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Collinear inelastic collisions of an atom and a diatomic molecule
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We calculate transition probabilities between vibrational levels of a diatomic molecule induced by an incident atom. Our prototype model is
constructed treating the relative translation of the colliding species as a classical variable. The vibrational states of the diatomic molecule are
treated quantum mechanically in terms of the evolution operator without involving wave functions. The corresponding equations of motion
are coupled quasi-classically. For illustration purposes we present applications to the time dependence of transition probabilities for different
initial and final states as well as a canonical ensemble of initial conditions.
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Calculamos probabilidades de trangitientre estados vibracionales de unaéguoola diabmica inducidas por uatomo incidente. El modelo
prototipo trata el movimiento de trasléai relativo como una variableadica. Los estados vibracionales de la&oala diabmica se tratan
cuanticamente erétminos del operador de evoldai, sin involucrar funciones de onda. Las ecuaciones de movimiento correspondientes se
acoplan cuasi-élsicamente. A manera de ilustracipresentamos aplicaciones a la dependencia temporal de probabilidades détransici
para diferentes estados inicial y final asmo para un ensamble darico de condiciones iniciales.

Descriptores: Colisiones; inésticasalgebras; Lie; oscilador; amnico.
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1. Introduction the quantum part. Our calculations instead are performed
nonperturbatively in the Schrodinger picture exploiting the
The analytical foundation for energy transfer in molecularalgebraic properties of the system. Higher order transitions
collisions is laid with a collinear triatomic system [1-5]. In are easily calculated with the Lie algebraic approach from a
this system, a single collinear dimension is used for the relafinite number of ordinary differential equations [7-9,11]. We
tive motion of an atom and a diatomic molecule. The translaconsider a model Hamiltonian where both the oscillator and
tional degree of freedom can be treated classically to a goothe atomic interaction terms contain trajectory dependent co-
approximation. It is indeed sufficient to deal with the rela- efficients. The quantum part of the Hamiltonian is then rein-
tive molecular distance as a classical translational coordinatéerpreted in terms of Lie algebra elements while the transla-
However, it is essential to quantize the vibrational motion oftional part involves classical equations of motion. The chosen
the diatomic molecule. Therefore, we adapt quasi-classicallglgebra is closed under commutation and we can express the
this formalism to the response of a diatomic molecule treatetime evolution operatdy (¢, t,), as a product of exponentials,
as a harmonic oscillator to an external atomic interaction witteach corresponding to a single basis element of the algebra
an implicit time dependence. [12,13]. Within this scheme the time dependence is concen-

There are two key features in our approach distinguishingrated into c-number functiong (¢)}, wherei = 1, ..., 4.
it from earlier calculations [3-9]. The first one is the coupling h€se appear as Lie group parameters for the time evolu-
between Hamilton equations for translation and the quanturf{on operator, as will become evident in what follows. The
equations of motion involving the diatomic molecular vibra- Schrodinger equation satisfied by the evolution opertey
tions. Instead of solving the translational equation of motionS replaced by a set of coupled ordinary differential equations
independent of the vibrational motion [3-5,7,8] we solve thefor thea’s that can be solved numerically. Armed with these
whole set of equations simultaneously. The second one igolutions, we reconstruct the explicit time evolution operator
the appearance of an effective time dependent frequency [16] (t) and easily obtain

adapting the vibrational motion to the evolution during the (a) time dependent transition probabilities between two of
inelastic collision. the oscillator states induced by the incoming atom, and

Given that there is a natural way of separating the quan-
tum Hamiltonian into an unperturbed part (the harmonic os-
cillator) and a perturbation due to the incoming atom, it has
been customary to think in terms of time dependent perturba- In deriving the quantum Hamiltonian we also allow for a
tion theory and introduce the interaction representation foshift in the oscillator frequency resulting in a coefficient that

(b) time dependent expectation values of the position and
momentum operators.
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depends on the distance between the incoming atom and th; — R , .
center of mass of the diatomic molecule. This is the result | A B ] ® ’ O )
of a coupling between the classical equation for translation| “* @ ® @ e
and the quantum equation for the oscillator. Previous work - =
assumes a precalculated incoming classical trajectory for thEIGURE 1. The system is reduced to an incoming atom disturbing
atom [3-9]. As mentioned above it also has been customary ian oscillator constrained to a wall, where the dotted vertical line is
this kind of problems to proceed to the interaction representathe oscillator equilibrium position.
tion as the first step [7-9,11,14,15]. Although this step seems , ,
to be appropriate in perturbation theory, it can be obviated ir’("heref’S are th_e momentan’s the masses for the thr(_ae
our instance using the Schrodinger representation instead. oms. We consider the atoms B and C to be bounq, the m_ter—
practice, the difference between these two approaches is %,?Uon between A and B to pg repulsive, and the interaction
unobservable phase factor but the time dependence of the r etween A a_md c j[o be n_egllglble. We then reduc_e the prob-
sulting model unperturbed effective Hamiltonian makes th em tq tW(_) dimensions using reduced mass coordinates [2] as
interaction representation awkward. seen in Fig. 1.(b)' . . .

We also include a temperature dependent case ofacanogé The resulting Jacobi coordinates [2] ar the distance

ical ensemble of initial conditions with mixed states. We cal- tween the nuclei in the diatomic molecule aridthe dis-

culate the translation-vibration transitions for a heat bath ofé‘r;ﬁe beTyve_ent_the t?;tom A tand fthe centeAr\ (f)f rg;]asst of Bf and
collinear triatomic collisions. With an initial Boltzmann dis- us eliminaling the center ol mass. urther transfor-

tribution we see time resolved regions where the energy disr-nat"in [%] to dt|m(ta_n|S|onIess varlfable?an;jhy Z"OWS us tof th
tribution is far from thermal equilibrium. construct a potential €nergy surtace for thé dynamics of the

Apart from its intrinsic value in understanding inelastic collision. The potential appropriate for the harmonic motion

collisions, this work is motivated by the idea of applying sim- of 'the diatomic system is given in terms of the natural oscil-
ilar methods to more general cases. Replacing the harmon|?:‘tlon frequencyzy and the reduced maggc as
oscillator by a more realistic Morse potential requires an ex- 1 9
tension of the Lie algebra [10,16]. The reactive collinear case Ve = §hw0y ’ @
uses a similar approach to the present paper in terms of reac-
tion coordinates [1,16]. Including rotational motion in two Where WollBC
and three dimensions calls for the extension of the vibron y= n (v — o) (3)
model [17] which has already proven to be so valuable in the
case of molecular structure [18].

The paper is organized as follows. Section 2 lays th
foundation for the separation of the classical and quantum _ —B(z—
parts of the Hamiltonir;n and the corresponding cm?pling of Vap = huoVoe 7. @)
the two subsystems. In Sec. 3 we present the operator meth- Together these two functions form a potential energy sur-
ods applicable to the transformation of the quantum equatiopace for the collinear collision. The system takes on a new

into a set of four coupled ordinary differential equations. Injnterpretation: it is now reduced to a particle of dimension-
Sec. 4 we develop these ideas into a working model and fingsss reduced mass

the expressions for the transition probabilities as a function of

For the potential representing the collision we choose a
Jepulsive exponential of strengtfy and inverse rangs:

. . . L. mamc
time, as well as the time evolution of the average position and m = (5)
momentum for a simple case. Section 5 is a short discussion mp (Ma +mp +mc)
of the methods employed and the results obtained. at positionz and a particle of unit mass at

We now proceed to break the two remaining coordinates
up into classical and quantum degrees of freedom [3-5,7,9].
We first chooser to be the classical translation coordinate.
The oscillator coordinate is quantizeg, The full Hamilto-

We set up the following coordinates for the nuclear positionsman Is divided out byww, resulting in the final dimensionless

of atoms A, B, and C as seen in Fig. 1(a). The Hamilto—Workable Hamiltonian:
nian for this system is considered as a one-dimensional sys- - 1 5, 1,5, 1, —B(z—1)

. o H=_— = - Yl 6
tem with three degrees of freedom initially. In the laboratory om?’® + 2Py + 27 + Voe ©)

frame the Hamiltonian is given by In this new system, the classical equation becomes

2. Collinear formulation of the atom-diatomic
molecule interaction

2 2
T Pa PB dQJ; N
H, = _ — Bz
L= a + omp My = BVye PrePlim) (7)
2 .
+ Pc + Veelzs — ) + Vap(za —25), (1) Eqpatlon (7 coupIe; to t_he qua.mtumApart through the ex-
2mc pectation value of the vibrational distan@g)).
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3. The algebraic approach and the quantum probabilities of the oscillator by only having to solve four
dynamics ordinary differential equations. The Ansatz of choice for ap-
proaching Eq. (11) is a product of normal ordered exponen-
In general, the diatomic molecule has a well established vitials A
brational energy spectrum. It is usually anharmonic in nature Ut) = ee1(t)al jaz(t)a oz ()N jaa(t)] (12)
requiring high order terms to be accurately modeled. In a i ) )
first approximation we treat the molecule as a harmonic os- 1he Wei-Norman [12,13] form for the time evolution op-
cillator. Since the vibration of the diatomic molecule is quan-€rator is preferred since it simplifies its application to the
tized and the relative translation of the two colliding species’Umber operator eigenkets. This particular form also reveals
is considered as a classical degree of freedom we get a quagi_consstency with the interaction picture given that the un-
quantum/classical coupled system. The result is a classicRerturbed oscillator eigenvalues are retreivable from the last
equation being coupled to quantum equations through thVO termse*¥ e/ acting on the corresponding ket. Equa-
time dependent expectation value of the harmonic oscillator§0n (12) defines the general quantum solution we will work
position (g(t)). with. Inverting the Wei-Norman result in Eq. (12) isolates the
We will now simplify the quantum part of the Hamilto- _Hamiltonian as seen in Eq. (11). This is the Iandn_wark fo_rm
nian expanding the exponential in Eq. (6) to second order it quantum dynamics as it is a general and explicit solution
§ . This introduces a new quadratic term thus redefining thdor the generator of time evolution. The explicit form of the
oscillator frequency to b2 (z) = 1+ 2V,e 5. The linear quantum Hamiltonian appropriate for the algebraic approach
term ing acts as an effective "dipole” driving term inducing 1S thus
transitions in the vibrational spectrum. We hence take advan-

. . . - R 1 o
tage of the qua5|-plas§|cal variable separation and focus on H,=§ 5 e BT (a + aT)
the quantum Hamiltonian, 20(x)
. 1 1 - _ge . Uz
Hy = Sy + 59 (2)5? + BiVoe ™" + Voe . (8) + Q)N + Voe 7 + (T) (13)
In terms of the number operatdf for the parametric har- The left hand side of Eq. (12) is evaluated applying the
monic oscillator Eq (8) becomesy Baker-Hausdorff formula [10,20] The details are worked out
in the Appendix.
- ~ 1
H,=Q(x) <N + 2) + BgVoe " + Voe P (9) d -\ - .
i <dtU> U™' = (iaz) N + (icy — iczay)al
In order to find the evolution operator in closed form we
introduce the Lie algebra generated fay; a', N, I'} includ- + (idg + idzan) a
. . . A A-'-
ing the harmonic oscillator ladder operatérsand a', the + (idvg — icoa — idganar) . (14)

number operato®V and the identityl. The corresponding
non-trivial commutators are the usdala'] = 1, [a, N] = a, Equating Egs. (13) and (14) yields four ordinary differ-

and its Hermitian conjugaié’, N] = —a'. The Hamiltonian  gtiq equations for the’s. The resulting coupled equations
H, is an element of the Lie algebra with of motion for each Lie parameter are:
9= % (a+a'). (10) a1 = —i(fi +Qx)ar), do=—i(fi —Qz)az), (15)

. . . ) . _ Q(x)
The operators can be exponentiated to form a Lie &3 = —iQ(x), &4 = —i <f10<1+Voe 5m+2).
group [16] and the time evolution operatéfr(t) is part of

this group with the Lie group parameters being functionsyhere

of time [11-13]. The quantum dynamics can then be rewrit-

ten matching the coefficients of the Lie algebra basis in the — 1 —Ba
X ! Qz) = /1 2 Bz = — . (16
Schrodinger equation: () TV = By 5 Voe (16)

; (dU (t)> oW = a (11) Meanwhile, the translation equation of motion,
dt .
mi (t) = BVpe PrelIM) 17)
In this equation the dimensionless time requires a scaling
of ¢t = t'wy to stay consistent with the scaled energy units. becomes quasi-classically coupled to Egs. (15) resulting in a
The time dependence foF is transferred completely into  system of six first order differential equations which may be
four Lie group parameters,, as, oz, anday corresponding  solved numerically. Once these equations are solved, the time
to the four basis elements of the Lie algebra. After determinevolution operator can tell us everything about the system at
ing the evolution operator we can get infinite order transitionany given timet using the Wei-Norman result.
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FIGURE 2. Initial state with expectation value of positionat= 0. a) The collinear trajectories show that coupling the coordinates results
in asymmetric atomic trajectories unlike the usual precalculated trajectories in the previous literature. b) The transition probabilities fr
ground state are calculated continuously. The interaction region is shown to be strongest in the gray area. c¢) Conversion back to the
motion of the atoms in the laboratory frame.
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FIGURE 3. Landscape of transition to nearby states through time. a) Initial state chosemte-I#2 Notice that first order transitions are
strongest. b) The plot is rotated to show that for certain collisions, an initial state=of has a more rich transition landscape where the
persistence of the intial state is significant.

4. Results approach is that the time evolution of arbitrary state-to-state
transitions is directly comparable to the evolution of the real
atomic trajectories. The time resolution is fine enough that

Arbitrary state-to-statén; — ny) transitions become func- Sep arate regions appear in both the trajectories and the tran-
sition probabilities.

tions of the Lie parameters. Since these parameters are con- S ] ) o
tinuous functions of time, we may calculate the transition _FOr all of the following figures the triatomic mass ratio is
probabilities P from staten to m as continuous functions 1:2:1. We have included calculations and figures for a simple

4.1. Quantum dynamics of a single collision

of time with case as an illustration of the methods. More examples will be
shown for the more realistic anharmonic case [16].
P (1) = [e¥3"e** Vm!Vn! o - .
When the quantum transitions and collision dynamics are
n 2 simultaneously calculated, three distinct regions are revealed.
1 1 m—n+k_k 18 This is most evident in Fig. 2(b) where the interaction region
X Z k' k | k 'al Qo . ( ) . . . .
=kl (m —n+k)!(n—k)! is in the gray box separating the other two regions. Fig. 2(b)

The relative translational motion has been taken to b&NOWs atime interval in the interaction region where the pop-
classical, so its trajectory is well defined. For the quantunt!/ation becomes inverted.
coordinate we can calculate the position expectation value In Figs. 3 we present a time dependent transition proba-
for an average oscillator trajectory. For any given single ini-bility “landscape” which can be visualized in a 3D plot with
tial stationary state before the collision, the position expecthe number states as the third dimension. In Fig 3(a) the
tation value is centered at the bottom of the harmonic wellinitial single state is taken to be; = 2. In the landscape
This means(5(0)) = 0 as can be seen at the early timesplot the inversion through the interaction region is even more
Fig. 2(a). Itis also necessary that all Lie parameters be zerBronounced as states abovg = 10 have non-vanishing
att = 0 as well to fulfill the initial condition7(0) = I.  transition probabilites. In the final state only the transitions
With these conditions, the evolution operator retains its uni&v = +1 are significant. In Fig. 3(b) the initial state is
tarity through time. One powerful result of the Lie algebraic?: = 5 and the landscape is rotated to see the detail of the
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FIGURE 4. Initial state as a linear combination of time-dependent states. a) Coherence is seen in the incoming diatomic molecule. This

produces an incoming vibrational phase condition which in this case relaxes the molecule and results in V-T energy transfer b) The mass of
the middle atom is three times greater than the other two. The real nuclear trajectories in the laboratory frame show the assymetric motion in

the diatomic molecule.
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FIGURE 5. A heat bath of Boltzmann weighted oscillators initially in thermal equilibrium undergo collisions into non-equilibrium. a) The

initial conditions for the incoming atom and molecule are based off average velocities and maximal entropy. b) The Boltzmann distribution
is shown to be distrusted after the collision.

final two regions. Note that at any slice of constant time themixed state. The corresponding transition probability to a fi-

sum of the probabilitiesy ® P,y ~ 1. nal stateny is
All figures so far have considered a single initial state
where(3(0)) = 0, a stationary state before the atomic colli- ns —BE;
. . . . - . 2 €
sion. A second interesting case is one where the initial oscil- Pyy = |(ns|Uns)| 7 (19)
lator position expectation value is not zer@, ((0)) # 0. i=0

This corresponds to a wave packet and, although the time

evolution is still unitary, its initial value is not necessarily the where E,, = w (n + %) andz = Y, _, e Be(nt3) ig
unit operator so we do not show transition probabilities inthe partition function. Considering the number of states in
this case. The phase-space dynamics becomes more interesty. (19) to beN = 10 and assuming maximum initial en-
ing as the oscillator now has an initial coherence of which theropy in the diatomic molecule [11], there is no coherence
incoming atom quasi-classically couples to as it approache@ the distribution of stationary states. We may take a sin-
the oscillator as seen in Fig. 4(a). The vibrational to translagle inelastic collision like in Fig. 5(a) and distribute it across
tional energy transfer is noticed in the change of the oscillatothese 10 states as initial conditions, with Boltzmann weights

amplitude as well as the increased slope of the translationab model a canonical ensemble of oscillators. The initial dis-
coordinate. Notice thahp, the heavier atom, is barely oscil- tribution is seen in the early times of Fig. 5(b).

lating after the collision in Fig. 4(b). The interaction region shows the distribution to be much

different than a Boltzmann distribution. Even in the final re-
4.2. Quantum dynamics from a heat bath of collisions gion, the bath of oscillators is not Boltzmannian. In practice,
after this final region a relaxation of states back to a Boltz-
To consider an ensemble of oscillators, we begin with amann distribution is expected. This happens through a series
canonical ensemble of Boltzmann weighted initial states, af subsequent collisions on a different time scale.
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5. Discussion We use the Baker-Hausdorff formula

The Lie algebraic model proves to be a powerful and choice eXYe X = eX*Y.
formulation in molecular dynamics. Finding the time evolu-

tion operator produces all the information we need for bothwhere the cross-product stands for the commutator. This re-

average phase space and transitions. The Schrodinger equaits in the more intuitive structure
tion in the form ) :
10e®t?® X aq + jze®r® * (eaQ“XN) )

i (%) 0 — i
dt Using the relation

can now be seen as a generalized tool one can tailor to a spe- 9
cific system. Time resolved, infinite order transition proba- al - ——
bility calculations are a powerful result of the operator ap-
proach. We are now able to see the transition probabilitiesve get
continuously through the whole collision. In the algorithm

developed here, we see a simplification in non-equilibrium
guantum statistical analysis as the density matrix elements

are easily calculated from previous code.

The next step is to apply this method to more general sit-
uations [10,16,17] including anharmonic properties in the os-

cillators as seen in previous energy transfer work, as well as . ore

to the reactive case [16].

Appendix

Evaluation of the left hand side of Eq.(13) needs the calcula-

tion of the following:

. t et t _ —aral
100e® ae” % 4 ia3e*1? e*2P Ne™ @201 |

d
e MiXg=a— .
This brings the expression to

idg (@ —a1) + idgealafx (e“Q“XN) ,

e*2*N = N + asa x N = N + asa.
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