
RESEARCH Revista Mexicana de Fı́sica59 (2013) 248–253 MAY–JUNE 2013

A generating function for the spherical harmonics inp dimensions
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A generating function for the spherical harmonics in three or more dimensions is given. This function allows us to find in a simple manner
the explicit expressions for the spherical harmonics in three dimensions. The generating functions for the spherical harmonics given here are
analogous to certain well-known generating functions for solutions of the wave equation.

Keywords: Spherical harmonics; generating functions; Laplace equation; wave equation.

Se da una función generatriz para los arḿonicos esf́ericos en tres o ḿas dimensiones. Esta función permite hallar en una forma simple las
expresiones explı́citas para los arḿonicos esf́ericos en tres dimensiones. Las funciones generatrices para los armónicos esf́ericos dadas aquı́
son ańalogas a ciertas funciones generatrices bien conocidas para soluciones de la ecuación de onda.
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1. Introduction

The standard spherical harmonics,Ylm, arise in the solution
by separation of variables in spherical coordinates of vari-
ous partial differential equations (PDEs), such as the Laplace
equation, the wave equation, and the Schrödinger equation
for a particle in a central potential (see,e.g., Refs. 1, 2).
These functions can also be defined as the common eigen-
functions of the square of the orbital angular momentum op-
eratorL2 and thez-component of the angular momentum op-
eratorLz (see,e.g., Refs. 2,3).

Apart from a normalization constant,Ylm(θ, φ) is the
product of the associated Legendre functionPm

l (cos θ) and
exp(imφ). As is well known, the explicit expression of the
functionsYlm can be obtained with the aid of the ladder oper-
atorsLx ± iLy (see,e.g., Refs. 2, 4), and the associated Leg-
endre functions can be obtained by means of differentiations,
making use of a Rodrigues formula. Actually, there exist an
assortment of expressions for the standard spherical harmon-
ics, including differential and integral expressions, power se-
ries expressions, and relations to other functions, many of
which are given, without derivation, in Ref. 5.

The spherical harmonics can be defined for any dimen-
sionp > 2 in the following manner. Let (x1, x2, . . . , xp) be
Cartesian coordinates inRp, and

r ≡
√

(x1)2 + (x2)2 + · · ·+ (xp)2;

if f is a homogeneous function of degreen of the xi that
satisfies the Laplace equation, thenf/rn is a spherical har-
monic of degreen (see also Ref. 4). The spherical harmon-
ics for p > 3 are also useful in mathematical physics; for
instance, the spherical harmonics in four dimensions appear
in the solution of the Schrödinger equation for the hydrogen
atom (see,e.g., Refs. 6-8) and the spherical top, and are re-
lated to the Wigner functions [5,6,8] and the spin-weighted
spherical harmonics (see,e.g., Refs. 9,10). (Alternatively,

the spherical harmonics inp dimensions can be defined as
the eigenfunctions of the Laplace–Beltrami operator of the
sphere

Sp−1 ≡ {(x1, x2, . . . , xp)

∈ Rp|(x1)2 + (x2)2 + · · ·+ (xp)2 = 1}.

See Eqs. (16) and (18) below.)
The aim of this paper is to present a generating func-

tion for the spherical harmonics in three and four dimen-
sions which enables us to readily find some properties of
these functions and the explicit expression of the spherical
harmonics in three dimensions. This generating function is
closely related to expressions given in Refs. 5 and 11 for the
spherical harmonics in three dimensions, and in Ref. 4 for the
Legendre polynomials inp dimensions. It is also shown that
similar results can be derived for the wave equation, which
is the analog of the Laplace equation when the signature of
the metric is Lorentzian. In Sec. 2, we establish the basic
result of this paper and develop the generating function for
the spherical harmonics in three dimensions. In Sec. 3 the
spherical harmonics in four dimensions are considered and
an integral representation for them is derived. In Sec. 4 we
consider the wave equation and identify two well-known ex-
pansions of plane waves as generating functions of separable
solutions of the wave equation in two and three dimensions,
which are analogous to the generating functions of spherical
harmonics presented here.

2. Solutions of the Laplace equation

Throughout this paper we shall consider real- or complex-
valued functions defined inRp. If the components of
the metric tensor,gij , with respect to a coordinate system
(x1, x2, . . . , xp) are constant, then the Laplace operator is
given by
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∆ = gij ∂

∂xi

∂

∂xj
,

where (gij) is the inverse of the matrix (gij), and there is sum
over repeated indices. The basic result to be employed in
what follows is given by the following proposition.
Proposition 1. The homogeneous function(k1x

1 + k2x
2 +

· · ·+ kpx
p)n is a solution of the Laplace equation,∆f = 0,

for n = 0, 1, 2, . . . , if and only if the constantski are the
components of a null vector

gijkikj = 0. (1)

Indeed, a straightforward computation yields

gij ∂

∂xi

∂

∂xj
(kmxm)n = gij ∂

∂xi
[n(kmxm)n−1kj ]

= n(n− 1)(kmxm)n−2gijkikj .

In the case ofR3 (with its usual metric tensor), Eq. (1)
has no nontrivial real solutions; however, for anyu ∈ R, the
vector(k1, k2, k3) = (i cos u, i sin u, 1) is null and therefore,
for l = 0, 1, 2, . . . , (z + ix cos u + iy sin u)l is a (complex-
valued) solution of the Laplace equation (which depends on
the parameteru).

Since

z + ix cosu + iy sin u = z

+
i
2
(x− iy)eiu +

i
2
(x + iy)e−iu,

for x, y, z fixed andl ∈ N, (z + ix cosu + iy sin u)l must
be a linear combination of

{
e−ilu, e−i(l−1)u, . . . , eilu

}
, with

coefficients that depend onx, y, z,

(z + ix cos u + iy sin u)l =
l∑

m=−l

Flm(x, y, z) e−imu. (2)

According to Proposition 1, the right-hand side of Eq. (2) sat-
isfies the Laplace equation, hence

l∑

m=−l

[∆Flm(x, y, z)] e−imu = 0

and, by virtue of the linear independence of the set
{e−ilu, e−i(l−1)u, . . . , eilu}, it follows that∆Flm = 0. Fur-
thermore, expressingx, y, z in terms of the spherical coordi-
natesr, θ, φ we see that

z + ix cos u + iy sin u = r

[
cos θ

+
i
2

sin θ e−i(φ−u) +
i
2

sin θ ei(φ−u)

]
,

and therefore the right-hand side of Eq. (2) depends onφ and
u only through their difference; thus

Flm(r, θ, φ) = rlflm(θ) eimφ,

whereflm is a function ofθ only, which must be proportional
to the associated Legendre functionPm

l (cos θ). Hence, we
conclude that

[
cos θ +

i
2

sin θ e−i(φ−u) +
i
2

sin θ ei(φ−u)

]l

=
l∑

m=−l

NlmYlm(θ, φ) e−imu, (3)

where theNlm are constants. (Equations (3) and (11) are
equivalent to Eq. (16) of Sec. 5.1 of Ref. 5.)

Thus, for instance, the explicit expression ofY31(θ, φ) is
obtained by considering those terms in the expansion of

[
cos θ +

i
2

sin θ e−i(φ−u) +
i
2

sin θ ei(φ−u)

]3

that contain the factore−iu; in this manner we find that

N31Y31(θ, φ) = 3 cos θ cos θ
i
2

sin θ eiφ

+ 3
i
2

sin θ eiφ i
2

sin θ eiφ i
2

sin θ e−iφ

= i
3
8
(5 cos2 θ − 1) sin θ eiφ.

The value of the factorNlm is obtained below [see Eq. (11)].

Similarly, from Eq. (3) we see that, forl = 0, 1, 2, . . . ,

(
i
2

)l

sinl θ eilφ = NllYll(θ, φ).

The modulus ofNll can be readily obtained from the normal-
ization condition

1 =
∫

S2
|Yll|2 dΩ,

wheredΩ = sin θ dθ dφ is the solid angle element and the
integral is over the unit spherer = 1. Hence,

1 =
1

22l|Nll|2
∫

S2

sin2l θ dΩ =
1

22l|Nll|2

×
2π∫

0

dφ

π∫

0

sin2l+1 θ dθ =
4π(l!)2

|Nll|2(2l + 1)!
.

Thus, following the Condon-Shortley phase convention [3,5],
Nll is given by

Nll = (−i)ll!

√
4π

(2l + 1)!
. (4)
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Making use of the orthogonality of the set{
e−ilu, e−i(l−1)u, . . . , eilu

}
on the interval [0, 2π], from

Eq. (3) we obtain the integral representation

Ylm(θ, φ) =
1

2πNlm

2π∫

0

[
cos θ

+
i
2

sin θ e−i(φ−u) +
i
2

sin θ ei(φ−u)

]l

eimu du (5)

or, by means of the change of variablew ≡ u− φ,

Ylm(θ, φ) =
1

2πNlm
eimφ

×
2π∫

0

(cos θ + i sin θ cos w)l eimw dw. (6)

Expression (5) is equivalent to Eq. (7) of Sec. 5.3 of Ref. 5
(cf. also Refs. 11, 14). Hence, the integral in the last equa-
tion must be proportional toPm

l (cos θ), and, settingm = 0,
we conclude that the Legendre polynomials have the integral
representation

Pl(cos θ) =
1
2π

2π∫

0

(cos θ + i sin θ cosw)l dw. (7)

The proportionality factor has been determined using the fact
that Pl(1) = 1. (Equation (7) is known as Laplace’s inte-
gral representation for the Legendre polynomials [11,12,14].
Cf. also Ref. 4.) Alternatively, from Eq. (7), introducing an
auxiliary variablet, we have

∞∑
n=0

Pn(x)tn =
1
2π

2π∫

0

∞∑
n=0

(tx + it
√

1− x2 cos w)n dw

=
1
2π

2π∫

0

1
1− tx− it

√
1− x2 cos w

dw

=
1√

1− 2tx + t2
, (8)

which is the well-known generating function of the Legendre
polynomials.

The value of the constantsNlm introduced in Eq. (3)
can be readily obtained using the fact that, with the Condon-
Shortley phase convention,

L±Ylm = ~
√

(l ∓m)(l ±m + 1) Yl,m±1, (9)

whereL± = Lx ± iLy are the usual ladder operators which,
in spherical coordinates, have the form [2]

L± = ±~e±iφ

(
∂

∂θ
± i cot θ

∂

∂φ

)
.

Indeed, letting

K(θ, φ, u) ≡ cos θ

+
i
2

sin θ e−i(φ−u) +
i
2

sin θ ei(φ−u), (10)

so that the integrand in Eq. (5) amounts to [K(θ, φ, u)]l eimu,
we find that

eiφ

(
∂

∂θ
+ i cot θ

∂

∂φ

)
K(θ, φ, u)

= ieiuK(θ, φ, u)− eiu ∂

∂u
K(θ, φ, u)

and from Eq. (5) it follows that

2πNlmL+Ylm=

2π∫

0

l[K(θ, φ, u)]l−1eimuL+K(θ, φ, u)du

= ~
2π∫

0

{
il[K(θ, φ, u)]lei(m+1)u

− ei(m+1)u ∂

∂u
K(θ, φ, u)

}
du.

Integrating by parts the last term and using Eq. (5) again, we
get

2πNlmL+Ylm = i~(l + m + 1)2πNl,m+1Yl,m+1.

Comparing with Eq. (9) we obtain the recurrence relation
√

l −m Nlm = i
√

l + m + 1 Nl,m+1,

which together with Eq. (4) yield

Nlm = i−m

√
4π

2l + 1
l!

(l + m)!
l!

(l −m)!
. (11)

In terms of the polar coordinates(r, θ) of R2, the func-
tions (1/

√
2π) eimθ and (1/

√
2π) e−imθ are (normalized)

spherical harmonics of degreem in two dimensions; there-
fore, according to Eq. (5), the function[K(θ, φ, u)]l is the
kernel of an integral transform that maps the spherical har-
monics of degreem in two dimensions, withm 6 l, into
the set

{
Yl,−l(θ, φ), Yl,−l+1(θ, φ), . . . , Yl,l(θ, φ)

}
of spheri-

cal harmonics in three dimensions.
We close this section with two further examples of the

applications of Eq. (3). Whenθ = 0, Eq. (3) reduces to

1 =
l∑

m=−l

NlmYlm(0, φ) e−imu,

which, with the aid of Eq. (11), implies that

Ylm(0, φ) =





0 for m 6= 0,√
2l + 1

4π
for m = 0.
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Since[K(θ, φ, u)]l [K(θ, φ, u)]p = [K(θ, φ, u)]l+p, making
use repeatedly of Eq. (3) we obtain

Yl+p,r(θ, φ) =
1

Nl+p,r

×
∑
m

NlmNp,r−m Ylm(θ, φ)Yp,r−m(θ, φ). (12)

(A similar expression is given in Ref. 5 in terms of the
Clebsch–Gordan coefficients.)

3. Spherical harmonics in four dimensions

For the case of the spherical harmonics in four dimensions
we have to follow a procedure slightly different from that fol-
lowed in the case of three dimensions.

The spherical coordinates inR4, (r, χ, θ, φ), are related
to the Cartesian coordinates(x, y, z, w) by

x = r sin χ sin θ cos φ,

y = r sin χ sin θ sin φ,

z = r sin χ cos θ,

w = r cosχ, (13)

and, therefore, the Laplace operator ofR4 has the expression

∆R4 =
1
r3

∂

∂r
r3 ∂

∂r
+

1
r2

∆S3 (14)

with

∆S3 =
1

sin2 χ

∂

∂χ
sin2 χ

∂

∂χ

+
1

sin2 χ

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2

)
(15)

being the Laplace-Beltrami operator ofS3, the unit sphere
r = 1. Hence, a spherical harmonic of degreen in four di-
mensions,f(χ, θ, φ), satisfies the eigenvalue equation

∆S3f = −n(n + 2)f, (16)

which follows from Eq. (14) and the fact thatrnf is a solu-
tion of the Laplace equation. Using Eq. (15) one finds that
Eq. (16) admits separable solutions of the form

P l
n,4(cosχ)Ylm(θ, φ), (17)

whereP l
n,4 is an associated Legendre function in four dimen-

sions [4], which satisfies the equation

1
sin2 χ

d
dχ

[
sin2 χ

d
dχ

P l
n,4(cos χ)

]

+
[
n(n + 2)− l(l + 1)

sin2 χ

]
P l

n,4(cos χ) = 0,

and we have made use of the fact that the usual spherical har-
monics are eigenfunctions of the Laplace-Beltrami operator
of S2

∆S2Ylm = −l(l + 1)Ylm (18)

with

∆S2 =
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2

(note thatL2 = −~2∆S2 ).
The vector (k1, k2, k3, k4) = (i sin u cos v, i sin u sin v,

i cos u, 1) is null for all u, v ∈ R and, according to Propo-
sition 1, the functions

Fnlm(x, y, z, w) ≡
∫

S2

(w + iz cosu + ix sinu cos v

+ iy sinu sin v)n Ylm(u, v) dΩ(u,v), (19)

wheredΩ(u,v) = sin u dudv is the solid angle element corre-
sponding to the anglesu, v, are solutions of the Laplace equa-
tion (cf. Ref. 11). SinceFnlm is a homogeneous function of
degreen in x, y, z, w, it follows thatFnlm/rn is a spherical
harmonic of degreen and, as we shall show, this function is,
up to a constant factor, the spherical harmonic (17).

Indeed, letting

K(χ, θ, φ, u, v) ≡ cosχ

+ i sin χ [cos θ cos u + sin θ sin u cos(φ− v)], (20)

from Eqs. (19) and (13) we have

Fnlm(r, χ, θ, φ)=rn

∫

S2

[K(χ, θ, φ, u, v)]n Ylm(u, v) dΩ(u,v)

and making use of the fact that

∂K(χ, θ, φ, u, v)/∂φ = −∂K(χ, θ, φ, u, v)/∂v,

we obtain

∂

∂φ

∫

S2

[K(χ, θ, φ, u, v)]nYlm(u, v)dΩ(u,v) =

−
∫

S2

Ylm(u, v)
∂

∂v
[K(χ, θ, φ, u, v)]n dΩ(u,v)

=
∫

S2

[K(χ, θ, φ, u, v)]n
∂

∂v
Ylm(u, v) dΩ(u,v)

= im
∫

S2

[K(χ, θ, φ, u, v)]n Ylm(u, v) dΩ(u,v),

where we have integrated by parts, which implies that
Fnlm(r, χ, θ, φ) depends onφ only through the factoreimφ.
In a similar manner one finds that the value of the func-
tion ∆S2 [K(χ, θ, φ, u, v)]n is invariant under the exchange
of (θ, φ) with (u, v) (just like the functionK(χ, θ, φ, u, v)
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itself) hence, denoting by∆S2(u,v) the Laplace–Beltrami op-
erator of the sphereS2 in the variablesu, v, and making use
of the self-adjointness of this operator,

∆S2

∫

S2

[K(χ, θ, φ, u, v)]n Ylm(u, v) dΩ(u,v)

=
∫

S2

∆S2(u,v)[K(χ, θ, φ, u, v)]n Ylm(u, v) dΩ(u,v)

=
∫

S2

[K(χ, θ, φ, u, v)]n ∆S2(u,v)Ylm(u, v) dΩ(u,v)

= −l(l + 1)
∫

S2

[K(χ, θ, φ, u, v)]n Ylm(u, v) dΩ(u,v)

[see Eq. (18)]. We conclude thatFnlm(r, χ, θ, φ) is pro-
portional toYlm(θ, φ) and, therefore, to the spherical har-
monic (17).

Thus, denoting byYnlm the normalized spherical har-
monics (17), we conclude that

Ynlm(χ, θ, φ) =
1

Nnlm

×
∫

S2

[K(χ, θ, φ, u, v)]n Ylm(u, v) dΩ(u,v), (21)

whereNnlm is a normalization constant [cf. Eq. (5)], which
amounts to

{cosχ + i sin χ [cos θ cosu + sin θ sin u cos(φ− v)]}n

=
n∑

l=0

l∑

m=−l

NnlmYnlm(χ, θ, φ)Y ∗
lm(u, v), (22)

where ∗ denotes complex conjugation [cf. Eq. (3)]. Even
though Eq. (22) is analogous to Eq. (3), Eq. (22) does not
seem convenient to find the explicit expression for the spher-
ical harmonics in four dimensions owing to the presence of
the functionsY ∗

lm(u, v) on the right-hand side of Eq. (22).
Note that each term in the right-hand side of Eq. (22),
NnlmYnlm(χ, θ, φ) Y ∗

lm(u, v), is the product of five functions
of one variable each.

The functions Yn00(χ, θ, φ) are, up to a constant
factor, the Legendre polynomials in four dimensions,
Pn,4(cos χ) [4]. Using the fact thatY00 is a constant, and
that the angleγ between the directions(θ, φ) and (u, v) is
given bycos γ = cos θ cosu + sin θ sin u cos(φ − v), from
Eq. (21), and the conditionPn,4(1) = 1, one obtains the in-
tegral representation

Pn,4(cos χ) =
1
2

π∫

−π

(cos χ + i sin χ cos γ)n sin γ dγ

=
1
2

1∫

−1

(cos χ + iµ sin χ)n dµ (23)

(cf. Ref. 4). Then, using an auxiliary variablet, we have

∞∑
n=0

(n + 1)Pn,4(x)tn

=
1
2

1∫

−1

∞∑
n=0

(n + 1)(tx + it
√

1− x2 µ)n dµ

=
1
2π

1∫

−1

dµ

(1− tx− it
√

1− x2 µ)2

=
1

1− 2tx + t2
,

which gives a generating function for the Legendre polyno-
mials in four dimensions [4] [cf. Eq. (8)].

4. Other dimensions, other signatures

It should be clear that we can write down formulas analogous
to Eqs. (3), (5), (21), and (22) for the spherical harmonics in
p dimensions in terms of the spherical harmonics inp − 1
dimensions, forp > 4. On the other hand, Proposition 1 also
holds when the metricgij is not positive definite and, in the
case where(gij) = diag (−1, 1, 1, 1), the Laplace operator
becomes the d’Alembert operator which appears in the wave
equation. However, as pointed out in Ref. 11, instead of
homogeneous polynomials it is preferable to have solutions
with an oscillatory time dependence. As a consequence of
Proposition 1, or by a direct computation, one finds that

exp i(k0ct + k1x + k2y + k3z)

is a solution of the wave equation

gij ∂

∂xi

∂f

∂xj
= 0,

with (gij) = diag (−1, 1, 1, 1), i, j = 0, 1, 2, 3, and
(x0, x1, x2, x3) = (ct, x, y, z), provided that the constant
vector(k0, k1, k2, k3) is null, that is(k0)2 = (k1)2 + (k2)2

+(k3)2.
For allk, u, v ∈ R, the vectork(1, sin u cos v, sinu sin v,

cos u) is null and, therefore, exp ik(ct + z cosu +
x sin u cos v + y sin u sin v) must be a superposition of so-
lutions of the wave equation, with coefficients that depend on
u andv. In fact, as is well known,

exp ik(ct + z cos u + x sin u cos v + y sin u sin v)

= 4π

∞∑

l=0

l∑

m=−l

ileikctjl(kr)Ylm(θ, φ)Y ∗
lm(u, v), (24)

where thejl are spherical Bessel functions and(r, θ, φ) are
the spherical coordinates of the point(x, y, z) (see, e.g.,
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Refs. 1, 5). That is, Eq. (24) is an expression of a solu-
tion of the wave equation as a superposition ofseparableso-
lutions of the wave equation, with coefficients that depend
on u, v (which happen to be spherical harmonics!). Equa-
tion (24) is analogous to Eq. (22) in the sense that it can be
regarded as a generating function (of solutions of the wave
equation) and it shows that, for eachk > 0, the function
exp ik(ct + z cosu + x sin u cos v + y sin u sin v) is the ker-
nel of an integral transform that maps the spherical harmonic
Ylm(u, v) into a multiple ofeikctjl(kr)Ylm(θ, φ).

An analog of Eq. (24) in two spatial dimensions is

exp ik(ct + x cos u + y sin u)

=
∞∑

m=−∞
imeikctJm(kr)eimθ e−imu, (25)

where theJm are Bessel functions (of integral order) and
(r, θ) are the polar coordinates of the point(x, y). Here again
the spherical harmonics in two dimensions,e−imu, appear
[cf. Eq. (3)]. It may be remarked that even though Eq. (25)
can be readily obtained from the usual generating function
for the Bessel functions,

exp
x

2

(
t− 1

t

)
=

∞∑
m=−∞

Jm(x)tm,

the generating function (25) generates entiresolutionsof the
wave equation in two spatial dimensions.

Finally, making use of the generating function (25), one
can derive an addition formula for the Bessel functions, anal-
ogous to Eq. (12). Eliminating the common factoreikct from
Eq. (25) one obtains

exp ikr(cos θ cos u + sin θ sin u)

=
∞∑

m=−∞
imJm(kr) eimθ e−imu, (26)

hence

exp ikr1(cos θ1 cosu + sin θ1 sin u)

× exp[−ikr2(cos θ2 cosu + sin θ2 sin u)]

=
∞∑

m=−∞
imJm(kr1) eimθ1 e−imu

×
∞∑

m′=−∞
(−i)m′

Jm′(kr2) e−im′θ2 eim′u.

The left-hand side of the last equation is equal to

exp ik
[
(r1 cos θ1 − r2 cos θ2) cos u

+ (r1 sin θ1 − r2 sin θ2) sin u
]

= exp ikR(cos θ3 cosu + sin θ3 sin u),

where

(R cos θ3, R sin θ3) ≡ (r1 cos θ1, r1 sin θ1)

− (r2 cos θ2, r2 sin θ2),

which, according to Eq. (26) has the expansion

∞∑
ν=−∞

iνJν(kR) eiνθ3 e−iνu

thus,

Jν(kR) eiνψ =
∞∑

m′=−∞
Jν+m′(kr1)Jm′(kr2) eim′θ,

whereψ ≡ θ3 − θ1, θ ≡ θ1 − θ2, andR = (r1
2 + r2

2 −
2r1r2 cos θ)1/2 [see,e.g., Ref. 14, Eq. (5.12.5)].

1. J.D. Jackson,Classical Electrodynamics, 2nd ed. (Wiley, New
York, 1975).

2. D.J. Griffiths, Introduction to Quantum Mechanics(Prentice
Hall, Upper Saddle River, NJ, 1995).

3. D.M. Brink and G.R. Satchler,Angular Momentum, 3rd ed.
(Oxford University Press, Oxford, 1993).

4. H. Hochstadt,The Functions of Mathematical Physics(Dover,
New York, 1986). Chap. 6.

5. D.A. Varshalovich, A.N. Moskalev and V.K. Khersonskii,
Quantum Theory of Angular Momentum(World Scientific, Sin-
gapore, 1988).

6. M. Bander and C. Itzykson,Rev. Mod. Phys.38 (1966) 330.

7. A.M. Perelomov and Ya.B. Zel’dovich,Quantum Mechanics:
Selected Topics(World Scientific, Singapore, 1998).

8. G.F. Torres del Castillo and J.L. Calvario Acócal,Rev. Mex. Fis.
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