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Collinear inelastic collisions of an atom and a diatomic molecule
using operator methods
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We calculate transition probabilities between vibrational levels of a diatomic molecule induced by an incident atom. Our prototype model is
constructed treating the relative translation of the colliding species as a classical variable. The vibrational states of the diatomic molecule are
treated quantum mechanically in terms of the evolution operator without involving wave functions. The corresponding equations of motion
are coupled quasi-classically. For illustration purposes we present applications to the time dependence of transition probabilities for different
initial and final states as well as a canonical ensemble of initial conditions.
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Calculamos probabilidades de transición entre estados vibracionales de una molécula diat́omica inducidas por uńatomo incidente. El modelo
prototipo trata el movimiento de traslación relativo como una variable clásica. Los estados vibracionales de la molécula diat́omica se tratan
cuánticamente en términos del operador de evolución, sin involucrar funciones de onda. Las ecuaciones de movimiento correspondientes se
acoplan cuasi-clásicamente. A manera de ilustración presentamos aplicaciones a la dependencia temporal de probabilidades de transición
para diferentes estados inicial y final ası́ como para un ensamble canónico de condiciones iniciales.
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1. Introduction

The analytical foundation for energy transfer in molecular
collisions is laid with a collinear triatomic system [1-5]. In
this system, a single collinear dimension is used for the rela-
tive motion of an atom and a diatomic molecule. The transla-
tional degree of freedom can be treated classically to a good
approximation. It is indeed sufficient to deal with the rela-
tive molecular distance as a classical translational coordinate.
However, it is essential to quantize the vibrational motion of
the diatomic molecule. Therefore, we adapt quasi-classically
this formalism to the response of a diatomic molecule treated
as a harmonic oscillator to an external atomic interaction with
an implicit time dependence.

There are two key features in our approach distinguishing
it from earlier calculations [3-9]. The first one is the coupling
between Hamilton equations for translation and the quantum
equations of motion involving the diatomic molecular vibra-
tions. Instead of solving the translational equation of motion
independent of the vibrational motion [3-5,7,8] we solve the
whole set of equations simultaneously. The second one is
the appearance of an effective time dependent frequency [10]
adapting the vibrational motion to the evolution during the
inelastic collision.

Given that there is a natural way of separating the quan-
tum Hamiltonian into an unperturbed part (the harmonic os-
cillator) and a perturbation due to the incoming atom, it has
been customary to think in terms of time dependent perturba-
tion theory and introduce the interaction representation for

the quantum part. Our calculations instead are performed
nonperturbatively in the Schrodinger picture exploiting the
algebraic properties of the system. Higher order transitions
are easily calculated with the Lie algebraic approach from a
finite number of ordinary differential equations [7-9,11]. We
consider a model Hamiltonian where both the oscillator and
the atomic interaction terms contain trajectory dependent co-
efficients. The quantum part of the Hamiltonian is then rein-
terpreted in terms of Lie algebra elements while the transla-
tional part involves classical equations of motion. The chosen
algebra is closed under commutation and we can express the
time evolution operator̂U(t, t0), as a product of exponentials,
each corresponding to a single basis element of the algebra
[12,13]. Within this scheme the time dependence is concen-
trated into c-number functions{αi(t)}, wherei = 1, ..., 4.
These appear as Lie group parameters for the time evolu-
tion operator, as will become evident in what follows. The
Schrodinger equation satisfied by the evolution operatorÛ(t)
is replaced by a set of coupled ordinary differential equations
for theα’s that can be solved numerically. Armed with these
solutions, we reconstruct the explicit time evolution operator
Û(t) and easily obtain

(a) time dependent transition probabilities between two of
the oscillator states induced by the incoming atom, and

(b) time dependent expectation values of the position and
momentum operators.

In deriving the quantum Hamiltonian we also allow for a
shift in the oscillator frequency resulting in a coefficient that
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depends on the distance between the incoming atom and the
center of mass of the diatomic molecule. This is the result
of a coupling between the classical equation for translation
and the quantum equation for the oscillator. Previous work
assumes a precalculated incoming classical trajectory for the
atom [3-9]. As mentioned above it also has been customary in
this kind of problems to proceed to the interaction representa-
tion as the first step [7-9,11,14,15]. Although this step seems
to be appropriate in perturbation theory, it can be obviated in
our instance using the Schrodinger representation instead. In
practice, the difference between these two approaches is an
unobservable phase factor but the time dependence of the re-
sulting model unperturbed effective Hamiltonian makes the
interaction representation awkward.

We also include a temperature dependent case of a canon-
ical ensemble of initial conditions with mixed states. We cal-
culate the translation-vibration transitions for a heat bath of
collinear triatomic collisions. With an initial Boltzmann dis-
tribution we see time resolved regions where the energy dis-
tribution is far from thermal equilibrium.

Apart from its intrinsic value in understanding inelastic
collisions, this work is motivated by the idea of applying sim-
ilar methods to more general cases. Replacing the harmonic
oscillator by a more realistic Morse potential requires an ex-
tension of the Lie algebra [10,16]. The reactive collinear case
uses a similar approach to the present paper in terms of reac-
tion coordinates [1,16]. Including rotational motion in two
and three dimensions calls for the extension of the vibron
model [17] which has already proven to be so valuable in the
case of molecular structure [18].

The paper is organized as follows. Section 2 lays the
foundation for the separation of the classical and quantum
parts of the Hamiltonian and the corresponding coupling of
the two subsystems. In Sec. 3 we present the operator meth-
ods applicable to the transformation of the quantum equation
into a set of four coupled ordinary differential equations. In
Sec. 4 we develop these ideas into a working model and find
the expressions for the transition probabilities as a function of
time, as well as the time evolution of the average position and
momentum for a simple case. Section 5 is a short discussion
of the methods employed and the results obtained.

2. Collinear formulation of the atom-diatomic
molecule interaction

We set up the following coordinates for the nuclear positions
of atoms A, B, and C as seen in Fig. 1(a). The Hamilto-
nian for this system is considered as a one-dimensional sys-
tem with three degrees of freedom initially. In the laboratory
frame the Hamiltonian is given by

Ĥ1 =
p2
A

2mA
+

p2
B

2mB

+
p2
C

2mC
+ VBC(xB − xC) + VAB(xA − xB), (1)

FIGURE 1. The system is reduced to an incoming atom disturbing
an oscillator constrained to a wall, where the dotted vertical line is
the oscillator equilibrium position.

wherep’s are the momenta,m’s the masses for the three
atoms. We consider the atoms B and C to be bound, the inter-
action between A and B to be repulsive, and the interaction
between A and C to be negligible. We then reduce the prob-
lem to two dimensions using reduced mass coordinates [2] as
seen in Fig. 1(b).

The resulting Jacobi coordinates [2] arey′, the distance
between the nuclei in the diatomic molecule andx′, the dis-
tance between the atom A and the center of mass of B and
C thus eliminating the center of mass. A further transfor-
mation [2] to dimensionless variablesx andy allows us to
construct a potential energy surface for the dynamics of the
collision. The potential appropriate for the harmonic motion
of the diatomic system is given in terms of the natural oscil-
lation frequencyω0 and the reduced massµBC as

VBC =
1
2
~ω0y

2, (2)

where

y =
√

ω0µBC

~
(y′ − y0). (3)

For the potential representing the collision we choose a
repulsive exponential of strengthV0 and inverse rangeβ:

VAB = ~ω0V0e
−β(x−y). (4)

Together these two functions form a potential energy sur-
face for the collinear collision. The system takes on a new
interpretation: it is now reduced to a particle of dimension-
less reduced mass

m =
mAmC

mB (mA + mB + mC)
(5)

at positionx and a particle of unit mass aty.
We now proceed to break the two remaining coordinates

up into classical and quantum degrees of freedom [3-5,7,9].
We first choosex to be the classical translation coordinate.
The oscillator coordinate is quantized,ŷ. The full Hamilto-
nian is divided out by~ω0 resulting in the final dimensionless
workable Hamiltonian:

Ĥ =
1

2m
p2

x +
1
2
p̂2

y +
1
2
ŷ2 + V0e

−β(x−ŷ). (6)

In this new system, the classical equation becomes

m
d2x

dt2
= βV0e

−βxeβ〈ŷ(t)〉. (7)

Equation (7) couples to the quantum part through the ex-
pectation value of the vibrational distance〈ŷ(t)〉.
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3. The algebraic approach and the quantum
dynamics

In general, the diatomic molecule has a well established vi-
brational energy spectrum. It is usually anharmonic in nature
requiring high order terms to be accurately modeled. In a
first approximation we treat the molecule as a harmonic os-
cillator. Since the vibration of the diatomic molecule is quan-
tized and the relative translation of the two colliding species
is considered as a classical degree of freedom we get a quasi-
quantum/classical coupled system. The result is a classical
equation being coupled to quantum equations through the
time dependent expectation value of the harmonic oscillator’s
position〈ŷ(t)〉.

We will now simplify the quantum part of the Hamilto-
nian expanding the exponential in Eq. (6) to second order in
ŷ . This introduces a new quadratic term thus redefining the
oscillator frequency to beΩ2(x) = 1+β2V0e

−βx. The linear
term in ŷ acts as an effective ”dipole” driving term inducing
transitions in the vibrational spectrum. We hence take advan-
tage of the quasi-classical variable separation and focus on
the quantum Hamiltonian,

Ĥq =
1
2
p̂2

y +
1
2
Ω2(x)ŷ2 + βŷV0e

−βx + V0e
−βx. (8)

In terms of the number operator̂N for the parametric har-
monic oscillator Eq. (8) becomes,

Ĥq = Ω (x)
(

N̂ +
1
2

)
+ βŷV0e

−βx + V0e
−βx. (9)

In order to find the evolution operator in closed form we
introduce the Lie algebra generated by{â, â†, N̂ , I} includ-
ing the harmonic oscillator ladder operatorsâ and â†, the
number operator̂N and the identityI. The corresponding
non-trivial commutators are the usual[â, â†] = I, [â, N̂ ] = â,
and its Hermitian conjugate[â†, N̂ ] = −â†. The Hamiltonian
Ĥq is an element of the Lie algebra with

ŷ =

√
1

2Ω
(
â + â†

)
. (10)

The operators can be exponentiated to form a Lie
group [16] and the time evolution operatorÛ(t) is part of
this group with the Lie group parameters being functions
of time [11-13]. The quantum dynamics can then be rewrit-
ten matching the coefficients of the Lie algebra basis in the
Schrodinger equation:

i

(
d

dt
Û (t)

)
Û (t)−1 = Ĥ. (11)

In this equation the dimensionless time requires a scaling
of t = t′ω0 to stay consistent with the scaled energy units.

The time dependence for̂U is transferred completely into
four Lie group parametersα1, α2, α3, andα4 corresponding
to the four basis elements of the Lie algebra. After determin-
ing the evolution operator we can get infinite order transition

probabilities of the oscillator by only having to solve four
ordinary differential equations. The Ansatz of choice for ap-
proaching Eq. (11) is a product of normal ordered exponen-
tials

Û (t) = eα1(t)â
†
eα2(t)âeα3(t)N̂eα4(t)I . (12)

The Wei-Norman [12,13] form for the time evolution op-
erator is preferred since it simplifies its application to the
number operator eigenkets. This particular form also reveals
a consistency with the interaction picture given that the un-
perturbed oscillator eigenvalues are retreivable from the last
two termseα3N̂eα4I acting on the corresponding ket. Equa-
tion (12) defines the general quantum solution we will work
with. Inverting the Wei-Norman result in Eq. (12) isolates the
Hamiltonian as seen in Eq. (11). This is the landmark form
in quantum dynamics as it is a general and explicit solution
for the generator of time evolution. The explicit form of the
quantum Hamiltonian appropriate for the algebraic approach
is thus

Ĥq = β

√
1

2Ω(x)
V0e

−βx
(
â + â†

)

+ Ω(x)N̂ + V0e
−βx +

Ω(x)
2

. (13)

The left hand side of Eq. (12) is evaluated applying the
Baker-Hausdorff formula [10,20]. The details are worked out
in the Appendix.

i

(
d

dt
Û

)
Û−1 = (iα̇3) N̂ + (iα̇1 − iα̇3α1) â†

+ (iα̇2 + iα̇3α2) â

+ (iα̇4 − iα̇2α1 − iα̇3α2α1) I. (14)

Equating Eqs. (13) and (14) yields four ordinary differ-
ential equations for theα’s. The resulting coupled equations
of motion for each Lie parameter are:

α̇1 = −i (f1 + Ω(x)α1) , α̇2 = −i (f1 − Ω(x)α2) , (15)

α̇3 = −iΩ(x), α̇4 = −i

(
f1α1 + V0e

−βx +
Ω(x)

2

)
.

where

Ω(x) =
√

1 + β2V0e−βx, f1 = β

√
1

2Ω
V0e

−βx. (16)

Meanwhile, the translation equation of motion,

mẍ (t) = βV0e
−βxeβ〈ŷ(t)〉, (17)

becomes quasi-classically coupled to Eqs. (15) resulting in a
system of six first order differential equations which may be
solved numerically. Once these equations are solved, the time
evolution operator can tell us everything about the system at
any given timet using the Wei-Norman result.
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FIGURE 2. Initial state with expectation value of position atx = 0. a) The collinear trajectories show that coupling the coordinates results
in asymmetric atomic trajectories unlike the usual precalculated trajectories in the previous literature. b) The transition probabilities from
ground state are calculated continuously. The interaction region is shown to be strongest in the gray area. c) Conversion back to the real
motion of the atoms in the laboratory frame.

FIGURE 3. Landscape of transition to nearby states through time. a) Initial state chosen to ben = 2. Notice that first order transitions are
strongest. b) The plot is rotated to show that for certain collisions, an initial state ofn = 5 has a more rich transition landscape where the
persistence of the intial state is significant.

4. Results

4.1. Quantum dynamics of a single collision

Arbitrary state-to-state(ni → nf ) transitions become func-
tions of the Lie parameters. Since these parameters are con-
tinuous functions of time, we may calculate the transition
probabilitiesP from staten to m as continuous functions
of time with

Pn→m (t) =
∣∣∣eα3neα4

√
m!
√

n!

×
n∑

k=0

1
k!

1
(m− n + k)! (n− k)!

αm−n+k
1 αk

2

∣∣∣∣∣

2

. (18)

The relative translational motion has been taken to be
classical, so its trajectory is well defined. For the quantum
coordinate we can calculate the position expectation value
for an average oscillator trajectory. For any given single ini-
tial stationary state before the collision, the position expec-
tation value is centered at the bottom of the harmonic well.
This means〈ŷ(0)〉 = 0 as can be seen at the early times
Fig. 2(a). It is also necessary that all Lie parameters be zero
at t = 0 as well to fulfill the initial conditionÛ(0) = I.
With these conditions, the evolution operator retains its uni-
tarity through time. One powerful result of the Lie algebraic

approach is that the time evolution of arbitrary state-to-state
transitions is directly comparable to the evolution of the real
atomic trajectories. The time resolution is fine enough that
separate regions appear in both the trajectories and the tran-
sition probabilities.

For all of the following figures the triatomic mass ratio is
1:2:1. We have included calculations and figures for a simple
case as an illustration of the methods. More examples will be
shown for the more realistic anharmonic case [16].

When the quantum transitions and collision dynamics are
simultaneously calculated, three distinct regions are revealed.
This is most evident in Fig. 2(b) where the interaction region
is in the gray box separating the other two regions. Fig. 2(b)
shows a time interval in the interaction region where the pop-
ulation becomes inverted.

In Figs. 3 we present a time dependent transition proba-
bility “landscape” which can be visualized in a 3D plot with
the number states as the third dimension. In Fig 3(a) the
initial single state is taken to beni = 2. In the landscape
plot the inversion through the interaction region is even more
pronounced as states abovenf = 10 have non-vanishing
transition probabilites. In the final state only the transitions
4v = ±1 are significant. In Fig. 3(b) the initial state is
ni = 5 and the landscape is rotated to see the detail of the
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FIGURE 4. Initial state as a linear combination of time-dependent states. a) Coherence is seen in the incoming diatomic molecule. This
produces an incoming vibrational phase condition which in this case relaxes the molecule and results in V-T energy transfer b) The mass of
the middle atom is three times greater than the other two. The real nuclear trajectories in the laboratory frame show the assymetric motion in
the diatomic molecule.

FIGURE 5. A heat bath of Boltzmann weighted oscillators initially in thermal equilibrium undergo collisions into non-equilibrium. a) The
initial conditions for the incoming atom and molecule are based off average velocities and maximal entropy. b) The Boltzmann distribution
is shown to be distrusted after the collision.

final two regions. Note that at any slice of constant time the
sum of the probabilities,

∑
Pif ≈ 1.

All figures so far have considered a single initial state
where〈ŷ(0)〉 = 0, a stationary state before the atomic colli-
sion. A second interesting case is one where the initial oscil-
lator position expectation value is not zero,i.e. 〈ŷ(0)〉 6= 0.
This corresponds to a wave packet and, although the time
evolution is still unitary, its initial value is not necessarily the
unit operator so we do not show transition probabilities in
this case. The phase-space dynamics becomes more interest-
ing as the oscillator now has an initial coherence of which the
incoming atom quasi-classically couples to as it approaches
the oscillator as seen in Fig. 4(a). The vibrational to transla-
tional energy transfer is noticed in the change of the oscillator
amplitude as well as the increased slope of the translational
coordinate. Notice thatmB, the heavier atom, is barely oscil-
lating after the collision in Fig. 4(b).

4.2. Quantum dynamics from a heat bath of collisions

To consider an ensemble of oscillators, we begin with a
canonical ensemble of Boltzmann weighted initial states, a

mixed state. The corresponding transition probability to a fi-
nal statenf is

Pβ→f =
nf∑

i=0

|〈nf |U |ni〉|2 e−βEi

Z
, (19)

where En = ω
(
n + 1

2

)
and Z =

∑
n=0 e−βω(n+ 1

2 ) is
the partition function. Considering the number of states in
Eq. (19) to beN = 10 and assuming maximum initial en-
tropy in the diatomic molecule [11], there is no coherence
in the distribution of stationary states. We may take a sin-
gle inelastic collision like in Fig. 5(a) and distribute it across
these 10 states as initial conditions, with Boltzmann weights
to model a canonical ensemble of oscillators. The initial dis-
tribution is seen in the early times of Fig. 5(b).

The interaction region shows the distribution to be much
different than a Boltzmann distribution. Even in the final re-
gion, the bath of oscillators is not Boltzmannian. In practice,
after this final region a relaxation of states back to a Boltz-
mann distribution is expected. This happens through a series
of subsequent collisions on a different time scale.
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5. Discussion

The Lie algebraic model proves to be a powerful and choice
formulation in molecular dynamics. Finding the time evolu-
tion operator produces all the information we need for both
average phase space and transitions. The Schrodinger equa-
tion in the form

i

(
d

dt
Û

)
Û−1 = Ĥ

can now be seen as a generalized tool one can tailor to a spe-
cific system. Time resolved, infinite order transition proba-
bility calculations are a powerful result of the operator ap-
proach. We are now able to see the transition probabilities
continuously through the whole collision. In the algorithm
developed here, we see a simplification in non-equilibrium
quantum statistical analysis as the density matrix elements
are easily calculated from previous code.

The next step is to apply this method to more general sit-
uations [10,16,17] including anharmonic properties in the os-
cillators as seen in previous energy transfer work, as well as
to the reactive case [16].

Appendix

Evaluation of the left hand side of Eq.(13) needs the calcula-
tion of the following:

iα̇2e
α1a†ae−α1a† + iα̇3e

α1a†eα2aNe−α2ae−α1a† .

We use the Baker-Hausdorff formula

eXY e−X = eX×Y.

where the cross-product stands for the commutator. This re-
sults in the more intuitive structure

iα̇2e
α1a†×a + iα̇3e

α1a†× (
eα2a×N

)
.

Using the relation

a† → − ∂

∂a

we get

e−α1
d

da×a = a− α1.

This brings the expression to

iα̇2 (a− α1) + iα̇3e
α1a†× (

eα2a×N
)
,

where

eα2a×N = N + α2a×N = N + α2a.
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