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State space second order filter estimation
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The second order stochastic filter is based on difference models with uncorrelated innovation conditions structured in state space having
stationary properties through a surface with bounded drift around the mean value. This allows building recursive estimation without generality
lost and basic properties over the stochastic state space surface with unknown gains viewed as a black-box scheme. The spatial region
generated gave an approximation to real parametres set with a sufficient convergence rate in a probability sense. The results were applied
in adaptive identification states with a high convergence rate, observed in the functional error described illustratively in simulations. This
technique was developed over the smooth slide surface having advantages over other traditional filters.
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1. Introduction

A system in a physic sense is involved with noise viewed
as a black-box scheme, wherein its excitations and the out-
put measures are directly affected. But these sampled signals
propose information allowing the selection or the building of
a differential stochastic model that commonly is a mathemat-
ical approximation between the evolution measures consider-
ing its excitations. Sampled signals directly correspond to a
finite difference. This order represents the number of delays.
Thus, the first corresponds in differences with a delay and so
on [1].

The estimation is a basic tool considered in the parame-
tres description. Where it is used?

An example is in Digital systems Adaptive Control The-
ory (ACT) using the estimation techniques that adjust the
unknown gains into the controller according to a reference
model with observable states. This mechanism is known as
Digital Filter Estimation (DFE) affecting the control action
gains before the feedback system ends modifying the parame-
tres set with respect to an objective reference. Therefore, the
Proportional Integrate and Difference (PID) discrete control
action is calculated using other techniques, such as Butter-
worth tools, without changes through time. In spite of this,
the gains are adjusted based on the experience designers.

Independently of the parametres estimation techniques,
the input perturbations affect the convergence rate requiring
adaptive considerations. The signal error is applied in the
adaptive estimation in some sense as a feedback mechanism
maximizing the convergence rate. Therefore, the filter result
is known as an Adaptive Filter Estimation (AFE).

The control law action commonly operates in a PC using
discrete platform calculus. In this case, theAFE is expressed
in finite differences simplifying the digital charge using a re-
cursive technique [1] as: Least Square Method (LSM) [2], In-

strumental Variable (IV) [3], Forgetting Factor (FF) [4], and
the Kalman Filter (KF) [4] therefore the gradient minimizes
the convergence rate making an implementation without los-
ing its stability. The reference model parametres estimation
has some of the following conditions:

a) Stationary input-output rate selecting the
specific filter [2] as LSM, IV, FF needing the pseudo-
inverse method [3] with an innovative correlation ma-
trix [4]. These were described in terms of a linear
stochastic model asAyk + ξk = uk, with uncertainty
around the equilibrium solution [5]. The input and out-
put vectorsyk, ξk, uk ∈ (R,=(R), P )k are mixed with
internal gainA into the black-box Auto-Regressive
Moving Average (ARMA (1, 1)) description. In all
cases the stochastic gradient was applied to the sec-
ond probability moment. These filters are off-line op-
timal [6] and their simulations show that the functional
error converges exponentially to an equilibrium point
in affine base feedback loops [7]. The on-line esti-
mation in the Single-Input Single-Output (SISO) case
is developed recursively bounded by a time interval
with respect to the natural frequency reference output
model [8-10].

b) Non-stationaryconditions [11]. The filters
use the variances matrix with maximum likelihood es-
timation and have good distribution convergence with
non-stationary responses [12,13]. The spatial time-
delay estimation for known signals is considered hav-
ing high changes with marginal stable conditions, and
in spite of the filter based on the invariance principle,
converges in a probability sense, with a good distribu-
tion description.

The filter estimation is used in:



STATE SPACE SECOND ORDER FILTER ESTIMATION 255

1. Electrical rotor-position requiring specific veloc-
ity using a filter estimation techniqueP (k − 1)
= E

{
Y (k − 1)V (k − 1)T

}
affecting the con-

trol law amplitude voltages.

2. The filter estimation based on the traditional
LSM [14]. Multi-Input Multi-Output Orthog-
onal Frequencies-Division with Multi-Access
(MIMO-OFDMA) system having offset up-link
non-stationary frequencies adjusting their gains
dynamically using LSM [15]. The results were
limited to short smooth conditions [16].

3. The Signal-to-Noise Ratio (SNR) was seen as
an answer to the black-box system having non-
stationary conditions. The estimation considered
was based on a gradient technique and the re-
sults had a good distribution convergence [16].
The Azimuth and Elevation Variation (AEV) in
short-range and low-flying air routes were pre-
dicted with a LSM state space parametres esti-
mation method [17].

4. The 3D affine motion estimation problem used
two cameras via observations as a single feature
point. The nine rotational parametres, the three
translational parametres, and the 3D position
were estimated using LSM state space parame-
tres estimation. A closed-loop non-linear ob-
server was developed for the affine motion prob-
lem [18].

Different estimation techniques were resumed observing
black-box system output stationary or non-stationary condi-
tions. In the present paper, considering the Auto Regressive
Moving Average ARMA (2, 1) model as a black-box out-
put evolution described in state space form is solved using
the vector estimation with the traditional inverse technique
instead of the pseudo-inverse solution.

2. Development

The extended ARMA (2,1) as a SISO black-box answer is
described in (1)

y(k) = ay(k − 1) + by(k − 2) + cω(k) (1)

Having a complete description with{yk} ∈ R(−1,1),
{ω(k)} ∈ N(µ, σ2 < ∞) (1) [19].
Theorem 1. The system (1) with respect to a reference sig-
nal is viewed as a black-box scheme and has a state space
estimator described in (2).

Â(k) =
(
E

{
X(k)V (k)T

}

− cE
{
W (k)V (k)T

} ) (
E

{
Y (k)V (k)T

})+
(2)

Matrix parametresA(k) has the form(3). The vectors
X(k), Y (k), W (k) are given byX(k) = [x1,k x2,k x3,k]T ,

Y (k) = [x1,k−1 x2,k−1 x3,k−1]
T , W (k) = [0 0 ωk], re-

spectively. The instrumental variableV (k) ∈ R[3×1] in
agreement to[20] calculates the gain matrix(3).

Â(k) =




1 0 0
0 1 0
b̂(k) â(k) −1


 (3)

Proof. (See Appendix)
Theorem 2. The recursive estimation based on (2) is de-
scribed in (4).

Â(k) = Â(k − 1)Q(k − 1)Q(k)+ + S(k). (4)

Proof. (See Appendix)

3. Simulation

The simulation results considered an ARMA (2, 1) in (1) in a
SISO condition having the identification form (5).

ŷ(k) = â(k)y(k − 1) + b̂(k)y(k − 2) + cω(k) (5)

A periodic input considered in (1) and estimated based
on (2) and applied in (5) show the results in Fig. 1. The
parametreŝa, b̂ estimated with respect to periodic output ref-
erence model are shown in Fig. 2.

Figure 3 shows the identification functional error trace,
with recursive form (6)

FIGURE 1. The identified input running five times with respect to
the reference model in red.

FIGURE 2. The parametreŝa, b̂ with respect to a periodic output
reference model.
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FIGURE 3. Functional errorJ(k) trace with respect to five periodic
output reference model.

FIGURE 4. A periodic signal with slow perturbation in red and
identified five times using the filter estimation proposed.

FIGURE 5. Parametreŝa(k) andb̂(k).

FIGURE 6. LSM Functional Error Estimation for five stochastic
signals.

J(k) = 1
k

(
e(k)2 + (k − 1)J(k − 1)

)
(6)

ande(k) = y(k)− ŷ(k).

In the second experiment{ω(k)} ∈ N(µ, σ2 < ∞) the
periodic function now has a short perturbation. The iden-
tifier describes a random sequence of the black-box output
observable signal, bounded by an interval region, shown as
an evolution time system in Fig. 4.

Figure 5 shows the parametres estimation with slow ref-
erence output perturbations.

Figure 6 shows the traditional LSM MatLab model and
five state space functional errors trace.

4. Conclusion

The state space description was used and the recursive state
space parametres estimation considered the black-box system
answer as a first stochastic differences order and a second
grade model. The new system has a matrix form with un-
known matrix parameters. The stochastic gradient was used
and the second probability moment allows building the ma-
trix estimation. A recursive technique was developed con-
sidering stationary conditions between input and output sig-
nals. The simulation results with smooth evolutive condi-
tions gave a satisfactory estimation for two cases running five
times, both with bounded perturbations. Therefore the esti-
mation affects in an adaptive form the control law action or
an identification scheme, observed in Figs. 3 and 4, with a
high convergence rate to the ideal signal viewed in Fig. 6.

Appendix

Proof (Theorem 1):The model described in (1) considering
that x1,k = x1,k−1′ , x2,k = x2,k−1′ , x3,k = yk − x3,k−1 in
state space is (7)




x1(k)
x2(k)
x3(k)


 =




1 0 0
0 1 0
b a −1







x1(k − 1)
x2(k − 1)
x3(k − 1)


 +




0
0
c


 ω(k) (7)

In vector form (7) symbolically is described in (8).

X(k) = AY (k) + cW (k) (8)

The second probability moment using the instrumental
variable has the form (9).

E
{
X(k)V (k)T

}
= Â(k)E

{
Y (k)V (k)T

}

+ cE
{
W (k)V (k)T

}
(9)

The matrix parametres is described symbolically in (10)

Â(k) = E
[ {

X(k)V (k)T
}

− cE
{
W (k)V (k)T

} ] (
E

{
Y (k)V (k)T

})+
(10)

And it was developed in (2).
Proof (Theorem 2):The system (1) with parametres estima-
tion (2) symbolically has the form (11):

A(k) = P (k)Q(k)+ (11)
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The matrices considered in (11) are defined in (12)
and (13)

P (k) : = E
[{

X(k)V (k)T
}− cE

{
W (k)V (k)T

}]
(12)

Q(k) : = E
{
Y (k)V (k)T

}
(13)

With stationary conditions of (11) symbolically the ma-
trix estimation has the form (14) one step later.

Â(k − 1) =
Q(k − 1)
P (k − 1)

(14)

The recursive form of (12) is described in (15).

P (k) =
k − 1

k
P (k − 1) +

1
k

(
X(k − 1)V (k − 1)T

)

− cW (k − 1)V (k)− 1T (15)

Considering (14) in (15) multiplying byQ(k − 1)/Q(k − 1)
to P (k − 1) is described in (16)

P (k) =
k − 1

k
P (k − 1)

⌊
Q(k − 1)
Q(k − 1)

⌋
+

1
k

× (
X(k − 1)V (k − 1)T

)− cW (k − 1)V (k)− 1T (16)

With (14) applied in (16), theP (k) recursively is (17)

P (k) =
k − 1

k
Â(k − 1)Q(k − 1) +

1
k

× (
X(k − 1)V (k − 1)T

)− cW (k − 1)V (k)− 1T (17)

And (17) in (11) is described in (18)

Â(k) =
k − 1

k
Â(k − 1)

Q(k − 1)
Q(k)

+
1

kQ(k)
(
X(k − 1)V (k − 1)T

)

− c

Q(k)
W (k − 1)V (k)− 1T (18)

And (18) corresponds to (4).
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