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Mean field theory of inhomogeneous fluid mixtures
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By using density functional theory, we analyze an inhomogeneous fluid mixture composed of an arbitrary number of species within mean
field approximation. Under the assumption that the interfacial region behaves as an elastic continuous medium, we calculate the stress
tensor and the equilibrium grand potential of the system for different surfaces. It is found that, unlike the single component system, there
exist multiple coexistence regions induced by the diversity of interaction potentials between the different species. Surface properties are
calculated for a step-like density profile and consistency with the monocomponent system is verified for both the same formalism and other
approaches at the level of surface tension.

Keywords: Stress tensor; density functional theory; surface tension; density profile.
PACS: 05.20.Jj; 64.75.Cd; 68.35.Md

1. Introduction components; in particular the microscopic expressions for the
grand potential and surface properties are investigated for an
Density functional theory (DFT) for classical fluids has raisedasymptotic approximation of the density profile. Shortly, we
much interest in recent years. To a great extent, this is dushall obtain a theory for the system with an arbitrary number
to its versatility to be applied in different problems of vari- of components and show that the generalization maintains the
ous scales [1-5]. The theory assumes existence of a densi§ame structure as the monocomponent case. The main pur-
functional corresponding to the intrinsic Helmholtz free en-pose will be to provide a completely independent description
ergy F'[p(7)], which contains all the information about inter- from first principles.
molecular interactions in the system. For a simple fluid in a
coexistence state, the density profile of the interfacial region, Inhomogeneous fluid mixtures of several components
p(7), is a function of position. Its equilibrium value is ob- represent a formidable challenge for equilibrium statistical
tained by solving the Euler-Lagrange (EL) equation that reimechanics due to the difficulty to carry out theoretical predic-
sults from minimization of the grand potential functional [2]. tions and experimental measurements of their surface proper-
The solution to the EL equation is not trivial as there is noties [10,11]. One of the crucial problems is that as the num-
exact expression for the free energy functional. Thus, instealder of components increases, new mechanisms that modify
of solving the equation, one may follow a completely differ- surface properties between the different fluid phases are in-
ent scheme which consists in manipulating the EL equatiomluced. The explanation on the relevance of these mecha-
to obtain a force balance equation, which implies existencaisms when passing from a mixture to another with a differ-
of a stress tensor. Following this alternative approach, a theent number of species is still unknown nowadays [12]. Re-
ory has been developed that describes correctly the monanarkably, the most relevant physical property for mixtures
component simple fluid in a liquid-vapor coexistence stateis surface tension, which has been widely investigated from
The most general expression of the stress tensor for this sydiverse viewpoints. In this sense, we consider important to
tem has been calculated [6,7] and the result has been usdudghlight some works related to the analysis of this property
at the level of mean field, to obtain the contribution to theand to our knowledge within the context of this investigation.
free energy from the interfacial region of surfaces with sim-The first one is the work of M. Sahiet al. They investigate
ple geometries, and also for an arbitrarily curved interfacethe behavior of the surface tension of a binary mixture ofCO
For the simple geometries, the microscopic expressions faand hydrocarbons near the critical point using a square gradi-
the surface properties have been calculated within two levent theory [10]. A drawback of their theory, however, is the
els of approximation: for a step-like profile and a smoothinability to correctly capture the surface properties. In an-
one respectively [8,9]. In this work we extend the analysisother work, R. Penfol@t al. perform a calculation to inves-
to describe an inhomogeneous fluid mixture composet of tigate the same physical quantity using a generalized van der
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Waals theory, but for an Argon-Krypton mixture [12]. Their expressions for different species; except for ideal gases. The
results are in agreement with numerical simulations and exequilibrium configuration is obtained from minimization of
perimental data for this particular system. In a third work,the grand potential functional, which allows for knowledge
T. Hiesteret al. investigate the behavior of a binary mix- of the equilibrium density profile of each specie

ture using an effective Hamiltonian [13]. Unlike the previous . ‘o

works, these authors derive microscopic expressions for the Qp (r)’j A =0 2)
surface tension and rigidity constants, but their analysis is re- 6p"(7) ol ’

stricted to a two-component system. Although these three

investigations, and many more in literature, contribute to unWherepy is the equilibrium density profile of theth specie.

derstanding interfacial phenomena within mixtures, the topic! € equilibrium of the whole system is obtalned when the
is still an active field of research. values of all equilibrium density profilesg. p, ..., p§, are

In this work we also derive all surface properties. Never-nown. Under these conditions, the equilibrium grand poten-

theless, this investigation shows two clear differences whef&! can be written in the form

compared to previous studies. The first one is that here we 1 t (= 1 t

consFi)der the gescription of a fluid mixture with an arbitrary 207,50 (M) = Floo (7). - po(7)]

number of components instead of a binary system, and no , ,

restriction to a particular system is introduced. The second + Z / dir [ — Ve (Mo (7). (3)

is that, as it will be shown shortly, we determine a micro-

scopic expression, exact and simple, for the grand potentigthat is, the system is in thermodynamic equilibrium, which
that depends on the densities of all species and the differefieans thermal, chemical, and mechanical equilibrium. As
interaction potentials between particles, which allows us tgyressure is a tensor, the last condition distinguishes this sys-
calculate the properties of the system without ambiguity. Item from homogeneous fluids. In addition, mechanical equi-
is important to mention that in order to obtain microscopicjibrium implies existence of force balance; this because any
expressions for the interfacial properties, we assume that theart of the interfacial region is not found rotating or displac-
interface behaves as an elastic continuous medium which sahg in a given direction. The EL equations can be manip-
isfies the corresponding Helfrich Hamiltonian [9]. ulated to identify the conservation equation for each specie.

The paper is organized as follows. In Sec. 2 we outlineTo do so, we start by multiplying the EL equation Yyl (7)
the fundamentals of the theory of several components. Sec.

3 briefly describes the procedure to obtain the stress tensor. 77) Flp"(7), ..., p'(F)]

The appropriate approximations we introduce to obtain spe- opt (3 P

cific results of the most relevant surface properties are per- ) ,

formed in Sec. 4, and to conclude, in Sec. 5 we present some — Vb (M)[u' = Vi (M)] = 0. 4)
final remarks.

Then, we introduce the relationship

2. Density Functional Theory VIpo (Ve (M) = po(7)V Vet (7) + Vet (A Vo (7). (5)

Let us consider a grand canonical density functional for thé\fter some manipulations carried out in Eq. (4), we get to
t-component fluid consisting of particles of different species SF .

interacting via a spherically symmetric potential; to be intro- — | Vpo(7r)

duced in explicit form shortly. The expression for this grand Polng

potential functional is — VA" = Vi (M]ph(7)} = pi(F)VVEL(F).  (6)

Qp'(7), ..., p"(M] = Flp'(7), ..., p"()] This is the force balance equation for an arbitrary specie. It
is worth mentioning that Eq. (6) only contains partial infor-
+ Z/dr Vi (7M)p'(7), (1)  mation of the system; that is only on the coexistence region
of thei-th specie. As the interest is on force balance in the
whole system, we sum over all species to obtain
whereF[p!(7),..., p'(F)] is the intrinsic Helmholtz free en-
ergy of the whole systemy?, Vi (7), and p'(7) are the P
chemical potential, the external potential, and the density Vo= ZpO( )
profile of thei-th specie respectively. Within the stress ten-
sor theory being formulated here, the free energy is assumeshereo is the stress tensor of all species, which is symmetric
known. due to nature of the system [6].
The intrinsic Helmholtz free energy contains information It is a known fact that this stress tensor is not unique.
on all molecules of the different species, which are coupledrhere exists gauge freedom, as one can always add a sym-
to each other in such a way that results impossible to separateetric tensor with vanishing divergencedo Although this

Vet (), @)
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feature could play down relevance to the tensor, the physinew compound. The fact that each specie can be included
cal properties of the system have no dependence upon this the surface is denoted by the scrippn the density pro-
arbitrariness. It is worthwhile emphasizing that a stress tenfile, that isp; wherei = 1,2,...,t. Equidensity surfaces
sor constructed on the basis of general principles guarantegg§ = consti define families of surfaces’, having normal
a better approach to the physical properties of the system. vectorsin!(7) = Vp'(7)/|Vp'(7)|, which are defined only
Now, the properties of the system and the stress tensawithin the interfacial region, wher&p? # 0. It will be
itself can be studied in more detail by introducing the separashown in the following section that within this formalism
tion we carry out a description of the system which considers
o =09+ Oinn, (8) all higher order derivatives of the density profile; assuming
they vanish at the boundary of the system where density is
homogeneous. In our analysis, we consider some simple ge-
ometries and the most general case of an arbitrarily deformed
oo =w(7 [ps, ..., ph]) interchial regioAn and introduce a set of semi-orthogonal lo-
cal unit vectorsp*(7), t} (7), t5(7), wheret® (¥) andts (7) are
" tangent vectors to the equidensity surfaces satisfying the con-

= lf(ﬁ [p(l),...,po]) - Z(/ﬁ - Ve&t(ﬂ)ﬂf)] L, (9 ditions: 7#(7) - fg(f‘) = 0, {21(7:’) . fé(f’) £0, a = 1,2,

i=1

where o is the homogeneous contribution from the bulk
phases of all species, given as

t

i = 1,...,t. Itis now possible to perform the separation
with | being the unit tensor, angl,,;, is the contribution from  of the stress tensor in terms of its local components: nor-
the interfacial region, which satisfies the relation mal, tangent, and tangent normal [14]. Nevertheless, as the

most relevant physical property of the system is the equilib-

rium grand potential, which represents the microscopic free
energy, only the normal component of the stress tensor is re-
quired for its calculation. This can be written in the form

oF
0p’

t
Vo (7) =Y Vh(7)
i=1 Po

N = W7 P8, ..., ph N 12
Into these we have introduced the densities of grand po- ? (7 pos -+ pol) + ia (12)
i = [l t
tenjlalland oftHeImh_oltz free energy(7, [py, ..., p]) @nd gy integrating this component over the whole space one ob-
f(7 [pg, - -, py)), defined respectively as tains the equilibrium grand potential [14,15]
Qpt, ..., ok :/deF, Lo, pk]) and .
[pO IOO] ( [100 pOD QO _ /d?“ [O‘N(F) _ O_llr\lfh(,,;»)] (13)
1 t1 - = 1 t
Flpgs - pol = /drf(“ [£6: -+ pol)- (11) It can be observed from this expression that the free energy

separates naturally bulk and surface contributions indepen-
We emphasize thaf'[p(7)] is non-local in terms of the den- gently of the surface geometry. The first term contains only
sity profile, which implies that any local term in this free en- |k information, corresponding to terms of pressure by vol-

ergy gives no contribution te;,y,. ume, whereas the second one captures the interfacial prop-
The separation in Eq. (8) is motivated by two reasonserties of the fluid mixture. Equation (13) is a key element
The first one is that the,, term originates exclusively from \yithin this theory as introduction of the normal component of
the non-local part of”, and the second is that within the re- giress tensor into the free energy allows, without ambiguity,
gion where the system is homogenedusgi,, = 0 andthe  cajculation of all relevant properties of the system. In addi-

tensoroy, vanishes. On the other hand, the diagonal termon, further developments can be performed so as to obtain
o originates from both local and non-local contributions to general results [6,9].

F, and is given by (7, [pg, - . ., p§])I, when the stress tensor
becomesr = oyl. Moreover, this separation can be regarded3.  Stress Tensor Derivation
as a phenomenological interpretation of the system. From the
macroscopic point of view, there exist two well defined re-It was shown in the previous section that the EL equation
gions: those of the bulk phases and the interfacial region. lof a multicomponent system leads to a force balance equa-
a microscopic scale, it is impossible to guarantee existence aion, which implies existence of a stress tenggrunknown
decoupling between molecular interactions of both homogetp to this point. Starting from general physical principles,
neous and inhomogeneous regions. However, one may cothis quantity may be constructed to any level of approxima-
sider the dominant contribution to be contained in each regiotion of the free energy. For a non-local system of a single
and not necessarily on the boundary molecules. component, this task has been carried out by J. K. Percus
The geometric properties of the interfacial region, whichand V. Romero-Rodh, modeling the system as a continu-
we consider here as a mathematical surface, depend on ibsis medium [6,7]. Here we follow the same approach but
composition. Although it may be formed by a mixture of dif- for a t-component mixture. The key element for this anal-
ferent species, these maintain identity as they do not form gsis is the non-locality of the system. As in the interfacial
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region density varies from point to point, an appropriate de-denoted by Greek superscripts, species of the different com-
scription must capture as much information as possible fronponents of the system are indicated by Latin superscripts, and
the neighborhood of each point. This may be accomplishethe summation convention over repeated indices is assumed.
by including an arbitrary number of high-order derivatives We emphasize that only the most relevant aspects in the con-
of the density. In this sense the Lagrangian formulation forstruction of the stress tensor are discussed without going into
continuous systems and fields is the most appropriate becauakyebraic details.

the Lagrangian allows incorporation of any number of deriva- The Lagrangiari. of the system depends on the densi-

tives qf the dynamic vanaple und(_ar con_5|de_rat|on [6'16’17]tie3p"(F) of all species and on an arbitrary numlbesf their
For this system, the density and its derivatives are the rele

) ”» 4 Spatial derivativesp’ ‘ 7). From this we write the
vant physical quantities which play a role analogous to theaztion Phasas.ac (1)

dynamic variables of position and velocity in classical me-
chanics; the difference being that these quantities depend on

the vector position rather than on a parameter as time. On g — dFL({pl(F),pl,al (), P saran (F)y o by
the other hand, the derivatives have a number of components
that depend on the dimensionality of space. In this section {01(7), p oy (), Phsaras (), - 137, (14)

we denote field variables ky; derivatives are indicated by a

semicolon, components of the vector position and density are
|  and calculate its first variation

oL oL oL
6S = [ dif | § =—=dp* Y/ RN R, /L SN S
/ r ({apl p + apl’al p b 1+ap17a1a2 p 1] 2+ b 9

oL ., OL _, oL, &K .. oL .
{5+ gt gt o | | 2 8 [ g 09

1)
— = 00" a0,

To find the EL equation, successive integrations by parts of the density field are necessary. We consider these derivative:
vanishing on the boundary of the hypervolume where the field is defined; that is

=0, (16)

ext

J
6p 1] ...Og

wheres =0,1,2,...,¢,andj = 1,2, ...,t. Physically, this is equivalent to state that the fluid is homogeneous at the boundary
of the system. The condition for stationarifyy = 0, leads to the equations of motion

t c . oL
XX (@) @

i=1 s=0
which reduce to the single dynamic variable case. The same EL equations may alternatively be obtained from a modified
LagrangianL, with the advantage that this formalism incorporates an infinite number of high-order derivatives and that allows
for other extensions [6]. The proposal of modified Lagrangian is

L({pas...a0rPar.cuspbr - Pl s Plr. s 311 Pat s 1 ety i)
t e} ) . )
= L(plranr o Py T) F DD (P s = Pl ) Pltr (18)
i=1 s=0
Writing the action for this Lagrangian and calculating its first variation, one obtains
. . . .
OL , OL ; OL ,

35S = /dF —0p! +—0p! + ——p'F . (19)

Once again, repeated integrations by parts, using the fact that all derivatives of the density vanish at the boundary, and tha
P cr. andpffl___as are independent variables, give rise to the corresponding EL equations

QL ( iaL ) —0, (20)
My on NP4 0.5/
_oL _. (21)
3pzaﬂl...as

By introducing in the latter the explicit form of the proposed Lagrangian for the system of several components, Eq. (18), one
gets to the relationship
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_ _ of the linear momentum. Finally, isotropy of space implies
Parca,f = Pos..cvs " (22)  thatthe closed system has spatial rotational invariance, which
in its turn guarantees conservation of the angular momen-

We now calculate the explicit EL equation for the density Oft m. Such symmetries mav be investioated using the fact that
an arbitrary specie by introducing Eq. (18) into Eq. (20). u uch sy ' y be Investig using
the Lagrangian is invariant under an infinitesimal coordinate

Evaluation of each term produces an equation that can bt(?ansformatlon from which one identifies the Noether cur-
iterated, and that yields a result equivalent to that of a La-
rent. The starting point is the first variation

grangian containing information on higher order derivatives

explicitly. The resulting expression is SL({pL, p} .} {pb, ot )i 7)
nrFn,atyc o nFn,als

Piﬁl _aiaL _(ai o ) t (aL(Spi—i—aL Spt )
pal...ocg 1 pal...as 192 S22 = 7 7 fres
a‘;/ Pib P i—1 apn K apn,a K
() e e o
Pay...azp1,8285 7 BaPs = Z Va (8/}1 op; ) . (27)
whereplﬁ1 = 0 for s = —1, which reproduces Eq. (17). =t "

ThusL and?, have some equivalence as they lead to the samEOr § = V3, one identifies the stress tensor
equations of motion. From this point we perform a series of
manipulations to relate these expressions to an exact quan- vﬂL‘pé =Va (Ldaﬂ)
tity. Given that a functional derivative of the Lagrangian with "

respect to an arbitrary field variable is _ Z V., (p; ; a8.L ) Vo, (28)
— L
6 t
— L (p} ceyph T = o
5,01(77’) (pal...ozsa 7pa1...as7r) {Z};V 1 where . | oL
’ Oap = Ldap — Z p%,ﬁaii- (29)
\v4 5(7—,»_7—»/)8L(F‘ pla"wpt) (24) i=1 pnva
o P, . . ’ Equation (28) is the corresponding conservation law for the

) ) . v , . inhomogeneous fluid, which will be transparent when the first
we multiply this expression by[]_, (rj, — Rs,) andinte-  of the two terms in the middle be identified.

grate over™ to obtain Assuming a system internally autonomous, we may sep-
» 1L, arate the field contribution in a single term throygitr) [6],
/dF’ I1 (), — Rs)) SL(7 | p = Zval identify L asL, and thep, aspl,, ., , as well as the’
i ’ Sp (7 =1 This leads us to propose the expression
J s,{a}
4 - T (.1 t L2
L(r\pl,...,pt) L(P 7(11...(157---/7’(11...(1577")
Vo, [[ (rs, - Rs,) 3y : (25) t
j=1 L0 .. O o
_ _ = Lo (Phyasr - Pra) = D ()P (30)
and observe that each term with> p vanish, as after thg- =1

th derivation it is a constant. All terms with< p also vanish

by substitutingRs, = 5, . The final result is then By carrying out the infinitesimal variation, once again one

calculates the conserved quantity that Noether's theorem
guarantees

ZaL 7‘|P soes )
=1 BP(F) ( ) i
6L = opL, .
"1 d SL(7| pty...,pb) ZZ Y
:Z—/d?’Hrﬁ;,_ oo B 2 (26)
Zept ) AL () |
+ Z > 5P
Now, an inhomogeneous fluid in a coexistence state, as a < OPh,
closed system, is invariant under the Galilean symmetry t
group. These symmet'ries are a consequence of the proper- = Z Vo (Z 5 5p;1”_%>7 (31)
ties of the space-time in which the system is described, and ; pm Ao

may be analyzed using Noether’s theorem. The homogen
ity of time implies temporal translational invariance of the
closed system, which translates into conservation of energy. (

Shen introducing = V 5, we find

oL . .
33 pg) _v,i

i=1 s p%m%,oé

On the other hand, from the homogeneity of space followsV

- (32
spatial translational invariance, which implies conservation ’

Rev. Mex. Fis59(2013) 236-247



MEAN FIELD THEORY OF INHOMOGENEOUS FLUID MIXTURES 241

The corresponding Noether current is the stress tensor

. ¢ oL ,
Oap = Lap — ZZ 870’%..%,&
i=1

)
s p'Yl-“'Ysaa

Observe thatV L

value. The result is

VL

= - Z PL(F)NL,@(F)
i=1

Putting this expression as the right hand side of Eq. (32)

yields the balance equation predicted by DFT.

A connection between concepts from the Lagrangian for- SLo(F— (1 = \)7" |
mulation and the equilibrium statistical mechanics can be Spi(F+ A

t
oy = 2 (W)l = ol — p'ilp)
i=1

(33)

(34)

o in Eq. (32) is determined by calcu-
lating the derivative ofL and evaluating at the equilibrium

made. The quantityo(7 | p',...,p") — S50, f'(7)p!(7)
= w(7"| p',..., p") is identified as the grand potential den- g previously discussed, the isotropy of space implies con-

sity; that is, minus the pressure in an uniform fluid.

for o5 in EQ. (33), which is

t
Tapa=— Y p' (F)pls(F).
1=1

(35)

In our problem,ui(7) = p* — VI (7), with x° being the
value of the chemical potential of theth specie. We ob-
serve that the balance equation obtained from the minimiza-
tion condition can be derived rigorously and in general from
a Lagrangian formulation for continuous systems. We now
proceed to express Eq. (33) in a direct functional form. This
is accomplished by a purely algebraic procedure and the re-
sultis

Oap(7) = (Lo - Z p' (f’)pi(F)> dap

t

1
—Z/d?’/d)\Tngpi(F—l- A7)
=1 0

1 t
f;"“’p). (36)

. € 1n 'f‘ this servation of the angular momentum. However, for this to oc-
sense one gets a rigorous derivation of the conservation lay,, the stress tensor must be symmetric [6,15]. Equation (36)

does not satisfy this condition as can be observed from di-
rect exchange of indices. This can always be corrected by
including in the stress tensor a tefm that has no physical
consequences; neither local nor global [6]. After the sym-
metrization procedure we obtain

SLo(F— (L=XN)7"| pt,...,p")

. 1
Top = Vyzl/df" ./d/\)\rlﬁ <r’yVapZ(F+ X' — 1! V0" (F+ AF’)) G . (37
= 0

By adding this to Eq. (36) we get to the final form of the stress tensor for the whole system, which is symmetric, exact, and

that satisfies all symmetry requirements

t

Tap(T) = (f(ﬁ 106+ 6)) = Y (1" = Vi

i=1

()p

0
0

,>I

. 1
. o OLo(F—= (1= N)F" | pt, . ph)
_ ’ ’ i / ) )
E_l/dr /d)\ranp (74 A7) FICESYD
i 0

SLo(F— (1 =N | p',...,p")

t 1
+VVZ/dF’/d)\ ATl (Tf,vapi(f’-i- M) — 1! V0t (7 + AF’)) — . (38)
— ) 0Pt (7 4 A7)

Notice that the first term corresponds to the contribution from bulk phases whereas the remaining part contains information on
the interfacial region. The parameteexpresses gauge freedom in the stress tensor; relating two points in the fluid which is a

non-local system, and the integral over this parameter shows that all points in the interfacial region are being considered. It is
important to remark that the stress tensor given in Eq. (38) is the most general expression known within this topic, that is exact

and for an arbitrary free energy.

4. Results

As previously mentioned, DFT assumes existence of the intrinsic Helmholtz free energy functional. In order to calculate
thermodynamic properties it is necessary to introduce an approximation for this quantity. One may use any approximation
capable of describing correctly the coexistence state; the most common in practice being the mean field model

Rev. Mex. Fis59(2013) 236-247



242 J. G. SEGOVIA-IOPEZ, A. ZAMORA AND J. ANTONIO SANTIAGO

In our analysis, we are considering-@omponent mix-
t _ ture for which there is a variety of interaction potentials
Flp(r)] = Z/ dr f(p'(7)) @;; between molecules. As all interactions, either between
i=1 molecules of the same or different species, are possible, there
T ' _ is a total oft(t + 1)/2 interaction potentials, which implies
t3 Z Z/ dF/ dr' & (7 —7")p'(F)p’ ('), (39)  existence of an equivalent number of coexistence regions. In
=1j=1 addition, the dimensioty+1 of the space of parameters, given
wherew;; is the interaction potential between two moleculesPy all chemical potentials of the different species and tem-
of arbitrary species and;j. The first term in this expression Perature, could allow free variation of one of the components
contains information only on the system local contribution, Without losing the coexistence state.
which can be for an ideal gas or hard spheres. Later on we By carrying out the variation of the free energy density
shall discuss how for the interfacial region the second term i§volved in the stress tensor, and performing the appropri-
the relevant one as such region is characterized by a non-ze#ée coordinate transformations, we get to the final expression
gradient of the density profile. for the stress tensor of the inhomogeneous region within this
| level of approximation

1
1 y .
() = =3 Z/ df’/dA P (7 — (1 = N )y (7 )y V b (7 + A7)
@j 0

1
1 ) . .
-5 > vy/ dr’ / X P (F = (1 = X))@y (F )b Vo o (F + M) — 1, Vo ph (7 + X)) (40)
17 0

The contribution from the homogeneous region to the
complete tensor, Eq. (38), suffers no considerable modifica- ) )
tions. Now, the stress tensoﬁfl(F) depends explicitly on Ana_logously_ to the_smgle component system, the interfa-
the interaction potential between particles and on the equi¢i@! région of this multiple component fluid mixture may be
librium density profilep?, of each specie. To obtain specific modeled as an elastic continuous medium which, in the limit

results, one needs to introduce an approximation for the derf 1arge radii of curvature as compared with the range of the
sity profile. This will be carried out in detail shortly. interaction potential, satisfies the Helfrich phenomenological

As in this work we are interested only in the contribu- Hamiltonian [9,19]
tion to energy from the interfacial region, we calculate this

guantity using the second term in Eq. (13), which we denote 1

here as);,,, and depends on the density of all species, Qinn = Z/ds{V - Hcoi[Hz‘ + Hj)dy
Qinn = Qinnlpd, - - -, pb]- Nevertheless, to simplify expres- ij

sions, we omit this dependence and write

1
+kH;H; + —R[K; + K;]0i; ¢, (42)
Qi = — / 7o, (41) T2 ! j}

which captures all details in the interfacial region. At this ) ; ;
point we consider important to mention some relevant asWhereds is the area element]; = (1/R;) + (1/R3) and

pects of the behavior of the system as a function of temper*i = 1/_R21RZ2 are thie mean and Gaussian curvatures respec-
ature. The fluid mixture is in a vapor phase. As temperaturdVely With Rj and i; being the principal radii of curvature,

is lowered, the fluid reaches a liquid-vapor coexistence statgd the coefficients,, co, », and are the surface tension,
composed of a low-density vapor phase and a high_denS@pontaneous curvature, bending rigidity, and the saddle-splay

liquid phase. In this regime there exists a unique interfaconstant respectively. These interfacial coefficients depend

cial region with both phases being mixtures of particles of°" @ll densities of the system. For a surface of a system com-
all species. Nevertheless, as temperature is lowered furthd?0S€d Of a single specie, Eq. (42) corresponds to the usual
there appear different interfacial regions between particles drfelfrich energy [9,20]. As is well known, such a model de-

the same and mixed species [18]. In this Iower—temperaturécribes competition between two geometrical quantities: the

regime there exist a variety of Gibbs dividing surfaces: eX_surface tension and flexion constants. The first one measures

plicitly one for each in- terfacial region. In this work we ana- ¢@Pacity of the system to develop area whereas the second
lyze both cases. For the system with a single Gibbs dividingccounts for the energy cost for bending the surface.

surface we consider surfaces having the simple geometries Next we illustrate the calculation of the grand potential in
of planes and spheres, whereas for the system having multzq. (14); first for simple geometries and then for an arbitrary
ple Gibbs dividing surfaces we consider an arbitrarily curvedsurface. In all cases the external potential is gravity acting in
surface. the negative:-direction.
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4.1. Planar Surface be obtained by introducing in Eq. (44) the step-like approxi-
mation for the density profile

We start by considering one of the simp!est exam_ples; that of pi(2) = pi,O(z0 — 2) + pfﬁf@(z ~ ), (45)
a planar geometry. The density profile is a function that de-
pends only on the normal coordinate, which occurs also fowhere©(z) is the Heaviside step function: equalsitdor
the other surfaces here presented. Assumirig) = k,then > > 0 and 0 otherwise, and is the radius of the Gibbs
P () = py(z). As a consequence, the normal component olividing surface of the-th specie, which in this case is the
the stress tensor for this system is same for all species. This proposal introduces the location
of the Gibbs dividing surface, on which the interfacial region
1 is projected, and is a key element to be able to define sur-
s o 1 Y P N~ o face properties. The approximation is valid when the drop
Uinh(r)=—§Z/ dr /dA po(F—=(1=A)7")@i; (") 2 size is very large as compared to the range of the interaction
“ 0 potential. By introducing this expression and evaluating the
3%(2 + A7) integrals one gets to the final expression for the grand po-
x 9. (43)  tential of a planar interface which is formed by molecules of
different species

In order to obtain the microscopic expression for the grand 0
potential, we integrate the normal component of this stress th:/ds _T ZApéApé/drr?’@ij(TQ) . (46)
tensor over the whole space. After eliminating the parameter 2 i ) '
A we get to the result
whereAp) () = ph, — pi,- The value of the surface tension
1 that one identifies within this limit is in complete agreement
Qiph = —= Z/ dS/ dQR’|R’|2/ dz with the result obtained using a different approach [18], and

4 ij also reduces to the value of the monocomponent case from

the same scheme [7, 8].

dz dz

A g [
1 @Po 0 (P2 2
X/dz 7 /dqu(R tu), (44 4o Spherical Drop
0

The spherical surface is, without a doubt, the most interest-

ing case for systems of one and several components because

- "I _ 12 12 - . ._
whergdS :S a ?urfacihele_rr}[er}t a_rﬂ; I_ (2 ’g ) |s§ b'd'4 4 .tmany systems present spherical symmetry naturally. The ap-
mensional vector on the interfacial plane. From Eq. (44) i propriate description of this interfacial region as well as its

IS possible 1o |dent|fy the m_ost general microscopic EXPreSsiructural properties have been investigated since long ago
sion for surface tension, which depends on the exact densi

file of h i d on the diff tint " ‘ %r inhomogeneous fluids [20,22].
profiie ot €ach specie and on the different interaction poten- Such a symmetry requires the density profile to be a func-

tials between species. Its vglue reduces to that of .the MONQH that depends exclusively on the magnitude of the vector
component system as predicted by the scheme with fluctua-

. . . osition; that iso’ (7) = p*(|7]). The normal vector on each
tions [21]. An asymptotic value for the surface tension May . Jexistence surfzgc)e ﬁ(7f>(|1)vpi(7?)/|vpi(f,)‘. The com-

| ponents of the stress tensor, in mean field, are

1 .
1 ‘ I (F+ AP
O = =5 :/df"//d)\|F/\COSHCOSG’&JM(W/D%(F* (1 fw’)w, (47)
17 0

Op} (7 + \)

o . (48)

1
1 0 ;
o =t = 1 2 g [ A [N sing2a (7 a7 - (1= W)
17 0

As within this formalism, the calculation of the grand potential only requires information on the normal component of the
stress tensor, we introduce Eqg. (47) into Eq. (41) and carry out some manipulations and simplifications to obtain the grand
potential

1 T . .
Qinn[po(7)] = —ZZ/M/ dF’/dscDij(s—&— |7 — & |2)V pb (F) - V i (7), (49)
%7 0
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which depends on the exact expressions for the density pro- po(F) = pyO(R — 1) + pb,O(r — R), (50)
file of the spherical surface. Now, to calculate surface prop-
erties it is necessary to introduce an approximation for th
density profile. Although the system is three- dimensional,”
the density profile depends exclusively on the normal coor:
dinate; which is the only direction for changes of the profile
and therefore the gradient acts only on that coordinate. Intro
ducing the step-like approximation for the density profile

|

whereR defines the radius of the Gibbs dividing surface and

= |7], and considering that locally the surface can be ap-
proximated by a plane plus correction terms, we perform two
integrations and carry out further simplifications to get to the
grand potential for this geometry

. 7 i n . T i n .
Qinn[po(7)] = 47 R? -3 ZApoAp{)/dr 30 (r?) + Y ZApOApé/dr r0i;(r?) 3. (51)
ij 0 ij 0

Notice the separation in two contributions: the first one corresponding to surface tension and the second due to the curvature
of the system. Both expressions reduce to the single component case from the same formalism.

4.3. Arbitrary Surfaces

We now consider the case when the coexistence surfaces are arbitrarily curved. Once again, the interest is in obtaining the
microscopic expression for the corresponding free energy. For this general case we introduce the normal component of the
stress tensor, Eq. (38), into Eq. (41) to obtain

mk=wZ/M/W/dw LA — (1 = NNy (17 ¥ (7 + M)

_ 7Z/d“w f‘)V /dr /d)\po 7= (1= X)@i; (|7 ) rslr, Vo0 (F+ A7) — 1 Vo ph (F+ A7), (52)

Aimed at simplifying the general microscopic expression for the free energy contribution from the interfacial region of the
arbitrarily curved interface within a mean field approximation, we now introduce a change of variables of the form

P = 74 A7, (53)

7@ =7 (54)

and use the relation for normal vectors of the different coexistence regions
7|
12
We realize it is convenient to define an auxiliary functiéfy; (1> + /> + r/?), which is short ranged and is related to the
interaction potentiab;; (|r + /2 + r/?|) via

MO VAS) [ﬁ;(F“) — AF@)pd (7D — AF<2>)] = 2l (PO = AF@)pd O — ar®)] . (55)

0
G Wi 02+ 12+ 1) = 12 (12 082+ 121, 6)

Introducing all these elements from Egs. (53-56) into Eq. (52) and carrying out further simplifications, we obtain the final
result

mkﬁfz/wﬂ/w@/ﬁ%t+<”*®><Ttﬁ%WW%WWWMW®x (57)

where each vector has been written7d8 = 7@ + r, £ + 7,7 Notice that the density profile depends exclusively

on the normal coordinate. This is one of the most relevant results from this theory; it is the simplest and exact microscopic
expression within mean field known in the context of inhomogeneous fluids. For this general case, we consider a situation of
average temperatures for which there exist multiple coexistence surfaces that can be composed of one or several species.
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Notice that the microscopic grand potential in Eq. (57) The normal vector at poir®, located by~ (?, is given by

depends exclusively on the density profiles and the (—&, —2 1)

t(t + 1)/2 interaction potentials between molecules of the AP = B RY . (61)
same or different species. The compact expression appears [1 ()2 4 ()2 2

rather elegant as is, but within this level is still far from help- 1 Ry

ful to identify surface properties and to carry out comparisonso that the metric in this coordinate systenyis’) = 1 +

with other viewpoints. It is necessary to introduce the GibbsV 2% (z, y)]? = 1+ (z/R})? + (y/R3)?, where(z/R}) < 1,

dividing surface, on which the calculation of the interfacial (y/R}) < 1. The surface element in the local system is

properties is projected. In general, for a system composedS(?) = [ggzi)]%dxdy and the scalar product of the normal

of several components and for a real density profile, this is &ectors isn{" - a{* = [g(2%)] 2.

formidable task. Nevertheless, one may consider once again The interaction potential captures interactions between

the asymptotic limit for the density profile that is relatively two molecules in different points on the surface and so has

easy to implement an implicit dependence on the metric. For the purposes of
KR = ph(F) = Poz@( e —rn)+p’5v@(rn—rﬁff))) (58) this work, only the first order contribution is relevant. That is

~ (1) (2)2 (1) _ =(2)y2
. . . - . Wi (t+(ryg —Twg )" (7 =7 )
wherer*) is the radius of the Gibbs dividing surface, with ! ( (o =70 )"+ (7 )

k _Bl, 2, )1 . 1/ 22 Y2 2 ) )
y wrltmg volume elements in the form t +1 R + 7 +z +y |. (62)
dif D=drVds®, i = 1,2, evaluations of the derivatives
of the density prof|le become obvious. The resulting expresAlthough the metric depends on the scalar product of the nor-
sion is mal vectorsa{" andn!? at two different points on the sur-
2, (1 e face, in the end only mformation on one of the points tran-
Qinn = ZAPoAﬂo/ds /dS ny scends, as one of the normals is chosen in the direction of
the unit vectork. Power-expanding the interaction potential
o0 aboutt + 2 + 2 and evaluating each of the integrals, we ob-
x /dt&zij (t 4 () — @2y (G 7:§2))2) , (59) tain the expression for the grand potential correct to second
J order in the inverse of the radii of curvature for the surface
composed of speciés
with r(l) being two-dimensional vectors a%y and.S;, and
I =1,2inthis case. Observe that the information on the met- Qg = Z/ds{wApo P
ric of the different coexistence surfaces is contained within
the dot product of the normalﬁ,z(.l) . ﬁ?), the surface ele-
ments, and the interaction potential. According to this, the /dS

drr wij(ﬁ)}

1 2+ ER:
R} R} 3R} Rj

N 0\8

surface invariants are coupled to the index that labels each
specie. Although this approximation for the density profile

introduces simplifications to the integrand in the interfacial 3rApi Ap? o
free energy, evaluation of one of the surface integrals still re- {620 / drr%ij(rQ)} +-o,  (63)
mains. 4
To perform the integration we use an approximation on . .
P g bp wheredS(") = dS has been used. By introducing the mean

one of the surfaces [8]; explicitly we introduce a local co-
ordinate system in the neighborhood of a paihtying on

a Gibbs dividing surface of constant density for an arbitrar
specie. This point defines the origin of the local coordinate 5 4 12 1\° 2

system and we assume it located by the vector positibh 4H; — §Ki = (Rﬁ) + (372> + 3RIRY’ (64)
We choose the’ axis pointing in the normal direction so that
ﬁz(.l) (7) = k. Both coordinates andy remain on the tangent
plane, along the directions of the principal radii of curvature.
Evidently, the Gibbs dividing surface is located-gt = 1.
Any other pointQ in the neighborhood oP, and located by

the vector positiorF(?), is on the Gibbs dividing surface at TApEA
' Po /)o r2
r{# = @) and located outside the local tangent plane ata $%inh = E :/ ds[ 5 /d““ @i (r7)
distancez’ = r(l(f) - r(Q(}) On the local coordinate system,

this can be approximated as

and Gau35|an curvaturesl; and K; respectively, into the
ysurface under consideration one obtains the relationship

which can be introduced into Eg. (63) to obtain a general
result for the microscopic free energy for the interfacial re-
gion of thet-specie multicomponent system in terms of the
surface invariant$/; and K;

L2 + 3mApbApy (4H? — fK / dr 5 (r } (65)
2t=Z 7‘+y7. 4+ (60) 64
2\ R Rj 0
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Observe its dependence on the different interaction potentialegions. All relevant properties have been calculated in both
and on the principal curvatures of the surface under considzases for different geometries. Expressions for the free en-
eration, which is consistent with previous works that use theergy corresponding to the planar, spherical, and arbitrarily
same viewpoint [8,9]. curved surface, are in complete agreement with previous re-
To identify microscopic expressions of surface propertiessults; that is both the exact expression and that where the step-
it is necessary to compare Eg. (65) with the correspondindjke approximation for the density profile is introduced. The
Helfrich phenomenological model for a fluid membrane ofresult we obtain for the grand potential maintains the same
a t-component mixture, which is proposed in this work by structure from the monocomponent system. That is, it de-
Eg. (42). One issue to be noticed is the lack of contribupends on the densities of the different species in the system,
tion due to spontaneous curvature; also known as Tolmaon the interaction potential, and is fully consistent with pre-
length. The reason behind this is the sharp approximatiomious works that use the same scheme. The agreement with
for the density profile, which prevents from capturing detailsother approaches is maintained only at the level of surface
arising from the smooth behavior of this quantity. tension. A noteworthy fact is that the analysis for an arbi-
trarily curved surface is justified only in the case of weakly
deformed surfaces or for surfaces with very large radii of cur-
vature as compared to range of the interaction potential. It is

The most relevant feature in this work resides in being ablélso important to mention that the expression for surface ten-

to extend, without ambiguity, the theory of inhomogeneoussion is a function of the number of species, which suggests

fluids of a single component to an arbitrary number of com4he possibility of carrying out numerical calculations varying

ponents. The starting point in this scheme is the EL equatiorfh® number of molecules of some species and observe interfa-

which is modified to obtain a force balance equation, that irfial phenomena [13]. This requires, without a doubt, a rather

its turn implies existence of a stress tensor. This quantity hadetailed analysis which we shall consider in a future publica-

been constructed using general symmetry considerations oft#n-

mechanical system and has resulted in the most general ex-

pression known within this topic. In order to obtain concretepAcknowledgments

results, an approximation for the free energy at the level of
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