B=- dr J @)  etal [17] work with a new technique for solving the Thomas-

=0 Fermi equation. They first reduce it to an equivalent second-

such as under numerical integration yields= 0.5055 7 = order differential equation, and then they express the solution
—1.588 [4]. in the logarithmic form to obtain a good approximate solution

There have been many attempts to construct an approxr a straightforward manner by using a direct approach.
imate analytical solution of the Thomas-Fermi equation for The purpose of this manuscript is give a solution to
atoms [5]. E. Roberts [6], in these cases using variationalhomas-Fermi equation with a modified trial solution of
principles, trying to solve the equation by proposing a one\Wu'’s function depending on three parameters and satisfying

parameter trial function: the boundary conditions. The found solution is used to calcu-
- late the total ionization energy of atoms, taking into account
ui(2) = (L+nx)e ", (®)  a correction to this equation. Our results show that the pro-

wheren = 1.905 and Csavinsky [7] has proposed a two- posed generalization is much better than Wu’s one, being in
parameters trial function: agreement with other solutions found in literature and repro-

ducing conveniently the corresponding numerical solution.

u(z) = (ape™0" + hoe=H7)* (10)
wherea, = 0.7218337, ap = 0.1782559, b, = 0.2781663 2. Variational approach for Thomas-Fermi
andfy = 1.759339. Later, Kesarwani and Varshni [8] sug- equation and a correction of ionization en-
gested: ergies
iy _ a2
us(w) = (ae™ +be™ 7 4 ce 777, (11)  we use variational techniques and optimization to find ana-

Iytical solutions. In this case, the idea is that the Thomas-

where a = 0.52495, = 0.12062, b = 0.43505, o _ X . .
g “ Fermi differential equation can be described by the following

8 =0.84795, ¢ = 0.04 and~y = 6.7469. )
The last two equations are obtained using an equivaler{'fagranglan

Firsov’s variational principle [9]. The first equation has been L /du\®  9u5/?
modified by Wu [10] in the following form: == i
y Wu [10] g L(u) = 3 (da) + e (15)
ug(x) = (1 +my/z + nx)?e 2mVe, (12) _ o .
this Lagrangian is equivalent to Eq. (6), when one use the
wherem = 1.14837 andn = 4.0187 - 1076, Euler-Lagrange equation
Recently, M. Desaiet al. [11] proposed the following
expression: d oL _ 9oL
: e (16)
] dx ou'  Ou
us(2) = 1+ (kz)e]>’ (13)  where the prime symbol denotes derivative respegt\ari-
able. Finally, the total Lagrangian is constructed in the form
wherea = 0.9237797117, b = 2.097976638 and k =
0.4834685937. Moreover, other attempts have been carried 0
out to solve this problem [12, 13]. But, all of these proposed L, = /Lda:, a7
trial functions do not reproduce appropriately the numerical 0

solution of the Thomas-Fermi equation [14] and its deriva-
tive atz = 0. They did not prove to be efficient when used to thus when a solution is fixed; = u(z,;), i = 1,2,3...,

calculate the total ionization energy of heavy atoms. in terms of some coefficients, then it can be optimized using
Oulne [15], proposed a trial function which depends ona total Lagrangian minimum condition to find the value of
three parameters, 5 and~: arbitrary constant
ug(z) = (1+ av/z + ﬂxe‘“’ﬁ)ze_%‘ﬁ, (14) oL,
Do 0. (18)

The optimum values of the variational parameterss and
~, obtained by minimizing the Lagrangian, are respectively There has been a considerable renewed interest in cal-
equal to 0.7280642371, -0.5430794693 and 0.3612163121 culating leading corrections, to the binding energy of the
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Thomas-Fermi atom. The problem of incorporating the first  In this case, the total Lagrangian (17), is a bit more com-
leading correction in the Thomas-Fermi model was preplicated but can be simplified ds = Lq; + Lo, where
dicted by Scott [18], the values for the second and the third

ieec by [18], the valu ! 19845¢4 04563 315022 2253 45¢

corrections were suggested by Marchand Paskett [19] ang,, — — — 4
Schwinger [4]. Taland Levy [20] suggested thagZa' ex- 6553600 2048a% ~ 1024a® 204847 © 256a’
pansion could lead to a better fit for the total binding energy 7564 585bc?  213b%c 963 33c?

of the Thomas-Fermi atom. In this way, [21] uses e ex- + 4096a5 20484 + 10246  1284* + 2048a*
pansion to re-write the ionization energy of a many-electrons 3be 3052 1942 39¢  19h

_ it 24
3245 | 2564 | 128  128a | 64 (24)

atom to the second leading corrections, in terms of the initial
slope of the trial variational solutions of the Thomas-Fermi
equation, where no attention has been paid to the calcul@nd
tion of these nonzero order corrections in terms of trial vari- 41845579776¢°  13948526592b¢4 8776

ational functions of the variational schemes which replaces “2t = 13515625416 1220703125415 + 156254

the Thomas-Fermi theory. ;
1 theory 153280512632 1379524608¢*  8776b

A test to demonstrate the efficiency of the different solu- — + —
tions can be made by calculating the total ionization energy 488281250 2441406250'° 156254
of heavy atoms following the relation [22] 434294784bc® 5806080 N 44544b*
‘ ‘ 48828125a12 9765625a!l ~ 78125a°
Bz) = 12X 20X 2T (du) . (9 | 34836480°c | 27288576¢% | 451584)"
Tx (9m2)/5 \de ) 1953125010 | 0765625410 | 195312547
in hartrees ¢ /ao). This expression can be considered as a _ 7934976bc® | 4281984b°c _ 173952b°
zero-order correction of the total binding energy. The first 1953125a% = 1953125a®  390625a”
derivative ofu/(z) evaluated in the origin, is the initial scope 2297088¢2  591744bc  55738368b%c?
of u(x). Numerical calculations give a valug(0) = —B + 195312547 39062546 + 0765625a11

= —1.5880_70972, a!so called B_akers const_ant. For the lead- A9552¢  199264665662¢°  6336638b4c
ing corrections, Agikt al. [21] give a correction for Eq. (19). T+ ot - (25)
They used a technique in which the correction becomes a ex- 78125a 2441406254 9765625a
pansion oveZ ~!, and applied it to the Thomas-Fermi model. Then, when we minimize the Lagrangian through (18),
The corrected second order equation found is we found the values of parameters in the trial solution:
a = 0.9614236887819619, b = —0.3442527917822383 and
12 9 \ /3 S ¢ = 0.08703140640977791.
E(Z) ~ <7> < ) Z'°U(0), (20) The values of the functions proposed by Wu, our solu-
tion, and Oulne’s solutions are shown in the Table I. We can
where see that all functions satisfy the boundary conditions (7), ob-
taining accurate results. In Table I, the relative error (%) of
U'(0) = F(Z)u/(0), (21)  the solutions is shown in comparison to the numerical solu-
tion [14].
and In the Table Il, we present the ionized energies calculated
for all solutions, and compared them with the Hartree-Fock
F(Z)=1- 0.6504Z~Y/3 1 0.36422/3, (22)  (HF) numerical solution [23]. In the last row, we show the av-
erage error is obtained from all 16 tested poits; Z < 86.
As can be easily seen the resulting Eq. (20) for the binding
energy reduces to the zero-order Thomas-Fermi energy foA;. Conclusions

972

u'(0) = —B, andF(Z) — 1 corresponding to large atomic
numbers. In general, this model could be applied to variougve have proposed a trial function that generalizes Wu's pro-
possible suitable trial functions. posal function making use of variational techniques to solve

the Thomas-Fermi differential equation. Comparing the re-
sults in Table I, we can see that the Eq. (23) has a lower error
3. Results compared with Wu’s corresponding solution throughout the
. -~ ‘measured range. The average error calculated for Wu'’s solu-
In the present paper, we suggest the following modified varitjons is 25.12% for Eq. (12), compared with the error found
ational trial solution of Wu's function for the Thomas-Fermi ¢4, our solution which is 4.86% taking into account 67 points
equation adding a new parameter: for the 2 values.
2 %ayE Furthermore, in the test of efficiency for various heavy
up(x) = (14 ava + b + cxv/z) e - (23)  atoms, we can see that our errors are smaller compared with
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TABLE |. The values of the functions proposed by Wu, our solution, Oulne’s solutions, and the corresponding comparison of the relative
error (%) of the functions respect to the numerical solutions. In this E&$€ xwm, ur) = (UNum — Uk/UNum) X 100. In the last row, the

n

average or error is obtained based in 67 points of valuesasfd is defined1/n) >°7_ (unwm — Uk /UNwm)100.

T UNum uq () up () ue () Er(unum, us) Er(unNum, Up) Er(uNum, us) Er(up,us)
0 1 1 1 1 0 0 0 0
0.005 0.9925 0.9937 0.9924 0.9924 -0.1271878 0.0062353 0.0075520 0.1334315
0.01 0.9854 0.9878 0.9852 0.9852 -0.2453116 0.0114708 0.0138323 0.2568119
0.05 0.9352 0.9451 0.9348 0.9347 -1.0595350 0.0422651 0.0494458 1.1022660
0.1 0.8818 0.8987 0.8813 0.8812 -1.9272224 0.0527361 0.0620270 1.9810033
0.5 0.607 0.6471 0.6076 0.6077 -6.6170230 -0.114954 -0.120798 6.4946030
1 0.424 0.4642 0.4245 0.4246 -9.4945286 -0.136967 -0.155718 9.3447622
2.5 0.193 0.2099 0.1919 0.1916 -8.7685711 0.5383589 0.6968007 9.3573060
5 7.88E-2 0.0748 0.0782 0.0774 4.96226748 0.6495712 1.7555564 -4.340893
7.5 4.10E-2 0.0318 0.0416 0.0405 22.2682805 -1.502561 1.0456479 -23.41895
10 2.43E-2 0.0150 0.0256 0.0246 38.1146640 -5.610095 -1.408342 -41.40206
15 1.08E-2 0.0040 0.0124 0.0116 62.3428611 -15.03278 -7.691568 -67.26399
20 5.78E-3 0.0013 0.0070 0.0065 77.4563832 -22.48964 -12.97495 -81.59549
25 3.47E-3 0.0004 0.0043 0.0039 86.5124180 -25.61849 -15.25027 -89.26306
30 2.26E-3 0.0001 0.0027 0.0025 91.9085718 -23.73144 -13.76774 -93.46049
35 155E-3  7.6288E-5 0.0018 0.0017 95.0781764 -18.10299 -9.909230 -95.85042
40 1.11E-3  3.3557E-5 0.0012 0.0011 96.9768372 -10.69243 -3.804272 -97.26886
45 8.28E-4 1.5425E-5 0.0008 0.0007 98.1370535 -0.380587 4.4319447 -98.14411
50 6.32E-4  7.3605E-6  0.0005 0.0005 98.8353564 10.174996 12.963972 -98.70343
Averages 25.127450 -4.868571 -2.085092 -26.126091

TABLE Il. Comparison of total ionization energi&sin units €2 /ao) from HF and the found solution. In the last row, the average or error
is taken for the values of and is defined1/n) >-i" | (|uNum — wk|/uNum)100.

z E(HF) E°(B) E"(B) E* (us) B (us) E*(u,) E"(uy)

2 2.8617 3.88 2.76 3.22 2.29 3.94 2.81

4 14.573 19.53 14.35 16.21 11.91 19.84 14.57

6 37.6876 50.31 37.85 41.76 31.42 51.09 38.44

8 74.8094 98.43 75.38 81.71 62.57 99.97 76.56

10 128.5471 165.68 128.65 137.53 106.80 168.26 130.66

12 199.6146 253.52 199.11 210.45 165.28 257.48 202.21

16 397.5049 496.07 396.47 411.79 329.11 503.81 402.65

20 676.7582 834.96 676.15 693.11 561.28 847.98 686.69

28 1506.8708 1830.76 1510.90 1519.74 1254.22 1859.31 1534.47

36 2752.0549 3290.80 2752.46 2731.74 2284.86 3342.13 2795.39

48 5465.1333 6439.10 5464.19 5345.19 4535.90 6539.53 5549.42

54 7232.1382 8475.81 7233.29 7035.89 6004.46 8608.01 7346.11

66 11641.4531 13537.29 11660.31 11237.49 9679.39 13748.43 11842.17

72 14321.25 16584.60 14340.57 13767.11 11904.31 16843.27 14564.24

80 18408.9902 21206.67 18421.40 17603.95 15291.87 21537.43 18708.72

86 21866.7715 25104.92 21874.76 20839.95 18158.54 25496.48 22215.94
Averages 23.54 0.47 5.31 17.17 25.47 1.57

@ Values corresponding to energy uncorrected calculated mean Eq. (19).
b Values corresponding to energy corrected calculated with the correction mean Eq. (20).
E(B) Correspond to energy for numerical resuft(0) = —B = —1.588070972.
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the solutions found by Wu. However, we can also see thaappeal to the resolution of subsidiary conditions, in contrast
the correction from ionization energies using (20) not onlyto most of variational solutions found years ago in the liter-
reproduce better the energies calculated numerically by HRture. Each integral has been solved analytically without the
but also produce a better approximation with our solution.use of corresponding numerical methods.

However, we also notice that the energy calculation using the
uncorrected equation is better for Wu'’s solution comparedA
to ours, contrary to what occurs with the equation suggested

by [21]. This work was supported by Divisn de Investigaéin of
The derivative of our function (23) at = 0 is equal to  Facultad Experimental de Ciencias on Universidad del Zulia,
-1.61284 just as for our function (14), which is closer to theunder grant RDI-FEC-001-2015. DSP gives thanks to JEDL
numerical derivative: -1.58807102 [14] compared with thefor the comments and revise the manuscript. DSP also gives
derivative of function (12) at = 0 which equalsto -1.31828. thanks to AGMS for his comments about the mathematical
As we can see our results are accurate without the need gxuations and help in the numerical solution.
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