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This method is a discrete case of the E. Wolf method for the design of an aspheric surface. Using the proposed method, the designer can select
how many points(x, y) there will be on the entrance pupil at which the spherical aberration will be zero, by using the aspheric coefficients
as degrees of freedom. For fitting the coordinates that correct the spherical aberration to an aspheric surface we solve a system of equations
of the first degree. An optimisation procedure is not required because we use equations without approximations and with exact ray tracing.
We obtained diffraction limited optical systems faster than the commercial programs.
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Este ḿetodo es un caso discreto del método propuesto por E. Wolf para diseñar una superficie asférica. Con este ḿetodo el disẽnador puede
seleccionar los puntos(x, y) en la pupila de entrada en los cuales la aberración esf́erica seŕa cero, usando los coeficientes de asfericidad
como grados de libertad. El ajuste de las coordenadas que corrigen la aberración esf́erica a una superficie asférica lo realizamos resolviendo
un sistema de ecuaciones de primer grado. El procedimiento de optimización no es requerido por que usamos trazo de rayos exacto; con este
método nosotros obtenemos sistemas limitados por difracción más ŕapido que con los programas comerciales.

Descriptores: Superficies asféricas; aberración esf́erica; aberración.

PACS: 42.15-I; 42.15.Dp; 42.15.Eq; 42.15.Fr

1. Introduction

This method is a discrete case of the E. Wolf [1] method for
the design of an aspheric surface. When the aspheric sur-
face is the first or last surface of the system the solution is
greatly simplified and he gives exact parametric equations.
In both cases, the method needs to evaluate an integral and
E. Wolf [1] proposes to evaluate this in several ways. He
proposes a polynomial approximation but does not say how
many terms are used to achieve it; also, if you use this ap-
proximation the solution is not exact. On the other hand, if
a sufficient number of rays is traced from the object space to
the space that precedes the correcting surface, then the inte-
gral might also be evaluated numerically; however, he did not
say how many rays should be traced, nor what are the points
(x, y)on the entrance pupil, which intersect the rays. Our
method proposes the number and where the rays should be
traced in order to correct the optical path difference (OPD).

Other methods have been proposed to analytically correct
aberrations in the last surface, for example, Conrady [2] with
the (D − d) method of achromatisation. He calculates the
radius of curvature of the last surface, knowing the desired
value ofDk−1 (Fig. 1) in the last element, to achieve achro-
matism in only one point on the exit pupil. Cordero-Davila
et al. [3] deduced an equation for the conic constant of the
last mirror of a two-mirror telescope, knowing the desired
value ofDk−1 (distance between mirrors along the marginal

ray), to achieve zero optical path difference (OPD) for only
one point on the exit pupil. Castro-Ramoset al. [4] derived
equations for the design of aplanatic microscope objectives
of two conic mirrors. They found two equations of the sec-
ond degree: one to correct spherical aberration and one for
coma correction. These equations are exact and depend on
Dk−1 (distance between mirrors along marginal ray). The
methods of Cordero-Davila, Conrady and Castro-Ramos de-
pend ofDk−1 and the correction is in only one point on the
exit pupil. Our method proposes to make zero OPD in several
points (x, y) on the pupil entrance and not just one.

Additionally, numerical methods have also been pro-
posed. Romolyet al. [5] proposed a simple recursive method
to determine the shape of the corrector plate for large tele-
scopes without the use high-order polynomial coefficients,
which lack precision in fitting the required shape of aspheric
surface. We propose to fit the required shape by solving a
system of equations of the first degree with high accuracy us-
ing the same number of aspherical coefficients and points of
correction.

In the next section, we explain the condition for the de-
sign of optical systems that are free of spherical aberration.
In Sec. 3, we explain the method using a general aspheric sur-
face. Section 4 presents some examples in which we apply
the developed methodology and finally, Sec. 5 offers conclu-
sions.
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2. Spherical aberration correction

The necessary condition to obtain a system with corrected
spherical aberration is that both the paraxial and marginal op-
tical paths must be equal [2,3,4], then from Fig. 1 we obtain

n0D0 + n1D1 + nk−1Dk−1 + nkDk

= d0 + nd1 + nk−1dk−1 + nkdk. (1)

where n0,1...k are the refractive indices of each medium,
d0,1...k are the distances along the optical axes between sur-
faces,D0,1...k are the distances along the marginal rays be-
tween surfaces (Fig. 1).

From Fig. 1, we see thatDk is

Dk =
√

(rk−1)2 + (dk − zk−1)2, (2)

whererk−1 =
√

x2
k−1 + y2

k−1.
The coordinates at the last surface for the marginal ray

(Sk−1) are

FIGURE 1. Parameters used to correct the spherical aberration.

xk−1 = xk−2 + Dk−1Lk−1

yk−1 = yk−2 + Dk−1Mk−1

zk−1 = zk−2 − dk−1 + Nk−1Dk−1, (3)

where(Lk−1,Mk−1, Nk−1, ) are the direction cosines of
the marginal raySk−1 and(rk−2 and k−1 andzk−2andk−1) are
the intersection coordinates between the marginal raySk−1

and the last surfaces (Fig. 1).
Using the rotation symmetry (r0,1,...k = y0,1,...k) and

substituting Eq. (3) into Eq. (2) we obtain

Dk =
√

(yk−2 + Mk−1Dk−1)2 + (dk − zk−2 + dk−1 −Nk−1Dk−1)2, (4)

and by substituting Eq. (4) into Eq. (1) and by squaring, we obtain a quadratic equation forDk−1

aD2
k−1 + bDk−1 + c = 0. (5)

When the object is at a finite position, the coefficients of the second degree equation are calculated as

a = (n2
k − n2

k−1), (6a)

b = 2

[
n2

kyk−2Mk−1 − n2
kNk−1(dk − zk−2 + dk−1)

+nk−1(n0d0 + n1d1 + nk−1dk−1 + nkdk − n0D0 − n1D1)

]
, (6b)

c =

[
n2

ky2
k−2 + n2

k(dk − zk−2 + dk−1)2

−(n0d0 + n1d1 + nk−1dk−1 + nkdk − n0D0 − n1D1)2

]
, (6c)

and when the object is at infinity, the coefficients are calculated as

a = (n2
k − n2

k−1), (7a)

b = 2

[
n2

kyk−2Mk−1 − n2
kNk−1(dk − zk−2 + dk−1)

+nk−1(n1d1 + nk−1dk−1 + nkdk − n0z1 − n1D1)

]
, (7b)

c =

[
n2

ky2
k−2 + n2

k(dk − zk−2 + dk−1)2

−(n1d1 + nk−1dk−1 + nkdk − n0z1 − n1D1)2

]
. (7c)

If the last surface is a mirror in air, the coefficienta is zero and in this case, only an equation of first grade should be solve
to determineDk−1.

From Fig. 1, we see that:D0, D1, Dk−2,d0, d1, dk−1, dk, y1, yk−2, zk−2, Mk−1 andNk−1 are exact parameters and we
can determine these parameters by exact ray tracing. With these parameters we can calculateDk−1 using Eqs. (5), (6) and (7)
and then, we calculateyk−1 andzk−1 using Eq. (3) to obtain an optical system free of spherical aberration.
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3. General aspheric surface correction

We defined the general aspheric surface as

zaspheric= zspheric+ a1(x2
k−1 + y2

k−1)
2

+ a2(x2
k−1 + y2

k−1)
3 + a3(x2

k−1 + y2
k−1)

4 + . . . , (8)

where zk−1=zasphericthat together withxk−1andyk−1are the
coordinates at the last surface for the marginal ray andzspheric

is calculated with the axial curvatureck−1 and the same co-
ordinatesxk−1 andyk−1 as follows:

zspheric=
ck−1(x2

k−1 + y2
k−1)

1 +
√

1− c2
−1k(x2

−1k + y2
−1k)

. (9)

Using the rotation symmetry and solving Eq. (8) only for
a1, we obtain

a1 =
zaspheric− zspheric

y4
k−1

. (10)

With this result, we have the spherical aberration correct
for one point on the exit pupil. If we want to correct the
spherical aberration for two points on the exit pupil, in the
edge and the zonal spherical aberration; we need to solve the
next equations system:

zaspherica(edge)= zspheric(edge)

+ a1(yk−1(edge))4 + a2(yk−1(edge))6

zaspheric(zonal)= zspheric(zonal)

+ a1(yk−1(zonal))4 + a2(yk−1(zonal))6. (11)

In general, if we want to correct the spherical aberration
in more points on the exit pupil, it is better that we use a
matrix form and then we have




c1

c2

c3

c4

c5

cn




=




b11 b21 b31 b41 b51 bn1

b12 b22 b32 b42 b52 bn2

b13 b23 b33 b43 b53 bn3

b14 b24 b34 b44 b54 bn4

b15 b25 b35 b45 b55 bn5

b1n b2n b3n b4n b5n bnn







a1

a2

a3

a4

a5

an




, (12)

wherec1,2,3,...,n are the differences betweenzaspheric and
zspheric, b11,12,13,...,nn are the coordinates at the last surface
for the marginal ray to the fourth power, sixth power, etc., and
a1,2,3,...,n are the coefficients of the general aspheric surface.
Solving the equations system (12), we can determine the co-
efficients that correct the spherical aberration form points
(x, y) selected on the entrance pupil.

4. How many and which points should be cor-
rected?

The spherical aberration of the wavefront for any optical sys-
tem can be expressed as [6]:

W (0, y) = b1(y2)2 + b2(y2)3 + b3(y2)4 + .... (13)

Considering only f/numbers> 5, the spherical aberration
can be represented only for the first and second terms and by
combining these terms, the spherical aberration of the edge
can be corrected as follows:

W (0, y) = b1(y2
m)2 + b2(y2

m)3 = 0. (14)

Considering thatym is the height of the ray at the edge of
a pupil normalised to one, we have:

b2 = −b1. (15)

If the spherical aberration of the edge is corrected, for ex-
ample, see Fig. 4, the rays which pass through intermediate
zones of the pupil lens are not corrected. This aberration is
known as residual spherical aberration. Substituting Eq. (15)
into Eq. (13) we derive Eq. (13) for two terms and by putting
them equal to zero, we can determine the peak of the residual
spherical aberration, as follows:

W (0, y) = b1(y2)2 − b1(y2)3 = 0

∂W (0, y)
∂y

= 4b1y
3 − 6b1y

5 = 0

y2 =
2
3

(16)

The residual spherical aberration occurs wheny is equal
to the marginalym , multiplied by

√
2/3 = 0.8165 and is

called zonal spherical aberration. This analysis is similar to
Kingslake’s [7]. The difference is that the de focus term is
not considered here. It is possible to correct the spherical
aberration at the zonal ((y/ym) = 0.8165) and marginal (ym)
heights on the pupil by using the first three terms of the ex-
pansion of the wavefront aberration given by Eq. (13) so

W (0, y) = b1y
4
m + b2y

6
m + b3y

8
m = 0

W (0, y) = b1(0.8165 ∗ ym)4

+b2(0.8165 ∗ ym)6 + b3(0.8165 ∗ ym)8 = 0 (17)

With the solution of the equations system (17), we derive
Eq. (13) for three terms and putting them equal to zero, we
can determine the peaks of the residual spherical aberration
when the zonal and in the edge spherical aberrations are cor-
rected, for example, see Fig. 5. The Optical Path Difference
(OPD) curve has two peaks opposite above and below the
0.8165 zone. The zones with maximum and minimum resid-
uals fall at values ofy given byy/ym = 0.6210 or 0.9297.

The points for the Kingslake analysis arey/ym = 1,
0.8880, 0.7071, and 0.4597 and for our analysisy/ym = 1,
0.9297, 0.8265, and 0.6210.

If we consider f/numbers< 1, we should correct the
spherical aberration residual and its peaks fall at values
y = ym(0.6210) orym(0.9297). We use the fourth and fifth
terms to correct these othery values and we can repeat the
procedure to correct the spherical aberration of Eqs. (14),
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(15) and (16) to foury. Using the solutions, we derive
Eq. (13) to five terms and making them equal to zero, we can
determine the peaks. The OPD curve has two peaks oppo-
site above and two below the 0.6210 and 0.9297 zones. The
zones with maximum and minimum residuals fall at values
of y given byy/ym = 0.9738, 0.8773, 0.7181 and 0.4435, for
example, see Fig. 7. This analysis can continue because the
expansion (13) is infinite.

The number ofy values that must be corrected for each
optical system depends on the optical system tolerances,
for example, with one value ofy ((1)(ym)), we correct
lenses with f/numbers bigger than f/5, with two different val-
ues ofy((1)(ym) and (0.8165)(ym)), we correct lenses with
f/numbers bigger than f/2 and with four different values of
y((1)(ym), (0.8165)(ym), (0.6210)(ym), (0.9297)(ym)), we
correct lenses with f/numbers bigger than f/1 but the designer
decides the correction that is needed.

In this section, the authors propose some points for the
correction of spherical aberration; however, the method al-
lows the designer to select any point on the pupil of the opti-
cal system.

5. Examples

5.1. Mirrors

Smith and Atchison [8] found analytically the equation to
compute the conic constant and the radii of curvature of a
mirror without spherical aberration, if the position of the ob-
ject and the image are known:

k =
4l′l

(l′ + l)2
− 1 y r =

2l′l
(l′ + l)

. (18)

Wherel is the object distance andl′ is the image distance
and the aperture stop is on the mirror.

We will compare the coordinates calculated with our
method and the coordinates calculated with the parameters
of Eq. (18) for only one surface. We consider the example
where the distance between an object and mirror is -400 mm
and between the mirror and the image is -133.334 mm. The
diameter of the mirror is 200 mm.

Using Eq. (18), we haver =-200 mm andk =-0.25. Ta-
ble I shows the surface coordinates calculated using Eq. (19),
the conic constant and the radii of curvature calculated with
Eq. (18). Also, Table I shows the surface coordinates calcu-
lated with our method.

z =
c(x2 + y2)

1 +
√

1− (k + 1)c2(x2 + y2)
(19)

Another very common example is that of a parabolic mir-
ror (k =-1) with the object at the infinity. We consider a
parabolic mirror withr =-200 and a diameter of 200 mm. Ta-
ble II shows the surface coordinates calculated using Eq. (19)
and also the surface coordinates calculated with our method.

In both cases, our method reproduces the same results as
those obtained analytically for the points chosen.

TABLE I. Coordinates calculated with Eqs. (18) and (19) compared
with the coordinates calculated with our method.

Points (0, y) on Points (0, y) Eq. (16) and Our method

the entrance pupil on the mirror (17) (z) (z)

(0,(100)(1)) (0, 94.201625) -23.19341 -23.19341

(0,(100)(0.9297)) (0, 88.26454) -20.245065 -20.245065

(0,(100)(0.8265)) (0, 79.29977) -16.214063 -16.214063

(0,(100)(0.6210)) (0, 60.646956) -9.359379 -9.359379

TABLE II. Coordinates calculated with Eq. (19) compared with the
coordinates calculated with our method.

Points(0, y) on Points(0, y) Eq. (17) Our method

the entrance pupil on the mirror (z) (z)

(0, (100)(1)) (0, 100) -25 -25

(0, (100)(0.9297)) (0, 92.97) -21.608552 -21.608552

(0, (100)(0.8265)) (0, 82.65) -17.077556 -17.077556

(0, (100)(0.6210)) (0, 62.10) -9.641025 -9.641025

5.2. Gregorian telescope

The first example is anf/10 Gregorian telescope whose pri-
mary mirror isf/1 and spherical. Therefore, with a very
large spherical aberration, the secondary mirror is aspheric
and it is used to compensate the aberration of the primary
mirror. The primary mirror diameter is 100 mm and the dis-
tance from the vertex of the primary mirror to the Gregorian
focus is 50 mm (see Fig. 2).

We use this example to demonstrate that it is possible to
compensate a very large spherical aberration by only using
an aspheric surface. Similarly, we show with this example
how the spherical aberration decreases when the number of
aspheric coefficients increases.

5.2.1. First order design of Gregorian telescope

We use the equations of Malacara [9] for the first order de-
sign. First, we find the effective focal length of the telescope
F and the primary mirrorf1 with following equations:

F = D1f#telescope and f1 = D1f#1. (20)

D1 is the primary mirror diameter,f#telescopeis thef number
of the telescope andf#1 is thef number of the primary mir-
ror. The separation between the mirrorsl, is calculated with
the equation

l =
f1(F − s)
f1 + F

. (21)

Also, we calculate the effective focal length of the sec-
ondary mirror as

f2 = F

(
f1(f1 + s)
f2
1 − F 2

)
, (22)
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FIGURE 2. Parameters for design of a Gregorian telescope.

and we calculate the diameter of the secondary mirror using
the following equation

D2 =
(f1 − l)D1

f1
(23)

and finally, we calculate the radii of curvature of the mirrors
as follows:

r1 = −2f1 and r2 = 2f2. (24)

We show the paraxial parameters of a Gregorian telescope
in Table 3

TABLE III. Paraxial parameters of the Gregorian telescope.

Surface Effective Radii of Diameter Separation

focal length curvature

1 100 mm -200 mm 100 mm 116.666

2 15.1515 mm 30.303 mm 16.667 mm 166.666

5.2.2. Exact design of Gregorian telescope

We must perform the exact ray tracing at points(x, y) se-
lected on the entrance pupil until the penultimate surface; the
results of this procedure are shown in Table IV.

M0, N0, M1 andN1 are the director cosines of the ray.
Y1 andZ1 are the coordinates on the primary mirror. For the
next step, we must apply Eqs. (5) and (7) to determineDk−1.
Subsequently, we calculate the last surface coordinates that
correct the spherical aberration with Eq. (3); we show these
coordinates in Table V.

Finally, we show the equation system from one to four
coefficients and the changes in the telescope OPD and Strehl
ratio with each coefficient; all OPD graphics will be com-
puted with OSLO (Optics Software for Layout and Optimi-
sation) [10].

5.2.2.1. One coefficient

We use the point (0,Y1 = (1)(ym)) on the entrance pupil
(edge) to correct the spherical aberration. We solve Eq. (10)
with the coordinates that correct the spherical aberration, as
follows:

a1 =
1.572863− 1.756004

(−10.165674)4
= −1.714908x10−5

Figure 3 shows the telescope OPD (Optical Path Differ-
ent) without aspheric coefficient, only with two spherical mir-
rors; as you can see the spherical aberration is very large.

TABLE IV. Ray tracing parameters of the Gregorian telescope.

Ray Points (0,Y1) on the entrance pupil

Tracing Parameters ym = 50

M0 0 0 0 0

N0 1 1 1 1

Y1 Y1 = (1)(ym) Y1 = (0.93)(ym) Y1 = (0.82)(ym) Y1 = (0.621)(ym)

Z1 -6.350833 -5.480720 -4.247605 -2.424957

M1 -0.484123 -0.452257 -0.401292 -0.306735

N1 -0.875 -0.891887 -0.91595 -0.951795

TABLE V. Coordinates of the last surface that corrects the spherical aberration of the Gregorian telescope.

Coordinates that Corrects Points (0,Y1) on the entrance pupil

the Spherical Aberration Y1 = (1)(ym) Y1 = (0.93)(ym) Y1 = (0.82)(ym) Y1 = (0.621)(ym)

Dk−1 124.277682 123.197943 121.688106 119.499666

Y2 -10.165674 -9.217172 -7.832513 -5.60476

Z2 = Zaspheric 1.572863 1.30724 0.958841 0.502539

Zspheric 1.756004 1.435793 1.029742 0.52283
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FIGURE 3. Telescope OPD without aspheric coefficients.

FIGURE 4. Telescope OPD with one aspheric coefficient in the
pupil edge.

Figure 4 shows the telescope OPD with one aspheric co-
efficient. As can be seen, there is one pupil point with zero
spherical aberration in the edge.

The changes with only one coefficient are very significant
but the correction is not complete because the Strehl ratio of
the telescope is 0.006707; therefore, we need to correct the
spherical aberration residual.

5.2.2.2. Two coefficients

We use two points (0,Y1=(1)(ym)) and (0,Y1=(0.82)(ym)) on
the entrance pupil to correct the spherical aberration. We
solve the equations system (11), with the coordinates of Table
V, as follows:

1.572862 = 1.756003

+ a1(−10.165673)4 + a2(−10.165673)6

0.95884 = 1.029742

+ a1(−7.832513)4 + a2(−7.832513)6

The solutions area1 = - 2.130735 × 10−5 and
a2 = 4.023808× 10−8. Figure 5 shows the telescope OPD
with two aspheric coefficients. As can be seen, there are two
pupil points with zero spherical aberration.

FIGURE 5. Telescope OPD with two aspheric coefficients.

The correction with two aspheric coefficients is better
than that with one aspheric coefficient but the correction
is not complete because the Strehl ratio of the telescope is
0.02555. Therefore, we need additional aspheric coefficients
and thus, we choose other pupil points according to the anal-
ysis of section four.

5.2.2.3. Three coefficients

Now we use points (0,Y1 = (1)(ym)), (0, Y1 = (0.82)(ym))
and (0,Y1= (0.621)(ym)) on the entrance pupil to correct
the spherical aberration. We solve the equations system (12),
with the coordinates of Table V, as follows:

1.572862 = 1.756003 + a1(−10.165673)4

+ a2(−10.165673)6 + a3(−10.165673)8

0.95884 = 1.029742 + a1(−7.832513)4

+ a2(−7.832513)6 + a3(−7.832513)8

0.502539 = 0.522830 + a1(−5.604760)4

+ a2(−5.604760)6 + a3(−5.604760)8

FIGURE 6. Telescope OPD with three aspheric coefficients.
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The solutions are

a1 = −2.283420× 10−5, a2 = 7.990124× 10−8

and a3 = −2.408364× 10−10.

Figure 6 shows the telescope OPD with three aspheric coeffi-
cients. As can be seen, there are three pupil points with zero
spherical aberration.

However, the correction with three coefficients is still
not complete because the Strehl ratio of the telescope is
0.285879. We need other aspheric coefficients and thus, we
must choose other pupil points according to the analysis of
section four.

5.2.2.4. Four coefficients

We use four points (0,Y1 = (1)(ym)), (0,Y1 = (0.93)(ym)), (0,
Y1 = (0.82)(ym)) and (0,Y1 = (0.621)(ym)) on the entrance
pupil to correct the spherical aberration. We solve the equa-
tions system (12) with the coordinates of Table V, as follows:

1.572862 = 1.756003

+ a1(−10.165673)4 + a2(−10.165673)6

+ a3(−10.165673)8 + a4(−10.165673)10

1.307240 = 1.435793

+ a1(−9.217172)4 + a2(−9.217172)6

+ a3(−9.217172)8 + a4(−9.217172)10

FIGURE 7. Telescope OPD with four aspheric coefficients.

0.95884 = 1.029742

+ a1(−7.832513)4 + a2(−7.832513)6

+ a3(−7.832513)8 + a4(−7.832513)10

0.502539 = 0.522830

+ a1(−5.604760)4 + a2(−5.604760)6

+ a3(−5.604760)8 + a4(−5.604760)10

The solutions are

a1 = −2.306354× 10−5, a2 = 9.315968× 10−8,

a3 = −4.666647× 10−10 and1.151583× 10−12.

Figure 7 shows the telescope OPD with four aspheric coeffi-
cients. As can be seen, there are four pupil points with zero
spherical aberration. Figure 7 also shows the difference be-
tween those points proposed by Kingslake [7] and our points.

We see from Fig. 7 that the mean difference is that the
points suggested in this work have P-V 0.06531λ and RMS
0.02058λ and that the Kingslake points have P-V 0.212λ
and RMS 0.05354λ. The correction with four coefficients is
complete because the Strehl ratio of the telescope is 0.9853
with four points suggested and for Kingslake’s points, the
Strehl ratio of the telescope is 0.9280 (Fig. 8).

The points suggested in this work are slightly better than
Kingslake’s points but both are diffraction limited.

FIGURE 8. Telescope PSF with four aspheric coefficients.
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TABLE VI. First order parameters of the lensf/1.

Surface Radius Thickness Aperture Radius Glass

Object 400 mm Air

1 70.07 mm 29.011 mm 50 mm BK-7

2 -169.131 mm 118.589 mm 50 mm Air

Image Air

TABLE VII. Coefficients calculated to compensate the spherical
aberration of the lensf/1.

Points (0,Y1) on the entran-

Coefficients ce pupilym = 50 mm Value

a1 Y1 = (1)(ym) 7.671046× 10−7

a2 Y1 = (0.93)(ym) - 5.373468× 10−11

a3 Y1 = (0.82)(ym) 7.179357× 10−15

a4 Y1 = (0.621)(ym) - 5.69022× 10−19

5.3. Lens f/1

The second example is a single lensf/l with 100 mm of ef-
fective focal length and the object is 400 mm from the lens.
The next table shows the first order parameters.

The first surface is spherical and the second surface will
be aspheric and it is used to compensate the spherical aberra-
tion. In this case, we use four aspheric coefficients to com-
pensate the spherical aberration. As can be seen in Fig. 9,
there are four pupil points with zero spherical aberration. In
Table VII we show the aspheric coefficients of the second
surface.

The correction with four coefficients is complete because
the Strehl ratio of the telescope is 0.9728.

5.4. Cemented doublet f/2

The final example is a cemented doubletf/2 with 100 mm
of effective focal length and the object is at infinity. The fol-
lowing Table shows the first order parameters.

FIGURE 9. Lensf/1OPD with the object in finite position.

TABLE VIII. First order parameters of the doubletf/2.

Surface Radius Thickness Aperture Radius Glass

Object ∞ Air

1 67.799 mm 16.031mm 25 mm BK-7

2 -38.396 mm 3.0 mm 25 mm F-2

3 -116.331 mm 90.990 mm 25 mm Air

Image Air

TABLE XIX. Coefficients calculated to compensate the spherical
aberration of the doubletf/2.

Points (0,Y1) on the

Coefficients entrance pupilym=25 mm Value

a1 Y1 = (1)(ym) 1.855043× 10−7

a2 Y1 = (0.82)(ym) -3.077739× 10−10

a3 Y1 = (0.621)(ym) -1.782926× 10−13

FIGURE 10. Cemented doubletf/2 OPD with the object at the
infinity..

The first and second surfaces are spherical and the third
surface will be aspheric and it is used to compensate the
spherical aberration. In this case, we use three aspheric co-
efficients to compensate the spherical aberration. As can be
seen in Fig. 10, there are three pupil points with zero spher-
ical aberration. In Table XIX we show the aspheric coeffi-
cients of the third surface.

The correction with four coefficients is complete because
the Strehl ratio of the telescope is 0.9587.

If the conjugates are changed, we can use the first surface
to correct the spherical aberration by applying this method.

6. Conclusions

We present an analytic-numerical method to compensate the
spherical aberration by using one aspheric surface on the last
surface of the optical system. The calculations of the as-
pheric coefficients only require solving a system of first de-
gree equations; therefore, this method is a quick and simple
procedure by which to obtain the solution. The method can
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be applied from one surface untiln number of surfaces but
the last surface must be an aspheric surface.

As the equations are not approximate, the process of opti-
misation is not required. With the examples, we have demon-
strated that with an appropriate number of aspheric coeffi-
cients, it is possible to obtain diffraction limited optical sys-

tems. We also show how the value of the spherical aberration
changes when the number of aspheric coefficients increases.
Thus, we can choose the correction degree that we need and
we have proposed some positions on the pupil entrance where
the spherical aberration correction is better.

1. E. Wolf, Proc. Phys. Soc.61 (1948) 494-503.

2. R. Kingslake,Lens Design Fundamentals(Academic Press,
Inc., New York, 1978) p. 93.

3. A. Cordero-Davila, S. Vazquez-Montiel, A. Cornejo-Rodriguez
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