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A modified trial solution of Wu’s function depending on three parameters and satisfying the boundary conditions, is used as a solution to the
Thomas-Fermi equation using variational methods. The found solution is used to calculate the total ionization energy of atoms, taking into
account a correction to this equation. Our results show that the proposed generalization is much better than Wu’s one, being in agreement
with other solutions found in literature. Our solution, reproduces conveniently the corresponding numerical solution.
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1. Introduction

From the earliest days of quantum mechanics, it has been
clear that one could not hope to solve most of the physically
interesting systems exactly, especially those with more par-
ticles. Thus, by 1930 (only three years after the first works
of Thomas [1] and Fermi [2], and five years after the advent
of the “new” quantum theory), a large variety of approximate
methods had been developed to construct approximate ana-
lytical solutions for nonlinear differential equations. There
has been a great deal of work on rigorous mathematical prob-
lems in quantum theory, most of it on the fundamentals and
relevant operator theory.

The Thomas-Fermi equation is a nonlinear ordinary dif-
ferential equation for modeling electrons of an atom. In par-
ticular, the Thomas-Fermi model is widely used in nuclear
physics, for example, to answer questions related to nuclear
matter in neutron stars [3]. In spite of its generality, the ap-
plication of the Thomas-Fermi method is based on the solu-
tion u(x) of the second-order nonlinear differential equation
which is difficult to determine.

The purpose of this model is give a expression for the
electron densityρ(r), and of course, the electrostatic poten-
tial between the nucleus and the cloud of electrons at a dis-
tancer for this. This central potentialV (r) dominates the
interaction of electrons obeying Fermi-Dirac statistics in a
volume region considered to be large that does not vary ap-
preciably over the size of the region. In this case the electrons
move freely. In this conditions, the electron kinetic energy is
a minimum, and the electrons are packed in phase space as
densely as possible consistent with the exclusion principle. If
pmax is the maximum value for the electron momentum

n =
8π

3h3
p3
max, (1)

wheren is the number of electrons per unit volume. The po-

tential energy is−eV , and it is confined in a neutral atom if
its energy is non-positive,i.e.

p2

2m
= eV. (2)

Using the expression (2) into (1), we can express the electron
charge density in terms of the potentialV ,

ρ(r) = −en = − 1
3π2

√(
2meV

~2

)3

. (3)

Now the electronic charge densityρ(r) and the potential
V (r) are related via the Poisson equation:

∇2V (r) + 4πρ(r) = 0, (4)

Taking into account the solution of (4), the boundary
conditions are such thatV (r) tends toZe/r when r → 0
(Coulomb field), andV (r) tends to zero whenr tends to in-
finity.

The Thomas-Fermi equation in its usual form is presented
when performing a change of variable

x =
r

a
, V (r) =

eZu(r)
r

, a = a0

(
9π2

128Z

)1/3

, (5)

where a0 = (h2/4π2mee
2) = 5.2917721092.10−11

m ≈ 0.53 Å, is the first Bohr radius of the hydrogen atom,
at a distancer from the nucleus,me ande are the mass and
charge of electron.

This change is also convenient because it eliminates all
numerical constants in Eq. (4) leading to an universal non-
linear second-order ordinary differential equation which de-
scribes all atoms without distinguishing their composition
or number of electrons. Substituting the changes described
in (5) into Eq. (4), we find the Thomas-Fermi equation

d2u

dx2
− u3/2

x1/2
= 0. (6)
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This new Eq. (6) satisfies

u(0) = 1, u(∞) = 0. (7)

An important parameter is the magnitude of the initial
slope

B = −du(r)
dr

∣∣∣∣∣
x=0

, (8)

such as under numerical integration yieldsB = 0.5055 π =
−1.588 [4].

There have been many attempts to construct an approx-
imate analytical solution of the Thomas-Fermi equation for
atoms [5]. E. Roberts [6], in these cases using variational
principles, trying to solve the equation by proposing a one-
parameter trial function:

u1(x) = (1 + ηx)e−ηx, (9)

whereη = 1.905 and Csavinsky [7] has proposed a two-
parameters trial function:

u2(x) =
(
a0e

−α0x + b0e
−β0x

)2
, (10)

wherea0 = 0.7218337, α0 = 0.1782559, b0 = 0.2781663
andβ0 = 1.759339. Later, Kesarwani and Varshni [8] sug-
gested:

u3(x) =
(
ae−αx + be−βx + ce−γx

)2
, (11)

where a = 0.52495, α = 0.12062, b = 0.43505,
β = 0.84795, c = 0.04 andγ = 6.7469.

The last two equations are obtained using an equivalent
Firsov’s variational principle [9]. The first equation has been
modified by Wu [10] in the following form:

u4(x) = (1 + m
√

x + nx)2e−2m
√

x, (12)

wherem = 1.14837 andn = 4.0187 · 10−6.
Recently, M. Desaixet al. [11] proposed the following

expression:

u5(x) :=
1

[1 + (kx)a]b
, (13)

where a = 0.9237797117, b = 2.097976638 and k =
0.4834685937. Moreover, other attempts have been carried
out to solve this problem [12, 13]. But, all of these proposed
trial functions do not reproduce appropriately the numerical
solution of the Thomas-Fermi equation [14] and its deriva-
tive atx = 0. They did not prove to be efficient when used to
calculate the total ionization energy of heavy atoms.

Oulne [15], proposed a trial function which depends on
three parametersα, β andγ:

u6(x) =
(
1 + α

√
x + βxe−γ

√
x
)2

e−2α
√

x, (14)

The optimum values of the variational parametersα, β and
γ, obtained by minimizing the Lagrangian, are respectively
equal to 0.7280642371, -0.5430794693 and 0.3612163121.

From other methods Marincaet al. [16], solve the
Thomas-Fermi equation in this case using OHAM (Optimal
Homotopy Asymptotic Method), finding a pair of approx-
imate solutions with good accuracy. These solutions are
somewhat complicated, introducing many parameters in a
combination (or rather a generalization) of solutions found
previously for other authors by simpler functions. Bougoffa
et al [17] work with a new technique for solving the Thomas-
Fermi equation. They first reduce it to an equivalent second-
order differential equation, and then they express the solution
in the logarithmic form to obtain a good approximate solution
in a straightforward manner by using a direct approach.

The purpose of this manuscript is give a solution to
Thomas-Fermi equation with a modified trial solution of
Wu’s function depending on three parameters and satisfying
the boundary conditions. The found solution is used to calcu-
late the total ionization energy of atoms, taking into account
a correction to this equation. Our results show that the pro-
posed generalization is much better than Wu’s one, being in
agreement with other solutions found in literature and repro-
ducing conveniently the corresponding numerical solution.

2. Variational approach for Thomas-Fermi
equation and a correction of ionization en-
ergies

We use variational techniques and optimization to find ana-
lytical solutions. In this case, the idea is that the Thomas-
Fermi differential equation can be described by the following
Lagrangian

L(u) =
1
2

(
du

dx

)2

+
2
5

u5/2

x1/2
, (15)

this Lagrangian is equivalent to Eq. (6), when one use the
Euler-Lagrange equation

d

dx

∂L

∂u′
=

∂L

∂u
, (16)

where the prime symbol denotes derivative respect tox vari-
able. Finally, the total Lagrangian is constructed in the form

Lt =

∞∫

0

Ldx, (17)

thus when a solution is fixed,u = u(x, αi), i = 1, 2, 3...,
in terms of some coefficients, then it can be optimized using
a total Lagrangian minimum condition to find the value of
arbitrary constant

∂Lt

∂αi
= 0. (18)

There has been a considerable renewed interest in cal-
culating leading corrections, to the binding energy of the
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Thomas-Fermi atom. The problem of incorporating the first
leading correction in the Thomas-Fermi model was pre-
dicted by Scott [18], the values for the second and the third
corrections were suggested by Marchand Paskett [19] and
Schwinger [4]. Taland Levy [20] suggested that aZ−1 ex-
pansion could lead to a better fit for the total binding energy
of the Thomas-Fermi atom. In this way, [21] uses theZ−1 ex-
pansion to re-write the ionization energy of a many-electrons
atom to the second leading corrections, in terms of the initial
slope of the trial variational solutions of the Thomas-Fermi
equation, where no attention has been paid to the calcula-
tion of these nonzero order corrections in terms of trial vari-
ational functions of the variational schemes which replaces
the Thomas-Fermi theory.

A test to demonstrate the efficiency of the different solu-
tions can be made by calculating the total ionization energy
of heavy atoms following the relation [22]

E(Z) =
12× 21/3 × Z7/3

7× (9π2)1/3

(
du

dx

)

x=0

, (19)

in hartrees (e2/a0). This expression can be considered as a
zero-order correction of the total binding energy. The first
derivative ofu′(x) evaluated in the origin, is the initial scope
of u(x). Numerical calculations give a valueu′(0) = −B
= −1.588070972, also called Baker’s constant. For the lead-
ing corrections, Agilet al. [21] give a correction for Eq. (19).
They used a technique in which the correction becomes a ex-
pansion overZ−1, and applied it to the Thomas-Fermi model.
The corrected second order equation found is

E(Z) ≈
(

12
7

)(
2

9π2

)1/3

Z7/3U ′(0), (20)

where

U ′(0) = F (Z)u′(0), (21)

and

F (Z) = 1− 0.6504Z−1/3 + 0.364Z−2/3. (22)

As can be easily seen the resulting Eq. (20) for the binding
energy reduces to the zero-order Thomas-Fermi energy for
u′(0) = −B, andF (Z) → 1 corresponding to large atomic
numbers. In general, this model could be applied to various
possible suitable trial functions.

3. Results

In the present paper, we suggest the following modified vari-
ational trial solution of Wu’s function for the Thomas-Fermi
equation adding a new parameter:

up(x) = (1 + a
√

x + bx + cx
√

x)2e−2a
√

x. (23)

In this case, the total Lagrangian (17), is a bit more com-
plicated but can be simplified asLt = L1t + L2t, where

L1t =
19845c4

65536a10
− 945bc3

2048a9
+

315b2c2

1024a8
− 225b3c

2048a7
+

45c3

256a7

+
75b4

4096a6
− 585bc2

2048a6
+

213b2c

1024a5
− 9b3

128a4
+

33c2

2048a4

− 3bc

32a3
+

39b2

256a2
+

19a2

128
− 39c

128a
+

19b

64
(24)

and

L2t =
41845579776c5

6103515625a16
− 13948526592bc4

1220703125a15
+

8776
15625a

− 153280512b3c2

48828125a13
+

1379524608c4

244140625a13
− 8776b

15625a3

− 434294784bc3

48828125a12
− 580608b5

9765625a11
+

44544b2

78125a5

− 3483648b3c

1953125a10
+

27288576c3

9765625a10
+

451584b4

1953125a9

− 7934976bc2

1953125a9
+

4281984b2c

1953125a8
− 173952b3

390625a7

+
2297088c2

1953125a7
− 591744bc

390625a6
+

55738368b2c2

9765625a11

+
42552c

78125a4
+

1992646656b2c3

244140625a14
+

6386688b4c

9765625a12
(25)

Then, when we minimize the Lagrangian through (18),
we found the values of parameters in the trial solution:
a = 0.9614236887819619, b = −0.3442527917822383 and
c = 0.08703140640977791.

The values of the functions proposed by Wu, our solu-
tion, and Oulne’s solutions are shown in the Table I. We can
see that all functions satisfy the boundary conditions (7), ob-
taining accurate results. In Table I, the relative error (%) of
the solutions is shown in comparison to the numerical solu-
tion [14].

In the Table II, we present the ionized energies calculated
for all solutions, and compared them with the Hartree-Fock
(HF) numerical solution [23]. In the last row, we show the av-
erage error is obtained from all 16 tested points,2 ≤ Z ≤ 86.

4. Conclusions

We have proposed a trial function that generalizes Wu’s pro-
posal function making use of variational techniques to solve
the Thomas-Fermi differential equation. Comparing the re-
sults in Table I, we can see that the Eq. (23) has a lower error
compared with Wu’s corresponding solution throughout the
measured range. The average error calculated for Wu’s solu-
tions is 25.12% for Eq. (12), compared with the error found
for our solution which is 4.86% taking into account 67 points
for thex values.

Furthermore, in the test of efficiency for various heavy
atoms, we can see that our errors are smaller compared with
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TABLE I. The values of the functions proposed by Wu, our solution, Oulne’s solutions, and the corresponding comparison of the relative
error (%) of the functions respect to the numerical solutions. In this caseEr(uNum, uk) = (uNum − uk/uNum)× 100. In the last row, the
average or error is obtained based in 67 points of values ofx and is defined(1/n)

∑n
i=1(uNum − uk/uNum)100.

x uNum u4(x) up(x) u6(x) Er(uNum, u4) Er(uNum, up) Er(uNum, u6) Er(up, u4)

0 1 1 1 1 0 0 0 0

0.005 0.9925 0.9937 0.9924 0.9924 -0.1271878 0.0062353 0.0075520 0.1334315

0.01 0.9854 0.9878 0.9852 0.9852 -0.2453116 0.0114708 0.0138323 0.2568119

0.05 0.9352 0.9451 0.9348 0.9347 -1.0595350 0.0422651 0.0494458 1.1022660

0.1 0.8818 0.8987 0.8813 0.8812 -1.9272224 0.0527361 0.0620270 1.9810033

0.5 0.607 0.6471 0.6076 0.6077 -6.6170230 -0.114954 -0.120798 6.4946030

1 0.424 0.4642 0.4245 0.4246 -9.4945286 -0.136967 -0.155718 9.3447622

2.5 0.193 0.2099 0.1919 0.1916 -8.7685711 0.5383589 0.6968007 9.3573060

5 7.88E-2 0.0748 0.0782 0.0774 4.96226748 0.6495712 1.7555564 -4.340893

7.5 4.10E-2 0.0318 0.0416 0.0405 22.2682805 -1.502561 1.0456479 -23.41895

10 2.43E-2 0.0150 0.0256 0.0246 38.1146640 -5.610095 -1.408342 -41.40206

15 1.08E-2 0.0040 0.0124 0.0116 62.3428611 -15.03278 -7.691568 -67.26399

20 5.78E-3 0.0013 0.0070 0.0065 77.4563832 -22.48964 -12.97495 -81.59549

25 3.47E-3 0.0004 0.0043 0.0039 86.5124180 -25.61849 -15.25027 -89.26306

30 2.26E-3 0.0001 0.0027 0.0025 91.9085718 -23.73144 -13.76774 -93.46049

35 1.55E-3 7.6288E-5 0.0018 0.0017 95.0781764 -18.10299 -9.909230 -95.85042

40 1.11E-3 3.3557E-5 0.0012 0.0011 96.9768372 -10.69243 -3.804272 -97.26886

45 8.28E-4 1.5425E-5 0.0008 0.0007 98.1370535 -0.380587 4.4319447 -98.14411

50 6.32E-4 7.3605E-6 0.0005 0.0005 98.8353564 10.174996 12.963972 -98.70343

Averages 25.127450 -4.868571 -2.085092 -26.126091

TABLE II. Comparison of total ionization energiesE in units (e2/a0) from HF and the found solution. In the last row, the average or error
is taken for the values ofZ and is defined(1/n)

∑n
i=1(|uNum − uk|/uNum)100.

Z E(HF ) Ea(B) Eb(B) Ea(u4) Eb(u4) Ea(up) Eb(up)

2 2.8617 3.88 2.76 3.22 2.29 3.94 2.81

4 14.573 19.53 14.35 16.21 11.91 19.84 14.57

6 37.6876 50.31 37.85 41.76 31.42 51.09 38.44

8 74.8094 98.43 75.38 81.71 62.57 99.97 76.56

10 128.5471 165.68 128.65 137.53 106.80 168.26 130.66

12 199.6146 253.52 199.11 210.45 165.28 257.48 202.21

16 397.5049 496.07 396.47 411.79 329.11 503.81 402.65

20 676.7582 834.96 676.15 693.11 561.28 847.98 686.69

28 1506.8708 1830.76 1510.90 1519.74 1254.22 1859.31 1534.47

36 2752.0549 3290.80 2752.46 2731.74 2284.86 3342.13 2795.39

48 5465.1333 6439.10 5464.19 5345.19 4535.90 6539.53 5549.42

54 7232.1382 8475.81 7233.29 7035.89 6004.46 8608.01 7346.11

66 11641.4531 13537.29 11660.31 11237.49 9679.39 13748.43 11842.17

72 14321.25 16584.60 14340.57 13767.11 11904.31 16843.27 14564.24

80 18408.9902 21206.67 18421.40 17603.95 15291.87 21537.43 18708.72

86 21866.7715 25104.92 21874.76 20839.95 18158.54 25496.48 22215.94

Averages 23.54 0.47 5.31 17.17 25.47 1.57
a Values corresponding to energy uncorrected calculated mean Eq. (19).
b Values corresponding to energy corrected calculated with the correction mean Eq. (20).

E(B) Correspond to energy for numerical result,u′(0) = −B = −1.588070972.
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the solutions found by Wu. However, we can also see that
the correction from ionization energies using (20) not only
reproduce better the energies calculated numerically by HF,
but also produce a better approximation with our solution.
However, we also notice that the energy calculation using the
uncorrected equation is better for Wu’s solution compared
to ours, contrary to what occurs with the equation suggested
by [21].

The derivative of our function (23) atx = 0 is equal to
-1.61284 just as for our function (14), which is closer to the
numerical derivative: -1.58807102 [14] compared with the
derivative of function (12) atx = 0 which equals to -1.31828.

As we can see our results are accurate without the need to

appeal to the resolution of subsidiary conditions, in contrast
to most of variational solutions found years ago in the liter-
ature. Each integral has been solved analytically without the
use of corresponding numerical methods.
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