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This method is a discrete case of the E. Wolf method for the design of an aspheric surface. Using the proposed method, the designer can
how many pointgx, y) there will be on the entrance pupil at which the spherical aberration will be zero, by using the aspheric coefficien
as degrees of freedom. For fitting the coordinates that correct the spherical aberration to an aspheric surface we solve a system of equ
of the first degree. An optimisation procedure is not required because we use equations without approximations and with exact ray tra
We obtained diffraction limited optical systems faster than the commercial programs.

Keywords: Aspherical surface; spherical aberration; aberration.

Este n&étodo es un caso discreto dedtodo propuesto por E. Wolf para dise una superficie asfica. Con este gtodo el disBador puede
seleccionar los puntoge, y) en la pupila de entrada en los cuales la abebraessérica sea cero, usando los coeficientes de asfericidad
como grados de libertad. El ajuste de las coordenadas que corrigen la dveesfrica a una superficie @&sfca lo realizamos resolviendo

un sistema de ecuaciones de primer grado. El procedimiento de optibmzaxes requerido por que usamos trazo de rayos exacto; con este
método nosotros obtenemos sistemas limitados por difsagoas @pido que con los programas comerciales.

Descriptores: Superficies agfricas; aberradn esérica; aberraéin.

PACS: 42.15-1; 42.15.Dp; 42.15.Eq; 42.15.Fr

1. Introduction ray), to achieve zero optical path difference (OPD) for only
one point on the exit pupil. Castro-Rametsal. [4] derived

This method is a discrete case of the E. Wolf [1] method forequations for the design of aplanatic microscope objectives
the design of an aspheric surface. When the aspheric susf two conic mirrors. They found two equations of the sec-
face is the first or last surface of the system the solution i$nd degree: one to correct spherical aberration and one for
greatly simplified and he gives exact parametric equationssoma correction. These equations are exact and depend on
In both cases, the method needs to evaluate an integral angl, _, (distance between mirrors along marginal ray). The
E. Wolf [1] proposes to evaluate this in several ways. Hemethods of Cordero-Davila, Conrady and Castro-Ramos de-
proposes a polynomial approximation but does not say howend of D;,_; and the correction is in only one point on the
many terms are used to achieve it; also, if you use this apexit pupil. Our method proposes to make zero OPD in several
proximation the solution is not exact. On the other hand, ifpoints ¢, 3y) on the pupil entrance and not just one.
a sufficient number of rays is traced from the object space to . .
the space that precedes the correcting surface, then the inte- Additionally, numerical method_s have also_ been pro-
gral might also be evaluated numerically; however, he did noposed. quolyet al [5] proposed a simple recursive method
say how many rays should be traced, nor what are the poinfg determ!ne the shape Of. the corrector platg for Iargg tele-
(z,y)on the entrance pupil, which intersect the rays. Our>topPes W'thOUt.the use h|gh-order pplynomlal coeﬁ|C|ent§,
method proposes the number and where the rays should B@'Ch lack precision in f|tt|pg the rqulred shape of asphenc
traced in order to correct the optical path difference (OPD). surface. We propose to f|t_the reqwred_ Sh?pe by solving a

Other methods have been proposed to analytically corre(:stys'[em of equations of the first d_egree W'.th. high accuracy us-

) . . 1ng the same number of aspherical coefficients and points of

aberrations in the last surface, for example, Conrady [2] with .
the (D — d) method of achromatisation. He calculates thecorrection.
radius of curvature of the last surface, knowing the desired In the next section, we explain the condition for the de-
value of D, _; (Fig. 1) in the last element, to achieve achro- sign of optical systems that are free of spherical aberration.
matism in only one point on the exit pupil. Cordero-Davila In Sec. 3, we explain the method using a general aspheric sur-
et al [3] deduced an equation for the conic constant of theface. Section 4 presents some examples in which we apply
last mirror of a two-mirror telescope, knowing the desiredthe developed methodology and finally, Sec. 5 offers conclu-
value of Dj,_; (distance between mirrors along the marginalsions.



274 S. VAZQUEZ-MONTIEL AND O. GARCIA-LI EVANOS

2. Spherical aberration correction N Y
Do,

The necessary condition to obtain a system with corrected g(‘""“"’“’“ o .

spherical aberration is that both the paraxial and marginal op- : nl e Toct :

tical paths must be equal [2,3,4], then from Fig. 1 we obtain -

Zia ) H

ny //7 R g

d 4y

nogDo + 11Dy +np_1Dr—1 +ni Dy,

iy s

=do +ndy + ng_1di_1 + npdy. 1) , )
FIGURE 1. Parameters used to correct the spherical aberration.

where ng ;.. are the refractive indices of each medium,

do1...1; are the distances along the optical axes between sur- Th1 = Th o+ Dy 1Ln 1
faces,Dy ;. are the distances along the marginal rays be-
tween surfaces (Fig. 1). Yh—1 = Yr—2 + Dp_1 M1
From Fig. 1, we see thddy, is 21 = 250 —dp_1 + Ne_1Dp1, ©)
Dy = /(re—1)? + (dx — 21)?, ) where(Ly_1, My_1, Ns_1, ) are the direction cosines of
the marginal rays; 1 and(rx—2 andk—1 @andzg_sand.—1) are
wherer,_; = \/x7_| +yi_;. the intersection coordinates between the marginalSay
The coordinates at the last surface for the marginal rayand the last surfaces (Fig. 1).
(Sk-1) are Using the rotation symmetryrd1,.» = vo1,.x) and

| substituting Eq. (3) into Eg. (2) we obtain

Dy = /(yr—2 + My_1Dj_1)> + (dx — 2—2 + dp—1 — Ny_1Dy_1)?, (4)
and by substituting Eq. (4) into Eq. (1) and by squaring, we obtain a quadratic equatiop for

aD} | +bDy_1 +c=0. (5)

When the object is at a finite position, the coefficients of the second degree equation are calculated as

a=(nf —ni_y), (6a)
neyk—oMp_1 —n2Nk_1(dg — 22 + dr—1)
b=2 , (6b)
+ng—1(nodo + nidy + ng—1di—1 + npdy, — ngDo — n1Dy)
niyi_o +ni(dy — zp—2 + di—1)*
CcC = ) (6C)
—(nodo +n1dy + ng—1dk—1 + ngdy, — noDy — n1D1)?
and when the object is at infinity, the coefficients are calculated as
a=(nj —ni_y), (7a)
nayk—oMy_1 —n2Nk_1(dg — zg—2 + di—1)
b=2 , (7b)
+ng_1(nidy + ng—1di—1 + ngpdy — noz1 —n1D1)
niyi—z + 1 (di — z—2 + di—1)?
CcC = . (70)
—(n1dy + np—1dg—1 + nidi, — noz1 —n1D1)?

If the last surface is a mirror in air, the coefficienis zero and in this case, only an equation of first grade should be solve
to determineD;,_.

From Fig. 1, we see thaDy, D1, Dy_o,dg, d1, dx—1, dk, Y1, Yk—2, 2k—2, Mi_1 and Ny_, are exact parameters and we
can determine these parameters by exact ray tracing. With these parameters we can é3)cuylateng Eqgs. (5), (6) and (7)
and then, we calculatg,_, andz,_; using Eq. (3) to obtain an optical system free of spherical aberration.
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3. General aspheric surface correction Considering only f/numbers 5, the spherical aberration
can be represented only for the first and second terms and by
combining these terms, the spherical aberration of the edge
can be corrected as follows:

We defined the general aspheric surface as
Zaspheric= Zspherict al(l’i_1 + yi_l)Q
+ag(af g +yi)? Fas(@i_ +yio)t ., (8) W(0,y) = bi(yam)> + ba(yp,)* = 0. (14)

where 7,_1— zasphericthat together withe;,_andy,_ are the Considering that,,, is the height of the ray at the edge of
coordinates at the last surface for the marginal rayghelc  a pupil normalised to one, we have:
is calculated with the axial curvaturg_; and the same co-

ordinatesr,_, andy,_; as follows: by = —b. (15)
— cr—1 (i1 + Y1) . 9) If the spheﬁcal aberration of.the edge is corregted, for ex-
1+ \/1 —cZ (@2 +y20,) ample, see Fig. 4, the rays which pass through intermediate
zones of the pupil lens are not corrected. This aberration is
Using the rotation symmetry and solving Eq. (8) only for known as residual spherical aberration. Substituting Eq. (15)
a1, we obtain into Eq. (13) we derive Eq. (13) for two terms and by putting
ag = Zaspherif; Zspheric. (10) them equal to zero, we can determine the peak of the residual
Yi—1 spherical aberration, as follows:
With this result, we have the spherical aberration correct . 93
for one point on the exit pupil. If we want to correct the W(0,y) =bi(y")” = bi(y")” =0
spherical aberration for two points on the exit pupil, in the oW (0,y . 5
edge and the zonal spherical aberration; we need to solve the oy =4b1y” — 6b1y” =0
next equations system: 5
_ _ v’ =3 (16)
Zaspherica(edgey= <spheric(edge) 3
+ al(yk—l(edge))4 + a2(yk71(edge))6 The residual spherical aberration occurs whes equal
to the marginaly,,, , multiplied by \/2/3 = 0.8165 and is
Zaspheric(zonal= Zspheric(zonal) called zonal spherical aberration. This analysis is similar to

+ a1 (Yr—1zona)* + a2(Ur—1¢ona)®. (A1) Kingslake's [7]. The difference is that the de focus term is
not considered here. It is possible to correct the spherical

In general, if we want to correct the spherical aberrationaberration at the zonaly(y.,,) = 0.8165) and marginay(,)
in more points on the exit pupil, it is better that we use aheights on the pupil by using the first three terms of the ex-

matrix form and then we have pansion of the wavefront aberration given by Eq. (13) so
C1 bir bar bz bar bsi b ai 4 6 8
C2 bia baa b3z baz bsa  bpo a2 ( y) 1Y 2y 3y
c3| _ |bis b2z bsz baz bszs bns| |as W(0,y) = b1(0.8165 * y,,)*
ca| |bia bag bza baa bsa bpal| |aa|’ (12)
5 n 6 8
cs bis  bos bss bus  bss  bus as +b2(0.8165 * y,,)° + b3(0.8165 x y,,,)° =0 (17)
Cn bln an b3n b4n bSn bnn (7%

With the solution of the equations system (17), we derive
where; 2 3., are the differences betweetyspneric and  Eq. (13) for three terms and putting them equal to zero, we
Zspherio b11,12,13,...,nn are the coordinates at the last surfacecan determine the peaks of the residual spherical aberration
for the marginal ray to the fourth power, sixth power, etc., andwvhen the zonal and in the edge spherical aberrations are cor-
a1,2,3,....» are the coefficients of the general aspheric surfacerected, for example, see Fig. 5. The Optical Path Difference
Solving the equations system (12), we can determine the cqOPD) curve has two peaks opposite above and below the
efficients that correct the spherical aberration fforpoints  0.8165 zone. The zones with maximum and minimum resid-
(z,y) selected on the entrance pupil. uals fall at values of given byy/y.,,, = 0.6210 or 0.9297.

The points for the Kingslake analysis aygy,, = 1,

; ; _0.8880, 0.7071, and 0.4597 and for our analygig,, = 1,
4, rl—elg\t/é(;r’])any and which points should be cor 0.9297. 0.8265. and 0.6210,
) If we consider f/numbers< 1, we should correct the

The spherical aberration of the wavefront for any optical sysSPherical aberration residual and its peaks fall at values

tem can be expressed as [6]: y = ym(0.6210) ory,,(0.9297). We use the fourth and fifth
terms to correct these othgrvalues and we can repeat the
W(0,y) = b1 (y?)? + ba(y?)® + bs(y®)* +....  (13)  procedure to correct the spherical aberration of Egs. (14),
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(15) and (16) to foury. Using the solutions, we derive
Eq. (13) to five terms and making them equal to zero, we carTasLE |. Coordinates calculated with Egs. (18) and (19) compared
determine the peaks. The OPD curve has two peaks oppavith the coordinates calculated with our method.

site above and two below the 0.6210 and 0.9297 zones. The
zones with maximum and minimum residuals fall at values

Points (, y) on Points(,y) Eq. (16) and Our method

of y given byy /y,, = 0.9738, 0.8773, 0.7181 and 0.4435, for _N€ €ntrance pupil _ on the mirror  (17)( (2)
example, see Fig. 7. This analysis can continue because the (0.(100)(1))  (0,94.201625) -23.19341  -23.19341
expansion (13) is infinite. (0,(100)(0.9297)) (0, 88.26454)  -20.245065 -20.245065

The number ofy values that must be corrected for each (0,(100)(0.8265)) (0, 79.29977) -16.214063 -16.214063

optical system depends on the optical system tolerances(O'(loo)(o'&lo)) (0, 60.646956)  -9.359379  -0.359379
for example, with one value of ((1)(..)), we correct

lenses with f/numbers bigger than /5, with two different val-
ues ofy((1)(y.,) and (0.8165);,)), we correct lenses with TABLE Il. Coordinates calculated with Eq. (19) compared with the
flnumbers bigger than f/2 and with four different values of coordinates calculated with our method.

y((1)(ym), (0.8165)¢:n), (0.6210)¢:), (0.9297)f,,)), we Points(0, y) on Points(0, y) Eqg. (17)  Our method
correct lenses with f/numbers bigger than f/1 but the designer the entrance pupil  on the mirror  (2) (2)
decides the correction that is needed.

In this section, the authors propose some points for the (0, (100)(1)) (0, 100) -25 -25
correction of spherical aberration; however, the method al- (0, (100)(0.9297))  (0,92.97)  -21.608552 -21.608552
lows the designer to select any point on the pupil of the opti- (0, (100)(0.8265))  (0,82.65) -17.077556 -17.077556

0, (

cal system. (0,(100)(0.6210))  (0,62.10)  -9.641025  -9.641025

5. Examples _
5.2. Gregorian telescope

5.1. Mirrors ) ) ) )
The first example is ayfi/10 Gregorian telescope whose pri-

Smith and Atchison [8] found analytically the equation to mary mirror is f/1 and spherical. Therefore, with a very
compute the conic constant and the radii of curvature of darge spherical aberration, the secondary mirror is aspheric
mirror without spherical aberration, if the position of the ob- and it is used to compensate the aberration of the primary

ject and the image are known: mirror. The primary mirror diameter is 100 mm and the dis-
ALl o'l tance from the vertex of the primary mirror to the Gregorian
k=————=-1Yy r=—+—+—— (18) focusis 50 mm (see Fig. 2).

@+ (W +1) We use this example to demonstrate that it is possible to
Wherel is the object distance aritlis the image distance compensate a very large spherical aberration by only using
and the aperture stop is on the mirror. an aspheric surface. Similarly, we show with this example
We will compare the coordinates calculated with ourhow the spherical aberration decreases when the number of
method and the coordinates calculated with the parametegspheric coefficients increases.
of Eq. (18) for only one surface. We consider the example
where the distance between an object and mirror is -400 mr-2.1.  First order design of Gregorian telescope

and between the mirror and the image is -133.334 mm. Th . ,
diameter of the mirror is 200 mm. ?/\/e use the equations of Malacara [9] for the first order de-

Using Eq. (18), we have —=-200 mm and: —-0.25. Ta- sign. First, we find the effective focal length of the telescope

ble | shows the surface coordinates calculated using Eq. (19f and the primary mirrof, with following equations:

the conic constant and the radii of curvature calculated with _ _
Eq. (18). Also, Table I shows the surface coordinates calcu- F'= Dy fyetescope and f1 = Daf- (20)
lated with our method. D, is the primary mirror diametey,sielescopdS the f number
(2 +y?) of the telescope gnﬂ#l is the f numper qf the primary rr_1ir—
z= Tt \/1 )R ) (19)  ror. The s_eparatlon between the mirrdrss calculated with
the equation
Another very common example is that of a parabolic mir- I fi(F =) 1)

ror (¢ =-1) with the object at the infinity. We consider a [+ F
parabolic mirror withr =-200 and a diameter of 200 mm. Ta-  Also, we calculate the effective focal length of the sec-
ble Il shows the surface coordinates calculated using Eq. (19ndary mirror as
and also the surface coordinates calculated with our method.

In both cases, our method reproduces the same results as fo=F (fl(flJrS)) ’ (22)
those obtained analytically for the points chosen. ft - F?
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5.2.2. Exact design of Gregorian telescope
Gregorian Telescope {710
We must perform the exact ray tracing at poifisy) se-
lected on the entrance pupil until the penultimate surface; the
1 results of this procedure are shown in Table IV.
= 50 mm—] My, Ny, My and N7 are the director cosines of the ray.

Y; andZ; are the coordinates on the primary mirror. For the
next step, we must apply Egs. (5) and (7) to deterniipe;.
Subsequently, we calculate the last surface coordinates that
correct the spherical aberration with Eq. (3); we show these
) _ coordinates in Table V.
FIGURE 2. Parameters for design of a Gregorian telescope. Finally, we show the equation system from one to four

oefficients and the changes in the telescope OPD and Strehl
gatio with each coefficient; all OPD graphics will be com-
puted with OSLO (Optics Software for Layout and Optimi-

and we calculate the diameter of the secondary mirror usin
the following equation

Dy = (f1 =)Dy (23) sation) [10].
fi
and finally, we calculate the radii of curvature of the mirror35.2.2_1. One coefficient
as follows:
ri=—2fi and 7y =2f. (24) We use the point (03 = (1)(ym)) on the entrance pupil

(edge) to correct the spherical aberration. We solve Eg. (10)
We show the paraxial parameters of a Gregorian telescopgith the coordinates that correct the spherical aberration, as
in Table 3 follows:

_ 1.572863 — 1.756004

TABLE Ill. Paraxial parameters of the Gregorian telescope. = —1.714908210~°

aq 1
Surface Effective Radii of Diameter  Separation (—10.165674)
focallength _ curvature Figure 3 shows the telescope OPD (Optical Path Differ-
1 100 mm -200mm 100 mm 116.666  ent) without aspheric coefficient, only with two spherical mir-

2 15.1515mm 30.303mm 16.667 mm 166.666 rors; as you can see the spherical aberration is very large.

TABLE IV. Ray tracing parameters of the Gregorian telescope.

Ray Points (0Y1) on the entrance pupil
Tracing Parameters Ym = 50

My 0 0 0 0

No 1 1 1 1

Yi Yi = (1)(ym) Y1 = (0.93)(ym) Yi = (0.82)(ym) Y1 = (0.621)(ym)
Zy -6.350833 -5.480720 -4.247605 -2.424957
M, -0.484123 -0.452257 -0.401292 -0.306735
M -0.875 -0.891887 -0.91595 -0.951795

TABLE V. Coordinates of the last surface that corrects the spherical aberration of the Gregorian telescope.

Coordinates that Corrects Points (0Y1) on the entrance pupil
the Spherical Aberration Y1 =(1)(ym) Y1 = (0.93)(ym) Y1 = (0.82)(ym) Y1 = (0.621)(ym)
Dy_1 124.277682 123.197943 121.688106 119.499666
Yo -10.165674 -9.217172 -7.832513 -5.60476
Zoy = Zaspheric 1.572863 1.30724 0.958841 0.502539
Zspheric 1.756004 1.435793 1.029742 0.52283
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Gregarion Telescope FET O FBx 0 TELEZCOFE FBy @ FBx Q
OFD CURNVES Wl o+ OFCr CURVES W+
500 roS0 7 2
\L — F Fx ~ Fr Fi

FIGURE 3. Telescope OPD without aspheric coefficients.

FIGURE 5. Telescope OPD with two aspheric coefficients.

Gregorion Talescope

PG CLRVES

FEr O FBx 0
Wl o+

The correction with two aspheric coefficients is better

[

a0

BB

./\FN

3

than that with one aspheric coefficient but the correction
is not complete because the Strehl ratio of the telescope is
0.02555. Therefore, we need additional aspheric coefficients
and thus, we choose other pupil points according to the anal-
ysis of section four.

5.2.2.3. Three coefficients

Now we use points (07 = (1)u.»)), (0, Y1 = (0.82){:n))
and (0,Y;= (0.621){,,)) on the entrance pupil to correct

the spherical aberration. We solve the equations system (12),

FIGURE 4. Telescope OPD with one aspheric coefficient in the with the coordinates of Table V, as follows:

pupil edge.

Figure 4 shows the telescope OPD with one aspheric co-
efficient. As can be seen, there is one pupil point with zero
spherical aberration in the edge.

The changes with only one coefficient are very significant
but the correction is not complete because the Strehl ratio of
the telescope is 0.006707; therefore, we need to correct the

spherical aberration residual.

5.2.2.2. Two coefficients

1.572862 = 1.756003 + a1 (—10.165673)*
+ az(—10.165673)° + a3(—10.165673)%
0.95884 = 1.029742 + a; (—7.832513)*
+ az(—7.832513)°% 4 a3(—7.832513)%
0.502539 = 0.522830 + a; (—5.604760)*
+ as(—5.604760)° + a3(—5.604760)®

We use two points (07 =(1)(y.,)) and (0Y7=(0.82),..)) on

the entrance pupil to correct the spherical aberration. We
solve the equations system (11), with the coordinates of Table

V, as follows:

1.572862 = 1.756003
+ a1 (—10.165673)* + az(—10.165673)°

0.95884 = 1.029742
+ a1 (—7.832513)* + ay(—7.832513)°

The solutions area;

= - 2130735 x 10°°
as = 4.023808x 10~3. Figure 5 shows the telescope OPD

TELESCORE FBY O FBx O
JPD ORVES W 4+
1 r 1
: i S O i r — A P
LW R o
and

with two aspheric coefficients. As can be seen, there are two
pupil points with zero spherical aberration.

Rev. Mex

FIGURE 6. Telescope OPD with three aspheric coefficients.
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The solutions are

a; = —2.283420 x 1075, ay = 7.990124 x 1078
and a3 = —2.408364 x 10710,

Figure 6 shows the telescope OPD with three aspheric coeffi-
cients. As can be seen, there are three pupil points with zero
spherical aberration.

However, the correction with three coefficients is still
not complete because the Strehl ratio of the telescope is
0.285879. We need other aspheric coefficients and thus, we
must choose other pupil points according to the analysis of
section four.

5.2.2.4. Four coefficients

We use four points (&1 = (1)), (0, Y1 = (0.93)@,,)), (O,

0.95884 = 1.029742

+ a1 (—7.832513)* 4 ao(—7.832513)°

+ a3(—7.832513)% + a4 (—7.832513)"°

0.502539 = 0.522830

+ a1 (—5.604760)* 4 ao(—5.604760)°

+ a3(—5.604760)° 4 a4(—5.604760)°

The solutions are

a; = —2.306354 x 107°, as = 9.315968 x 1078,

az = —4.666647 x 1071% and1.151583 x 10712.

279

Y; = (0.82),,,)) and (0,Y; = (0.621)(,,)) on the entrance Figure 7 shows the telescope OPD with four aspheric coeffi-
pupil to correct the spherical aberration. We solve the equacients. As can be seen, there are four pupil points with zero
tions system (12) with the coordinates of Table V, as follows:spherical aberration. Figure 7 also shows the difference be-

1.572862 = 1.756003

1.307240 = 1.435793

+ a1(—10.165673)* + az(—10.165673)°
+ a3(—10.165673)® + a4 (—10.165673)'°

+ a1 (—9.217172)* + a3 (—9.217172)°
+ a3(—9.217172)% + a4(—9.217172)*°

I

RINGELAKE CASE FET O FBX D KIMGSILAKE CASE FBEY 0 FBx O FOC &
OFC CLRVES Wl o+ FOINT SPREAD FLMCTION - Wi T+ o Xa=
0.2 0.2
1
L
2ot
o
z
= oot
Fr F3
2
=
% 0,35
o
=4
{) N S — Il 1 P il
—0.02 -0.0m 1 G .02
a) FOSITION
IR CASE FEY 0 FBx 0 LR CASE FEY O FEx O FOC &
OFC CLRVES Wl FOINT SPREAD FIRMCTION — Wit R A
.05 G095

A

..

v

Vi

Vi

b)

FIGURE 7. Telescope OPD with four aspheric coefficients.

tween those points proposed by Kingslake [7] and our points.

We see from Fig. 7 that the mean difference is that the
points suggested in this work have P-V 0.06534nd RMS
0.02058\ and that the Kingslake points have P-V 0.242
and RMS 0.05354. The correction with four coefficients is
complete because the Strehl ratio of the telescope is 0.9853
with four points suggested and for Kingslake’s points, the
Strehl ratio of the telescope is 0.9280 (Fig. 8).

The points suggested in this work are slightly better than
Kingslake’s points but both are diffraction limited.

1

RELATIVE TRPACTIAMCE

1 f %

=01
FOSITION

FIGURE 8. Telescope PSF with four aspheric coefficients.
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TABLE VI. First order parameters of the lefigl.

TABLE VIII. First order parameters of the doubjet2.

Surface Radius Thickness  Aperture Radius Glass Surface Radius Thickness Aperture Radius Glass
Object 400 mm Air Object ) Air
1 70.07 mm 29.011 mm 50 mm BK-7 1 67.799 mm  16.031mm 25 mm BK-7
2 -169.131 mm 118.589 mm 50 mm Air 2 -38.396 mm 3.0 mm 25 mm F-2
Image Air 3 -116.331 mm 90.990 mm 25 mm Air
Image Air

TABLE VII. Coefficients calculated to compensate the spherical

aberration of the leng /1.

Points (0Y1) on the entran-

Coefficients ce pupiy,, = 50 mm

Value

TaBLE XIX. Coefficients calculated to compensate the spherical
aberration of the doublet/2.

Points (0Y1) on the

Coefficients entrance pupjl, =25 mm Value

Y1 = (1)(ym) 7.671046x 1077

al

as Vi = (0.93)(ym) -5.373468x 107! a Y1 = (1)(ym) 1.855043x 10°"
as Y1 = (0.82)(ym) 7.179357x 107'° az Y1 = (0.82)(ym) -3.077739x 107"
as Y1 = (0.621)(ym) - 5.69022x 101 as Vi = (0.621)(ym) -1.782926x 10™ '
DOUBLET fr2 FBY O FBx &
5.3. Lensf/l OEDICURVES s
a.1 r G
The second example is a single lefj§ with 100 mm of ef-
fective focal length and the object is 400 mm from the lens.
The next table shows the first order parameters.
The first surface is spherical and the second surface will glims et T

+ Fy Fx

be aspheric and it is used to compensate the spherical aberrg
tion. In this case, we use four aspheric coefficients to com-
pensate the spherical aberration. As can be seen in Fig. 9
there are four pupil points with zero spherical aberration. In
Table VII we show the aspheric coefficients of the second
surface.

The correction with four coefficients is complete becauseFIGURE 10. Cemented doublef /2 OPD with the object at the

the Strehl ratio of the telescope is 0.9728.

5.4. Cemented doublet f/2

The final example is a cemented doubfg® with 100 mm
of effective focal length and the object is at infinity. The fol-
lowing Table shows the first order parameters.

LEMS 141
OFC CLRVES

a1 e

VA m.;/\ 0.
\/ \

FE¥ 0 FEx 0
Wl

ma,
|/

FIGURE 9. Lens f/10PD with the object in finite position.

infinity..

The first and second surfaces are spherical and the third
surface will be aspheric and it is used to compensate the
spherical aberration. In this case, we use three aspheric co-
efficients to compensate the spherical aberration. As can be
seen in Fig. 10, there are three pupil points with zero spher-
ical aberration. In Table XIX we show the aspheric coeffi-
cients of the third surface.

The correction with four coefficients is complete because
the Strehl ratio of the telescope is 0.9587.

If the conjugates are changed, we can use the first surface
to correct the spherical aberration by applying this method.

6. Conclusions

We present an analytic-numerical method to compensate the
spherical aberration by using one aspheric surface on the last
surface of the optical system. The calculations of the as-
pheric coefficients only require solving a system of first de-
gree equations; therefore, this method is a quick and simple
procedure by which to obtain the solution. The method can
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be applied from one surface untilnumber of surfaces but tems. We also show how the value of the spherical aberration

the last surface must be an aspheric surface. changes when the number of aspheric coefficients increases.
As the equations are not approximate, the process of optiFhus, we can choose the correction degree that we need and

misation is not required. With the examples, we have demonwe have proposed some positions on the pupil entrance where

strated that with an appropriate number of aspheric coeffithe spherical aberration correction is better.

cients, it is possible to obtain diffraction limited optical sys-
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