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A generating function for the spherical harmonics inp dimensions
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A generating function for the spherical harmonics in three or more dimensions is given. This function allows us to find in a simple manner
the explicit expressions for the spherical harmonics in three dimensions. The generating functions for the spherical harmonics given here are
analogous to certain well-known generating functions for solutions of the wave equation.
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Se da una funéin generatriz para los afmicos esfricos en tres o &s dimensiones. Esta fudd permite hallar en una forma simple las
expresiones exfiitas para los arfmicos esfricos en tres dimensiones. Las funciones generatrices para losieosiestricos dadas adu
son aralogas a ciertas funciones generatrices bien conocidas para soluciones de neteiacida.

Descriptores: Armonicos edfricos; funciones generatrices; ecidactle Laplace; ecuami de onda.

PACS: 02.30.Gp; 02.30.Jr; 02.30.Uu

1. Introduction the spherical harmonics in dimensions can be defined as

) ) o ) the eigenfunctions of the Laplace—Beltrami operator of the
The standard spherical harmonig$,,, arise in the solution = gphere

by separation of variables in spherical coordinates of vari-

ous partial differential equations (PDESs), such as the Laplace Pl = {(at, 22, ... 2P)
equation, the wave equation, and the ®dimger equation pI1n2 - o
for a particle in a central potential (see,g, Refs. 1, 2). €RP|(z")" + (27)" + -+ + (a")" =1}

These functions can also be defined as the common eigeg—ee Egs. (16) and (18) below.)

functions of the square of the orbital angular momentum op- . . . .
2 The aim of this paper is to present a generating func-
eratorL” and thez-component of the angular momentum op- .. ; o .
tion for the spherical harmonics in three and four dimen-

eratorL, (seeg.g, Refs. 2,3). ) . . ;
T . sions which enables us to readily find some properties of
Apart from a normalization constant;,, (6, ¢) is the . . . )
: / these functions and the explicit expression of the spherical
product of the associated Legendre functigft(cos #) and L ; . . . T
harmonics in three dimensions. This generating function is

eXP(IW)- As is well knqwn, th_e expllc!t expression of the closely related to expressions given in Refs. 5 and 11 for the
functionsY,,, can be obtained with the aid of the ladder oper- ; o . . .
spherical harmonics in three dimensions, and in Ref. 4 for the

atorsL, & iL, (seee.g, Refs. 2, 4), and the associated Leg- Legendre polynomials ip dimensions. It is also shown that

endre functions can be obtained by means of differentiations;,. ~. . : )
: . : similar results can be derived for the wave equation, which
making use of a Rodrigues formula. Actually, there exist an

. : Is the analog of the Laplace equation when the signature of
assortment of expressions for the standard spherical harmof)- o : . )
o . . . . X e metric is Lorentzian. In Sec. 2, we establish the basic
ics, including differential and integral expressions, power se- . : .

sult of this paper and develop the generating function for

) . : : T
ries expressions, and relations to other functions, man oﬁ . o : _
P Y %he spherical harmonics in three dimensions. In Sec. 3 the

which are given, without derivation, in Ref. 5. . L . . .

The soherical harmonics can be defined for an Olimen_spherlcal harmonics in four dimensions are considered and
sionp > me the following manner. Let!, z2 Z}; be an integral representation for them is derived. In Sec. 4 we
Cartgsﬂan coordinates RV? and ' 1w n® consider the wave equation and identify two well-known ex-

' pansions of plane waves as generating functions of separable
= \/(xl)Q T @2+t @) solutions of the wave equation in two and three dimensions,

which are analogous to the generating functions of spherical

if fis a homogeneous function of degreeof the z* that  harmonics presented here.

satisfies the Laplace equation, thgfv" is a spherical har-

monic of degree: (see also Ref. 4). The spherical harmon-2  Solutions of the Laplace equation

ics for p > 3 are also useful in mathematical physics; for

instance, the spherical harmonics in four dimensions appedrhroughout this paper we shall consider real- or complex-
in the solution of the Sclkidinger equation for the hydrogen valued functions defined iR?. If the components of
atom (seee.g, Refs. 6-8) and the spherical top, and are re-the metric tensorg;;, with respect to a coordinate system
lated to the Wigner functions [5,6,8] and the spin-weighted(z!, 22, ..., 2P) are constant, then the Laplace operator is
spherical harmonics (see,g, Refs. 9,10). (Alternatively, given by
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A = gii 9 9 wheref,,, is a function ofd only, which must be proportional
Ox' O’ to the associated Legendre functié}t*(cos#). Hence, we

where /) is the inverse of the matrixy;), and there is sum conclude that
over repeated indices. The basic result to be employed in
what follows is given by the following proposition.
Proposition 1. The homogeneous functidi, ' + kyx? +
--- + k,zP)™ is a solution of the Laplace equatiofyf = 0,
forn = 0,1,2,..., if and only if the constantg; are the

. . l
{cos 0+ % sinfe (¢~ 4 % sin § el(¢—%)

l
components of a null vector - mZ: z NimYim (0, 6) € ’ ®)
gijk’ik'j =0. (1) .
where thelN,,, are constants. (Equations (3) and (11) are
Indeed, a straightforward computation yields equivalent to Eq. (16) of Sec. 5.1 of Ref. 5.)
9 5 Thus, for instance, the explicit expressiont@f (¢, ¢) is
Y ot 5 Fm™)" = 97 5 [n(kma™)" k] obtained by considering those terms in the expansion of

=n(n—1)(knz™)" 3¢ kik;. : , : , 3
cos 6 + Lgingeite—w + Lgingeits—w

In the case ofR? (with its usual metric tensor), Eq. (1) 2 2
has no nontrivial real solutions; however, for any R, the _ o _
Vector(kl’ k2’ k3) — (1 cosu, isin u, 1) is null and therefore, that contain the faCtQir_m; in this manner we find that
forl =0,1,2,..., (z +izcosu + iysinu)' is a (complex- .
valued) solution of the Laplace equation (which depends on N, v3, (6, ¢) = 3 cos 0 cos O~ sin @ ei¢
the parameten). 2
Since + 3% sin9€i¢% sineei¢% sinfe”'?
z+ixcosu +iysinu = z

; ; = 12(5 cos® 6§ — 1) sinfe'?.

+ 5@ —iy)e” + (@ +iy)e™™,
‘ fixed and ) Ly The value of the factodv,,,, is obtained below [see Eq. (11)].
or @, y, z Txed an ! < N, <fl+ 133_(;8315 1y Sm.lu) mgst Similarly, from Eg. (3) we see that, fér=0,1,2, ...,
be a linear combination ofe~i*, e=il=Du il with

coefficients that depend any, z, N
! (;) sin 0 e'? = Ny Yy (0, ¢).
(z + iz cosu + iysinu)! = Z Fin(z,y, 2) e ™ (2)
m=-l The modulus ofV;; can be readily obtained from the normal-
According to Proposition 1, the right-hand side of Eq. (2) sat4ization condition
isfies the Laplace equation, hence

. 1:/2 1Y3)? dQ,
3 [AFu(,y,2)]e ™ =0 °

== wheredQ2 = sinfdfde¢ is the solid angle element and the

and, by virtue of the linear independence of the setintegralis overthe unitsphere= 1. Hence,
{e~ilv o=ill=Du_eilvl it follows that AF}, = 0. Fur-

thermore, expressing, y, z in terms of the spherical coordi- 1= 1 /sin” 04 — 1
natesr, 6, ¢ we see that 22| Ny |? J 221 Ny |?
2m T
z—l—ixcosu—i—iysinu:r[cosﬁ . 9 4 (11)?
d Hodd = ———2—.
></ gf)/sm Na[2(20 1!
. . 0 0
1 . 1 .
Zsinfe @) 4 Zgip gellé—w ,
+ g S g Smue Thus, following the Condon-Shortley phase convention [3,5],
) ] Ny is given by
and therefore the right-hand side of Eq. (2) dependsg and
u only through their difference; thus 1
. Ny = (=)0 | 4
Fim(r,0,9) = 1! fun (0) €™, u=(1 (20 +1)! &
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Making use of the orthogonality of the set Indeed, letting

{emilu emi=Du i} on the interval[0,2x], from
Eq. (3) we obtain the integral representation K(0,¢,u) = cosd
2 4 Zsinge io-w) 4 2 sin@el®=w  (10)
1 2 2
Vin(0,6) = 5 /[cos@ .
TN im 0 so that the integrand in Eq. (5) amounts (P, ¢, u)]* e™,
. we find that
i . —i(¢p—u i . i(p—u imu .
+ §sm9e (0—u) 4 ism(‘)ew )] edu  (5) ol® <§0 +icot088¢> K (0, 6, u)
or, by means of the change of varialale= u — ¢, el _ iuﬁK
1 i K(6, 6,u) — " - K (6,6,u)
— ime¢ .
Yim (0, 0) 27Tsze and from Eq. (5) it follows that

o 27
X /(cos9+isin0005w)leimw dw. (6) 27TNlmL+Ylm:/Z[K(ea¢>U)]l_le"nuL+K(9,¢7u)du
0

0
27

Expression (5) is equivalent to Eq. (7) of Sec. 5.3 of Ref. 5 7 ‘ L i(mt1)u
(cf. also Refs. 11, 14). Hence, the integral in the last equa- = h/ d[K (0, ¢, u)l'e

tion must be proportional t&;™ (cos #), and, settingn = 0, 0

we conclude that the Legendre polynomials have the integral P

representation — ei<m+1>“%K(9, é,u) }du.

27

1 . . .
Py(cos ) = = /(COSG + isin @ cos w)! duw. @) Igjnetfgratlng by parts the last term and using Eq. (5) again, we
i
0

The proportionality factor has been determined using the fact 27 Vim L+ Yim = ih(l +m +1)27 Ny i1 Yimt-

that Fi(1) = 1. (Equation (7) is known as Laplace’s inte- comparing with Eq. (9) we obtain the recurrence relation
gral representation for the Legendre polynomials [11,12,14].
Cf. also Ref. 4.) Alternatively, from Eq. (7), introducing an VI—m Ny, =ivVIi+m+ 1N ;i

auxiliary variablet, we have ) ] )
which together with Eq. (4) yield

27
n 1 = : n | |
g Py (x)t :%/ go(tx+1t\/1—g;2 cosw)" dw Nlm_._m\/ 4 ) 1! (11)
0o "=

n=0 2041 (L+m)! (I —m)!”
1 7 1 In terms of the polar coordinatés, #) of R?, the func-
== dw tions (1/v/27)e™? and (1/v27)e~™? are (normalized)
—_ it — 2
2m g L—tr =ity —a® cosw spherical harmonics of degree in two dimensions; there-
1 fore, according to Eq. (5), the functidd (0, ¢, u)]' is the
= W, (8)  kernel of an integral transform that maps the spherical har-
— xr

monics of degreen in two dimensions, withn < [, into
which is the well-known generating function of the Legendrethe set{Y; _ (6, ¢),Y; _111(0,9),...,Y1,(0,¢)} of spheri-
polynomials. cal harmonics in three dimensions.
The value of the constanty;,,, introduced in Eq. (3) We close this section with two further examples of the
can be readily obtained using the fact that, with the Condonapplications of Eq. (3). Whefi = 0, Eq. (3) reduces to
Shortley phase convention,

l
1= N.. Y, —imu
LY = /I Fm)I+£m+1) Y msi, 9) > NunYim (0, ¢) e,

m=—I1

whereL. = L, +iL, are the usual ladder operators which, which, with the aid of Eq. (11), implies that
in spherical coordinates, have the form [2]

0 for m # 0,
w0 . 0 Yim (0,¢) = 20+1
Ly = +het'? (89 +icot 68) . im(0:9) l4_7|; for m = 0.
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Since[K (0, ¢,u)]' [K (0, ¢, u)]P = [K(0,6,u)]'"P, making  and we have made use of the fact that the usual spherical har-

use repeatedly of Eg. (3) we obtain monics are eigenfunctions of the Laplace-Beltrami operator
of §2
nﬂAa@=Af Ag2Yim = —1(1+1)Yin (18)
l+p,r .
Z N with 1 0 0 1 02
X NlmNp,r—m }/lm(ea (b) YVP,T—m(ea (b) (12) A - & _ - -
- = o005 T snTe 00
(A similar expression is given in Ref. 5 in terms of the (note thatl? = —h*Agz). o o '
Clebsch—Gordan coefficients.) The vector f1, ko, k3, kq) = (isinucoswv,isinusinov,

icoswu, 1) is null for all u,v € R and, according to Propo-
) o ) ) sition 1, the functions
3. Spherical harmonics in four dimensions

. L . . F, T, Y, 2, W) = w ~+ iz cos u + ix sin u cos v
For the case of the spherical harmonics in four dimensions nim (59, 2,0) /(

we have to follow a procedure slightly different from that fol- 52
lowed in the case of three dimensions. + iy sinusinv)” Vip, (u, v) dQu0), (19)
The spherical coordinates &%, (r, x, 0, ¢), are related
to the Cartesian coordinatés, y, z, w) by whered(},, ., = sinu dudv is the solid angle element corre-
sponding to the angles v, are solutions of the Laplace equa-
2 = rsin x sin 0 cos ¢, tion (cf. Ref. 11). Sincé,;.,, is a homogeneous function of

degreen in z,y, z, w, it follows that F,,;,,, /r" is a spherical
harmonic of degree and, as we shall show, this function is,
2z =rsinycos#, up to a constant factor, the spherical harmonic (17).
Indeed, letting

y = rsin x sin sin ¢,

w = TCos X, (13)

and, therefore, the Laplace operatoifhas the expression
+ isin x [cos 8 cos u + sin @ sin u cos(¢ — v)], (20)

10 50 1
At = oo T iahse 9 from Egs. (19) and (13) we have
1 Py P Fnlm(raX>97¢):T /[K(X,Q,(b,u,v)] }/lm(uav) dQ(u,v)
Ags = —5——sin® y— §2
S e o sin X@x

and making use of the fact that

+1<16,98+182> (15)
— | — sl -+ —— 5
sin?y \sin6 90 00 sin®§ 02 OK (x,0,¢9,u,v)/0¢ = —0K(x, 0, d,u,v)/0v,
being the Laplace-Beltrami operator 8%, the unit sphere we obtain

r = 1. Hence, a spherical harmonic of degreé four di-

mensionsf(x, 6, ¢), satisfies the eigenvalue equation (% /[K(X,9,¢7u,v)]"Yzm(u,v)dQ(u,v) =
Ags f = —n(n+2)f, (16)

which follows from Eq. (14) and the fact that f is a solu-
tion of the Laplace equation. Using Eg. (15) one finds that
Eq. (16) admits separable solutions of the form

32
9 n
- / Yim (U, U)% [K(Xv 97 ¢a U, 1))] dQ(u,v)
32

n 0
= /[K(X7 97 ¢a U, ’U)]niyvlm (ua U) dQ(u,v)

v
PTlL,4(COS X) Yim(ev ¢)7 (17) 52
whereP! , is an associated Legendre function in four dimen- = im/[K(% 0,6, u,v)]" Yim (u,v) dQu ),
sions [4], which satisfies the equation g2

1 d[., d where we have integrated by parts, which implies that
sin? y dx {Sm X&PM(COS X)} Frum(r, x, 0, ¢) depends om only through the factoe™®.
In a similar manner one finds that the value of the func-
+ {n(n +2) — l(ltl)} P! ,(cosx) =0, tion Ag2[K (x, 0, ¢, u,v)]™ is invariant under the exchange
sin” x ' of (0, ¢) with (u,v) (just like the functionK (, 0, ¢, u, v)
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itself) hence, denoting bis:(,, ., the Laplace-Beltrami op-
erator of the spherg? in the variables:, v, and making use
of the self-adjointness of this operator,

Ags / K (x, 8, 6, 1, 0)]" Yo (1, 0) Dy
SQ

= / A52 (u,v) [K(X7 97 ¢7 u, U)]n Yim(uv U) dQ(um)

/[K(Xa 9, ¢a u, U)]n AS2(u,v)le’m(u; U) dQ(u,’u)
g2

10+ 1) 106 0,00, 0)]" Vi (1) A
S2

[see Eq. (18)]. We conclude thdt,;,,(r, .0, ¢) is pro-
portional toY,,(0, ¢) and, therefore, to the spherical har-
monic (17).

Thus, denoting byY,,;,, the normalized spherical har-
monics (17), we conclude that

1
anm

x /[K(X795¢7u7v)}n)/lm(uav) dQ(u,v)7 (21)
S2
whereN,,;,,, is a normalization constant [cf. Eq. (5)], which
amounts to

Ynhn (Xa 05 ¢) =

v)l}"

{cos x + isin x [cos 8 cosu + sin @ sin u cos(p —

n l
= Z Z anmYnlm (X7 97 ¢) }/l;z (u7 ’U), (22)

=0 m=—1

where* denotes complex conjugation [cf. Eq. (3)].

Even

G.F. TORRES DEL CASTILLO

(cf. Ref. 4). Then, using an auxiliary variatilewe have

o0

> (n+1)P, ax)t

dp
(1 —tax —itv1 — 22 p)?

B 1
T 1= 2z + 2’

which gives a generating function for the Legendre polyno-
mials in four dimensions [4] [cf. Eq. (8)].

4. Other dimensions, other signatures

It should be clear that we can write down formulas analogous
to Egs. (3), (5), (21), and (22) for the spherical harmonics in
p dimensions in terms of the spherical harmonicgin 1
dimensions, fop > 4. On the other hand, Proposition 1 also
holds when the metrig;; is not positive definite and, in the
case wherdg;;) = diag(-1,1,1,1), the Laplace operator
becomes the d’Alembert operator which appears in the wave
equation. However, as pointed out in Ref. 11, instead of
homogeneous polynomials it is preferable to have solutions
with an oscillatory time dependence. As a consequence of
Proposition 1, or by a direct computation, one finds that

expi(koct + k1x + kay + k3z)

though Eq. (22) is analogous to Eq. (3), Eq. (22) does nots @ solution of the wave equation

seem convenient to find the explicit expression for the spher-
ical harmonics in four dimensions owing to the presence of

the functionsY}?, (u,v) on the right-hand side of Eq. (22).

Note that each term in the right-hand side of Eq. (22).ith (

Nutm Ynim (X, 0, ¢) Y (u,
of one variable each.

The functions Y,00(x,0,¢) are,
factor,
P, 4(cos x) [4]. Using the fact thatty, is a constant, and
that the angley between the directiond, ¢) and (u,v) is
given bycosy = cosf cosu + sin @ sin v cos(¢ — v), from
Eq. (21), and the conditio®,, 4(1) = 1, one obtains the in-
tegral representation

T

1
3 /(cosx+isinx cos~)" siny dy

—
1
-1

v), is the product of five functions

up to a constant

P, 4(cosx) =

(cos x + ipsin x)™ du (23)

N |

the Legendre polynomials in four dimensions,

iy 0 OF _
Ox' Ol ’
gij) = diag(-1,1,1,1), 4,5 = 0,1,2,3, and
(20,21, 2% 2?) = (ct,:c,y,z), provided that the constant
vector(ko,k:l, ko, k3) is null, that is(k)? = (k1)? + (k2)?

+(k3)2.

For allk,u,v € R, the vectork(1, sin u cos v, sin u sin v,
cosu) is null and, therefore, expik(ct + zcosu +
xsinucosv + ysinusinv) must be a superposition of so-
lutions of the wave equation, with coefficients that depend on
uw andw. In fact, as is well known,

expik(ct + z cosu + x sinucos v + ysin u sin v)
0o l
Ar > > itetRel i (kr) Vi (0, 6) Vi, (u, ), (24)
1=0 m=—1

where thej; are spherical Bessel functions agdé, ¢) are
the spherical coordinates of the poifit,y, 2) (see,e.g,
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Refs. 1, 5). That is, Eqg. (24) is an expression of a soluhence
tion of the wave equation as a superpositios@pbarableso-

lutions of the wave equation, with coefficients that depend exp ik (cos 01 cos u + sin 67 sin )
on u,v (which happen to be spherical harmonics!). Equa-

tion (24) is analogous to Eq. (22) in the sense that it can be x exp|—ikrs(cos f cos u + sin 0 sin )]

regarded as a generating function (of solutions of the wave = . .
equation) and it shows that, for eagéh> 0, the function = Z 1" T (k1) €70 e
expik(ct + zcosu + xsinucosv + ysin usinv) is the ker- m=-0oo
nel of an integral transform that maps the spherical harmonic o i
Yim (u, v) into a multiple ofe'*<* ji (kr) Yi,,, (6, ¢). X Z )™ Ty () eI 02 I,
An analog of Eqg. (24) in two spatial dimensions is m/=—o0
expik(ct + x cosu + ysinu) The left-hand side of the last equation is equal to
_ i imeiket 1 (k,r)eime o—imu (25) expik [(m cos By — ro cosfsy) cosu
- m k)
m=—o00 + (Tl sin 7 — ro sin 02) sin U]

where theJ,, are Bessel functions (of integral order) and

(r,0) are the polar coordinates of the pojmt v). Here again

the spherical harmonics in two dimensiors,™*, appear where
[cf. Eqg. (3)]. It may be remarked that even though Eq. (25)

= exp ik R(cos 3 cos u + sin 03 sin u),

can be readily obtgined from the usual generating function (Rcos B, Rsin ) = (r cos 01,1 sin )
for the Bessel functions,
1 o — (rg cos B, 79 sin bs),
exp — (t — ) = Z Im (2)t™,

2 ¢ m=—oo which, according to Eq. (26) has the expansion
the generating function (25) generates endm&utionsof the 00
wave equation in two spatial dimensions. Z v J,(kR) "% ¢ivu

Finally, making use of the generating function (25), one Yoo

can derive an addition formula for the Bessel functions, anal-
ogous to Eq. (12). Eliminating the common facdict from  thus,
Eq. (25) one obtains

11/11) _ im0
exp ikr(cos 6 cos u + sin 6 sin u) Ju(kR)e Z Ty (k1) Iy (kr2) €™ 7,

m/=—o00
= Z (k?") im0 —1mu’ (26) Whel’e’l/J =03 —0:,0 =0, — 06, andR = (’1"12 + 7'22 —
m=—o0 2r15 cos 0)'/? [see,e.g, Ref. 14, Eq. (5.12.5)].
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