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The diagonal Bernoulli differential estimation equation
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The Bernoulli Differential Equation traditionally applies a linearization procedure instead of solving the direct form, and viewed in state space
has unknown parametres, focusing all attention on it. This equation viewed in state space with unknown matrix parametres had a natural
transformation and introduced a diagonal description. In this case, the problem is to know the matrix parametres. This procedure is a new
technique for solving the state space Bernoulli Differential Equation without using linearization into diagonal filtering application. Diagonal
filtering is a kind of quadratic estimation. This is a procedure which uses observed signals with noises and produces the best estimation for
unknown matrix parametres. More formally, diagonal filtering operates recursively on streams of noisy input signals to produce an optimal
estimation of the underlying state system. The recursive nature allows running in Real-time bounded temporally using the present input
signal and the previously calculated state and no additional past information. From a theoretical standpoint, the diagonal filtering assumption
considered that the black-box system model includes all error terms and signals having a Gaussian distribution, described as a recursive
system in a Lebesgue sense. Diagonal filtering has numerous applications in science and pure solutions, but generally, the applications are in
tracking and performing the stochastic system.

Keywords: Filtering; matrix theory; control theory; stochastic processes.

Al resolver la ecuación diferencial de Bernoulli tradicionalmente se aplica un proceso de linealización en lugar de un ḿetodo directo con-
siderando que tiene parámetros desconocidos. Este artı́culo considera una transformación natural al espacio de estados e introduce la de-
scripcíon diagonal; en este caso, el problema es conocer la matriz de parámetros. El procedimiento es una nueva técnica para resolver la
ecuacíon diferencial de Bernoulli sin usar la linealización aplicando el filtrado en forma diagonal. Con el cual se realiza la estimación con
base en el segundo momento de probabilidad.Éste es un procedimiento que utiliza a las señales observables con ruido, produce la mejor
estimacíon para los parámetros desconocidos. Formalmente,éste opera recursivamente sobre la señal de entrada con ruido, produciendo una
estimacíon óptima de los paŕametros internos del sistema. Debido a la naturaleza recursiva del procedimiento,éste puede implementarse en
tiempo-real ya que su respuesta está acotada temporalmente, usando para ello tan solo a la señal de entrada presente y el estado calculado
anteriormente, sin información previa adicional. Desde un punto de vista teórico, la hiṕotesis principal del filtrado en forma diagonal es que
el sistema subyacente es un sistema dinámico y que todos los términos, tanto de error como de la señal de entrada, tienen una distribución de
Gauss. El filtro diagonal es un sistema recursivo en el sentido de Lebesgue que estima parámetros. Tiene numerosas aplicaciones en ciencias
aplicadas y desarrollos teóricos. Una aplicación coḿun es el seguimiento de las trayectorias en los sistemas dinámicos.

Descriptores: Teoŕıa matricial; teoŕıa de control; procesos estocásticos.

PACS: 02.10.Ud; 02.10.Yn; 02.30.Yy; 02.50.Ey; 02.70.-c

1. Introduction

Applications mainly from dynamics, population biology and
electrical theory are used to show how ordinary differential
equations appear in science and applied science formulation
problems. Many physics problems can be modeled in the
first order of a nonlinear ordinary differential system such as
the Bernoulli Differential Equation. An example is gases and
liquids flow. The Bernoulli Equation with soft modifications
incorporates viscous losses, compressibility and unsteady be-
haviour found in other more complex calculations. When vis-
cous effects are incorporated, the result is called the Energy
Equation.

The Bernoulli Differential Equation is distinguished by
the degree. For instance, the equation having is applied to
logistic model growth in biology [1] and chaos behavior [2],
with forming Gizbun or quadratic equations commonly used

to analyze corrosion processes [3]. The differential equation
is also a nonlinear part of the Klein-Gordon form which is
widely used. Among these are: the dynamics of elementary
particles and stochastic resonances studies [4], energy trans-
portation [5], squeezed laser excitation [6].

As usually explained in mathematical handbooks [7],
solving the Bernoulli Differential Equation is always
through a linearization procedure recommended by Jacob
Bernoulli [8]. The transformation from the nonlinear form
to a linear differential equation is performed using a basic
function, and later using the common method solving it [9].
However, due to its simplicity, the Bernoulli equation may
not provide an accurate enough answer for many situations,
but it is a good starting point. It can certainly provide a first
parametres estimation. Instead of traditional linearization,
this paper develops diagonal filtering as a new technique to
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solve the Bernoulli Differential Equation without lineariza-
tion procedures.

The filtering problem with respect to a black-box sys-
tem is to find an optimal steady state description of unknown
parametres affecting the proposed model, observing the con-
vergence [10,11]. The filter estimation can be described opti-
mally considering the gradient properties where each require-
ment contributes to the functional error [10].

Diagonal filtering as a fine system is built without losing
its properties considering two steps: estimation and identi-
fication. The first process refers to evaluation of uncertain
gain variables, like an unknown characteristic matrix parame-
tres on the basis of the observable signal as an explicit de-
scription. As the estimation problem commonly assumes a
suitable mathematical affine model with respect to the ob-
servable answer system described by discrete-time dynamic
models and characterized by relationships among observable
variables represented by a matrix difference equations [12].
In the second, the matrix parametres estimation is used in
identification internal states and applied in the reconstruction
reference model observable vector [13].

The whole process compounded by estimation and iden-
tification is known as a digital filter. The convergence rate is
obtained through the functional error established between the
observable signal and reference model [14].

A system viewed as a black-box with bounded inputs and
outputs vectors with perturbations has an affine model cor-
responding in output [10].Therefore, the internal dynamics
and gains based on an affine model could be possibly known
using the estimation and identification techniques [13].

The states space representation is a set of first-order dif-
ferential equations [15] that relate to the mathematical differ-
ences model to the state space dimension [16]. Its description
is a homogeneous differences equation, with the solution de-
pending on the estimation results [17]. The state space rep-
resentation with respect to the reference differences model
allows observing the unknown matrix parametres [18].

The internal unknown matrix parametres can be estimated
based on the second probability moment considering the in-
strumental variable method [17]. In this sense, the state vari-
ables and instrumental variable must be uncorrelated. Tra-
ditional estimation techniques are based on pseudo-inverse
methodology [18].

The estimation cases include some unknown initial val-
ues; the second step uses the old values to get the following
approximation [19].

The iteration continues until the diagonal matrix con-
verges to the system dimensions. It is expected that the es-
timator values are convenient to define best estimations. For
this, it is necessary to compute the eigenvalues and eigen-
vectors system, requiring an evaluation of some pseudo-
inverse method that is expensive in computational complex-
ity [20,21]. Thus, this procedure is not suitable at all, and in
many cases with the same experiment gives different results.
To avoid this, an alternative method is an optimal diagonal
filter considering the observable signals given in diagonal

structure [22,23]. This reduces the computational complex-
ity, because there is no necessity to implement any Penrose
procedure [24,25].

The purpose of this paper is to show an application of
diagonal filtering for solving the Bernoulli Differential Equa-
tion and is structured in the following manner: Sec. 1 is the
present description; Sec. 2 describes the basic formalism of
the diagonal filtering for a Laplacian form, Sec. 3 shows the
simulation results and discussion, Sec. 4 determines the con-
clusions, and finally, Sec. 5 includes the theorem proofs.

2. Main results

In mathematics an ordinary differential equation is called a
Bernoulli Eq. (1) when each term has an exponential indicat-
ing its grade in an algebraic sense. Bernoulli equations are
special because they are nonlinear differential with known
exact solutions. Nevertheless, they can be transformed into a
linear equation using the diagonal forms.

y′ + P (x)y = Q(x)yα (1)

Few differential forms have a simply analytical solution,
and their behaviour must be studied under certain condi-
tions. The enormous importance of differential description
is mainly due to the fact that the investigation of many prob-
lems in physics, chemistry and other applied sciences, can be
reduced to the equations solution, which requires significant
technical development such as modeling and simulation.

Let (1) be the Bernoulli equation withα, P (x), Q(x) ∈
R, its state space representation associated in diagonal form
is given by (2).

Theorem 1. The system (1) with respect to a reference
signal is viewed as a black-box scheme and has a state space
estimator described in (2).



ẋ11 0 0 0
0 ẋ22 0 0
0 0 ẋ12 0
0 0 0 ẋ21


 =




0 1 0 0
0 P1(s) 0 0
0 0 0 0
0 0 0 Q(s)




×




x1 0 0 0
0 x2 0 0
0 0 xα

1 0
0 0 0 xα

2


 (2)

Whereẋ1 = ẋ11+ ẋ12, ẋ2 = ẋ22+ ẋ21, P1(s) = −P (s).
Proof 1. See Appendix.
After the state space model is formed, the goal is to esti-

mate the simplified unknown parametres



1 0 0
0 P1(s) 0
0 0 Q(s)


 denoted bỹAϕ

In a short representation, the Bernoulli state space has the
form (3).

Φ̇ϕ = ÃϕΦϕ (3)
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Where

Φ̇ϕ =




ẋ11 0 0
0 ẋ22 0
0 0 ẋ21




and

Φϕ =




x2 0 0
0 x2 0
0 0 xα

2




Theorem 2. The estimatorˆ̃Aϕ has a stochastic descrip-
tion based oṅΦϕ and observable state, Φϕ as (4).

ˆ̃Aϕ = E
{

Φ̇ϕM̆ϕ

}
(4)

The symbolM̆ϕ represents the correlation matrix.
Proof 2. See Appendix.
Theorem 3. Let be ˆ̃Aϕ be the stochastic estimator in

diagonal form as (4), then its recursive form in a Lebesgue
sense given by (5), withk ∈ Z+.

ˆ̃Aϕk
= sk

[
M̆T

ϕk
+

1
2

(
M̆T

ϕk
− M̆T

ϕk−1

)]
+ ˆ̃Aϕk−1 (5)

Proof 3. See Appendix.
In Ref. 21, Medelet al. presented a method for con-

structing an optimal m-dimensional stochastic estimator for
a black-box model in a diagonal form. Taking into account
the previous results, the case 2-dimensional in a Laplacian
structure for a diagonal filtering is used.

Let (6) be a differential equation for a 2-differentiable
real-valued functionϕ ∈ R2, ai ∈ R, i ∈ Z+

∇2ϕ− a1∇ϕ− a0ϕ = 0, (6)

The problem is to know the unobservable matrix parametres
[

0 1
a0 a1

]

Corollary 1 establishes the state space representation
for (6) and the solution for the associated Bernoulli equation
as Theorem 1, considering (1) as a primitive function for the
Laplacian equation.

Corollary 1 . Let (7) be a Laplacian equation, wherea0,
a1, α ∈ R are constants.

∇2ϕ− a1∇ϕ− a0ϕ = a0αϕα−1∇ϕ, (7)

Transforming (7) to the Bernoulli equation, the minimum
number of state variables required to represent it is equal to
differential equation system order. Then the simplified state
space representation in diagonal form is giving by (8).




ẋ11 0 0
0 ẋ22 0
0 0 ẋ12


 =




1 0 0
0 a1 0
0 0 a3




×



x2 0 0
0 x2 0
0 0 xα

1


 (8)

FIGURE 1. Observable signal (red) and its identification compo-
nents (green): a) First̆m1k and ˆ̆m1k, b) Secondm̆2k and ˆ̆m2k,
c) Third m̆3k and ˆ̆m3k, d) Fourthm̆4k and ˆ̆m4k.

Wherea3 = a0αϕ−1

Proof C1.See Appendix.

3. Simulation results and Discussion

Considering the Laplacian Eq. (7) and its state space repre-
sentation in differences (3), Theorem 2 describes the algo-
rithm for constructing the optimal stochastic estimator for a
diagonal filter. Figure 1 separately shows each of the sys-
tem components. Figures 1 a), b), c) and d) show in red, the
observable signal,̆mik, i = 1, 4 and in green their identifi-
cation, ˆ̆mik, i = 1, 4. Figure 2 a) shows the estimated values
for beAk. Figure 2 b) shows functional errorJk.

Diagonal filtering works in a two-step process. In the first
step, the diagonal filtering produces an estimator using the
innovation technique and the current state variables, along
with their uncertainties. In the second step, once the outcome
of the next measurement, necessarily corrupted with some
amount of error, including random noise is observed, these
estimates are updated using a weighted average, with more
weight being given to estimate with higher certainty.

All measurements and calculations based on models are
estimated to some degree. The diagonal filtering averages an
identification of a system state with a new measurement us-
ing matrix parametres estimation. The parametres are calcu-
lated from the covariance matrix described by the instrumen-
tal variable that guarantees a simple inversion matrix. The
result is a new state estimation that lies in between the pre-
dicted and measured state, and has a better estimated uncer-
tainty than either. This process is repeated for every step,
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FIGURE 2. a) Estimated values for bẽ̂Ak, b) Functional errorJk.

with the new estimation and its covariance informing the pre-
diction used in the following iteration. This means that the
diagonal filtering works recursively and requires only the last
best guess, not the entire data system state to calculate a new
state.

When performing the actual calculations for the filter,
as discussed below, the state estimation and covariance are
coded into matrices to handle the multiple dimensions in-
volved in a single set of calculations. This allows represen-
tation of linear relationships between different state variables
in any covariance transition model

4. Conclusion

Diagonal structure is an efficient recursive filter that estimates
the internal state of a linear dynamic system from noisy sig-
nals. It can be used in a wide range of science applications
and will be an important topic in control theory and control
systems. Diagonal filtering is a solution to what is probably
the most fundamental problem in description systems.

In most applications, the internal state is much larger than
the few observable parametres which are measured. How-
ever, using the method for a m-dimensional estimator [21],
diagonal filtering can estimate the entire internal state. For
discrete filters the computational complexity is more or less
proportional to the number of filter coefficients.

Practical implementation of diagonal filtering is often
simple due to the ability obtaining a good estimate of the ma-
trix parametres and is optimal in all cases.

Appendix

This section presents the proofs for the Theorems described
in the paper.

Proof 1. For all α ∈ R, definingx1 = x2 and x2 = y′

wherex2 = P1(s) + Q(s)xα
2 x2 with P1(s) = −P1(s), then

(1) can be written in a matrix form as (9).
[

ẋ1

ẋ2

]
=

[
0 1
0 P1(s)

] [
x1

x2

]

+
[

0 0
0 Q(s)

] [
xα

1

xα
2

]
(9)

(9) Transformed in a diagonal form as in [21] obtaining (10).




ẋ11 0 0 0
0 ẋ22 0 0
0 0 ẋ12 0
0 0 0 ẋ21


 =




0 1 0 0
0 P1(s) 0 0
0 0 0 0
0 0 0 Q(s)




×




x1 0 0 0
0 x2 0 0
0 0 xα

1 0
0 0 0 xα

2


 (10)

The simplified diagonal form for (10) is given by (11).



ẋ11 0 0
0 ẋ22 0
0 0 ẋ21


 =




1 0 0
0 a1 0
0 0 a3




×



x2 0 0
0 x2 0
0 0 xα

2


 (11)

Proof 2. The simplified diagonal form for (3) is given
by (11). Let

ϑϕ =




x2 0 0
0 x2 0
0 0 xα

2




T

be an instrumental variable. Multiplying (11) byϑϕ, with
second probability moment given by (12).

E
{

Φ̇ϕϑϕ

}
= ÃϕE {Mϕ} (12)

WhereMϕ = Φϕϑϕ, det(Mϕ) 6= 0 and M̆ϕ = ϑϕM−1
ϕ .

Finally, the optimal stochastic estimator is given by (4).
Proof 3. From (4), computing the recursive form for the

stochastic estimator bễAϕk
. ConsideringM̆ϕ andΦ̇ϕ are di-

agonal matrices, then̆Mϕ = M̆T
ϕ Φ̇ϕ = ΦT

ϕ describes in (13)

ˆ̃Aϕk
= E

{
M̆T

ϕ Φ̇ϕ

}
(13)
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The integral form in (14),

ˆ̃Aϕk
=

∫

Φφ

M̆T
ϕ dΦϕ (14)

And using the Lebesgue form in (15),

ˆ̃Aϕk
= lim

k→S

k∑

i=1




M̆T
ϕi−1

(
Φϕi

−Φϕi−1

)

+ 1
2

(
M̆T

ϕi
−M̆T

ϕi−1

)(
Φϕi

−Φϕi−1

)


 (15)

By linearity property in (16).

ˆ̃Aϕk
=

k∑

i=1

lim
|Φϕi

−Φϕi−1 |→Si

[
M̆T

ϕi−1
Si

+
1
2

(
M̆T

ϕi
− M̆T

ϕi−1

)
Si

]
(16)

Evaluating the last term,i = k, in (17)

ˆ̃Aϕk
= M̆T

ϕk−1
Sk +

1
2

(
M̆T

ϕk − M̆T
ϕk−1

)
Sk

+
k−1∑

i=1

lim
|Φϕi

−Φϕi−1 |→Si

[
M̆T

ϕi−1
Si

+
1
2

(
M̆T

ϕi
− M̆T

ϕi−1

)
Si

]
(17)

Simplifying in (18)

ˆ̃Aϕk
=M̆T

ϕk−1
Sk+

1
2

(
M̆T

ϕk−M̆T
ϕk−1

)
Sk+ ˆ̃Aϕk−1 . (18)

Proof C1. Let x1, x2 be the state variables with states
as x1 = ϕ, x2 = ∇ϕ. Therefore, x1 = ∇ϕ, correspond-
ing to x2,

•
x2 = ∇2ϕ, is equal to (7) and writing in diago-

nal form by Theorem 1 gives (8) witha3 = a0αx2. Where
a0 = a3/αx2, ∀α 6= 0, α ∈ R.
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