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We propose an alternative geometric mathematical structure for arbitrary phase space. The main guide in our approach is the hidden SL(2,R)-
symmetry which acts on the phase space changing coordinates by momeuteeavetsa We show that the SL(2,R)-symmetry is implicit

in any symplectic structure. We also prove that in any sensible physical theory based on the SL(2,R)-symmetry the signature of the flat
target “spacetime” must be associated with either one-time and one-space or at least two-time and two-space coordinates. We discuss the
consequences as well as possible applications of our approach on different physical scenarios.
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1. Introduction (2 + 2)-dimensions. Finally, in Sec. 6 we make some addi-

tional comments.
The importance of th&'L(2, R)-group in physics and math-

ematics, specially in string theory [1], two dimensional black . .
holes [2] and conformal field theory [3-4], has been recog—z' Lagrange-Hamiltonian system

nized for long time. Recently such a group structure has beeﬂet us consider the action

considered as the key structure in the development of two-

time physics (2t-physics) (see [5-7] and references therein). S[q] = /dtL(q, q), (1)
An interesting aspect is the relevance of #&(2, R)-group

in 2t-physics emerging from the Hamiltonian formalism of
ordinary classical mechanics. In fact, thd (2, R)-group
acts on a phase space, rotating coordinates by momenta
vice versa Requiring this symmetry for the constraint Hamil-
tonian system leads us to the conclusion that the flat targef,

where the Lagrangiaih = L(q, §) is a function of theg!-
coordinates and the corresponding velocitjes= dq'/dt,
hi,j=1,...,n.
The canonical momentup) conjugate ta;’ is defined to

“spacetime” must have either a (1+1)-signature or at least a _ 0L

(2+2)-signature [8]. However, this result still requires a re- pi = oG’ @

fined mathematical proof. Thus the action (1) can be rewritten in the form
Specifically, we prove, in two alternative ways, that in

a constraint Hamiltonian formalism, in which the groups Slq,p] = /dt(qipi ~H,), 3)

SL(2,R) andSO(t, s) are symmetries of a classical system, )

the possible values fartime ands-space aré = 1 ands = 1
ort 2 2 ands = 2. In the process, we formalize an alter-
native geometric structure for the phase space based on the H.(q,p) = ¢'p; — L. 4)
SL(2, R)-group.

As an application of our formalism, we develop the Dirac  |f one considersm first class Hamiltonian constraints
type equation in(2 + 2)-dimensions. We show that the Ha(g,p) ~ 0 (here the symbol %" means weakly equal
SL(2, R)-group is relevant to understand such equation. ~ to zero [9-11]), withA = 1,2..., m, then the action (3) can

The structure of this paper is as follows. In Secs. 2 and 3P€ generalized as follows:
we develop the necessary steps to highlight the importance of )
the SL(2, R)-group in classical constraint Hamiltonian sys- Sla,p] = /dt(d’pi — H,— X Hy). (5)
tems. In Sec. 4, we prove the main proposition mentioned
above. In Sec. 5, we construct the Dirac type equation irHere, A4 are arbitrary Lagrange multipliers.

whereH,. = H.(q,p) is the canonical Hamiltonian,
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The Poisson bracket for arbitrary functiorig, p) and  with ¢ = {1, 2,3}. According to the notation (8)-(9) we have
9(q, p) of the canonical variablegsandp is defined as usual

B0
(f.gy— 2L 09 _ 01 0g ) H =202 4V (q)). (13)
0g' Opi Ip: 9q’ It is evident from this expression thaf in (13) is not
Using (6) we find that SL(2, R)-invariant Hamiltonian. Thus, a Hamiltonian of
iy the form (12) does not admit $.L(2, R)-invariant formula-
{¢".¢’} =0, tion. The same conclusion can be obtained by considering a
Hamiltonian constraintl = A\(p'p; +m?) for the relativistic
{¢'.p;} =9, (7)  point particle, where in this caseuns from0 to 3.
Thus, one finds that the simplest exampleSdf(2, R)-
{pi,pj} =0, invariant Hamiltonian seems to be [5]
where the symboi;ﬁ denotes a Kronecker delta. H— 7)\abqaqb7h]7 (14)
3. SL(2, R)-Hamiltonian system which can be understood as the Hamiltonian associated with

a relativistic harmonic oscillator in a phase space. Here, we
It turns out that an alternative possibility to analyze the pre-assume thah® = A% is a set of Lagrange multipliers and
vious program has emerged in the context of 2t-physics [5-7},; = diag(—1, -1, ...,—1,1,...,1). Note that we are con-
(see also Ref. 12 and references therein). The key poinfidering a signature of the form = ¢ + s, with ¢ time-like
in this new approach is the realization that, since in the acands space-like signature. The reason for this general choice
tion (3) there is a hidden invarian&d.(2, R) ~ Sp(2, R) ~ s that theSL(2, R)-symmetry requires necessarily a target
SU(1,1), one may work in a unified canonical phase spacespacetime’ with either = 1 ands = 1 ort > 2 ands > 2
of coordinates and momenta. Let us recall how such a hidde&s we shall prove below.

invariance emerges. Consider first the change of notation Using (14) one sees that (10) can be written in the form
4 =4, (8) 1 N
== a i — \CH, 15
and - S Zt/ (J Qati s b) (15)
% =p ) '
where

These two expressions can be unified by introducing the ob- o — digin 16
jectq’, with a = 1, 2. The next step is to rewrite (5) in terms ab = aDis- (16)
of ¢¢ rather than in terms af andp’. One finds that, upto a Of courseH,; = 0 is the constraint of the theory. Observe
total derivative, the action (5) becomes [4] (see also Refs. 1that the constraini/,; ~ 0 is symmetric in the indices and

and 13) b, thatisH,, = Hy,.
Note that using the definitions (8) and (9) we can write
). the usual Poisson bracket (6), for arbitrary functigiis, p)
S = /dt< J¢qr — H(q l)) (10)  andg(q, p) of the canonical variablegandp as
of 99
Ja 17
Here, J** = —J% whereJ'? = 1 is the antisymmet- {9} = T 94, dql (7
ric SL(2, R)-invariant density (some times denoted with the _
symbols??) and Thus, from (17) one discovers the algebra
: i gy ij
H(q}) = H. + M Ha. (11) {ga> @} = Jan", (18)

which is equivalent to (7).
Moreover, using (17) one finds thdf,, satisfies the
L(2, R)-algebra

According to Dirac’s terminology in the constrained Hamil-
tonian systems formalism [14] (see also Refs. 9-11), (11)
corresponds to a total Hamiltonian. From the action (10) on
observes that, while th&L(2, R)-symmetry is hidden in (5), T H

’ aos C ac +J(LH(/+J(/H(L +J H(IC7 19
now in the first term of (10) it is manifest. Thus, it is natural {Hap, Hea} = b e betfad T b (19
to require the sam§L(2, R)-symmetry for the total Hamil-  which shows thaff,; is a first class constraint. Explicitly,

tonianH (¢’). the nonvanishing brackets of the algebra (19) can be decom-
Consider the usual Hamiltonian for a free non-relativisticposed as
point particle S {Hi1, Hoo} = 4H)2, (20)
H= mu +V(q), (12) {H11, Hio} = 2H1y, (21)
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and 4. SL(2, R)-symplectic structure and the
{Hig, Hao} = 2Hos. (22) (2+2)-signature
By writing Applying Noether’s procedure to (15) one learns that the an-
1 1 gular momentum
Ss = —=Hio, S1 =~ (Hu + H2) TR I
2 4 LY =q'p —¢p' (30)
and 1 or y o
Sy = E(HH — Hao) L = Jogiql (31)
one finds that is a conserved dynamic variable. Using (7) and (30) one can
(51,85} = S, (23) show thatZ*/ obeys Lorentz group algebra
{53, Sl} _ 527 (24) {Lij7 Lkl} — niijl _ nzlek + nleik _ n]kLll (32)
and Alternatively, one can show that this result also follows from
{S2, S5} = 51, (25) (18)and (31). _ _
We are now ready to write and prove the following propo-
which can be succinctly written as sition:
Proposition: Let (t+s) be the signature of the flat metrig;
{Su St =€, “Sa (26)  associated with a phase space described with coordinates
which determine thé& L(2, R)-symplectic structure given by
or the Poisson brackets (17). Then, only in the casesl and

s=1ort = 2ands > 2 there exist coordinateg, different
{Suuy Saﬂ} = n;LaSVﬁ_nuﬁSVa+nVﬂSua_nuasuﬁ- (27) from zero such that

Here Hap =0 (33)
1 and
Nuv = (_1a 17 1)7 S,UV = _SVIL and SH - §€HDQSVO¢7 LY ?é 0. (34)
Proof: Consider aSL(2, R)-symplectic structure as in (17).
with €'** = —1 ande;p3 = 1. This is one way to see that For the 7;;-symbol we shall assume the general case of
the algebral(2, R) is equivalent to the algebra(1,2). Fur- (¢ + s)-signature corresponding tetime ands-space coor-
thermore, the grouf'’L(2, R) is double cover obO(1, 2). dinatesy’. First observe that explicitly, (33) yields
All this developments are relevant for quantization. In o
this case, one defines the Poisson brackets in classical phase q'¢’nij =0, (35)
space and then associate operafis p) andg(q, p) to the i
q'p'ni; =0, (36)

functions f(q,p) andg(q, p). Without constraints, the tran-
sition from classical to quantum mechanics is made by proand
moting the canonical HamiltoniaA . as an operatofi, via pipjmj = 0. (37)

the nonvanishing commutator . .
Of course a theory with = 0 ands = 0 is vacuous, so we

[qi,ﬁj] — st (28) s_hall assume that £ 0 or s # 0._ F_rom _(35) and (37) one
! finds that ift = 0 ands # 0, that is if;; is Euclidean, then

(with 1 = 1) obtained from the second bracket in (7), and byd" = 0 andp® = 0. This shows the need for at least one
writing the quantum formula time-like dimension, that i > 0. Note that one can multi-
ply (35)-(37) by a minus sign. This changes the signature of
n;; fromt + s to s + t. This means that if one assumeg 0
ands = 0, it results that the theory should have at least one
space-like dimension, thatis> 0. So putting together these
two results we have a consistent solution of (35)-(37) only if
t > 1lands = 1.
We shall show that the case= 1 ands = 1 is an excep-
nal solution of (35)-(37). In this case, these expressions
come

Ay =i ), (29)

which determines the physical statds (see Refs. 9-11 for
details). Here, the brackétl, B] = AB — BA denotes the
commutator. This is in agreement with the meaningtof
as the generator of temporal evolution for operators in theEiO
Hilbert space. be
If we have a constrained Hamiltonian system character-

ized bym first class constraint# 4, one also imposes that —(")?* + (A? =0, (38)
the correspondent operators acts on the physical states as L1 9o
Ha|T) = 0. —q¢p +qp =0 (39)

Rev. Mex. Fis59(2013) 352-358



SL(2,R)-GEOMETRIC PHASE SPACE AND (2+2)-DIMENSIONS

and

")+ (*)* =0, (40)
respectively. Using (38) and (40), one can verify that (39)
is an identity. Thus (38) and (40) do not lead to any rela
tion betweery andp and therefore in this case the angular
momentum condition (34) is satisfied.

It remains to explore consistency whee= 1 ands = 2
(ort = 2 ands = 1 due to the sign freedom in (35)-(37)). A
well known result is that wheh = 1 ands = 2 two light-
like orthogonal vectors are necessarily parallel. Hence, i
this case we get the expressign= ap’ which, according to
(30), impliesL” = 0. This clearly contradicts our assump-
tion (34). The same result holds for the case 2 ands = 1.
Hence, we have shown that (33) and (34) makes sense only
t=1lands=1ort=2ands = 2.

Therefore, since (34) is linked to tH#O(t, s)-symmetry
one may concludes a consisteéit(2, R)-theory can be ob-
tained only in the caseSO(1,1) or SO(t = 2,s = 2).
From the perspective th&tO(2, 2) is a minimal alternative,
we have shown that the signaturds+ 1) and (2 + 2) are
exceptional.

355

respectively. Moreovet>-i+++ takes the valu, unless the
indicesis...i;  , are all different.

Relation (46) can be written in terms of:+- in the
form
(49)

where we have dropped the nonzero factg(t + s — 2)!.
Moreover, (49) can be rewritten as

GV i’ K, _
3 iy, 4 4rpT pr=0,

(50)

Gl i’k
gl n t+35i’k’iﬁl...i;+sL Lj/l/ =0.

r?—|ere, we used (30) and dropped some numerical factors. Ob-

serve that 1
= 561"1«11..41';“

e (51)

.y .
7‘4"‘1t+s

il the dual tensor of ",
The lower dimensional case in which (50) holds is

eV ey L% Ly =0, (52)
which implies .
ej/k/LZ K= 0. (53)
Consequently, this gives;;; = 0. Hence this proves that

An alternative method for arriving at the same result is aspe signature solutiond + 2) or (2 + 1) are not consistent

follows. Let us separate from (35)-(37) one time variable in
the form

—(g)?+ ¢ ¢ iy =0, (41)

—g'pt + ¢ p iy =0, (42)
and L

—Y +p" P niy =0, (43)

where the indices, j’, etc. run from2 to ¢ + s. The formula
(42) leads to

(@)2(")? = ¢ P iy P e = 0. (44)
Using (41) and (43) we find that (44) becomes
a" ¢ iy D mor — 4" 0 iy p e =0, (45)
which can also be written as
(67 6%, — 6460)g" g5 p* pr = 0. (46)

Observe that this implies thatZ?7' Ly.;, = 0. If nyy is a
Euclidean metric this result in turn implids’?" = 0 which
means thay’ = ¢p’, that isq" andp’ are parallel quanti-
ties. The combination of (41) and (43) implies that= ¢p*.
This is another way to show that two light-like orthogonal
vectors are parallel.

Let us now introduce the completely antisymmetric sym-
bol

-/ -/
612...7.t+s .

(47)
This is a rankt + s — 1 tensor which values ar¢1 or —1
depending on even or odd permutations of

2...t+s
)

€ (48)

with (34). So, it remains to prove thét + (s > 2)) is also
no consistent with (34). In general we have that (50) and (51)

imply

Li..a Liziiee = 0. (54)
But in the cas€1 + s > 2), (54) is an Euclidean expression
and thereforeﬂii___iiﬂ = 0, which in turn impliesL ;. = 0.

Thus, a consistent solution is also possible in the ¢aze2
ands = 2. Hence, this is an alternative proof that with
two time-like dimensions, the minimal case in which the
SL(2, R)-symmetry is consistent with Lorentz symmetry, is
the 2 + 2-signature. In principle we may continue with this
procedure founding tha& + 3 and so on are consistent pos-
sibilities. But, considering that (35)-(37) are only three con-
straints we see that there are not enough constraints to elim-
inate all additional degrees of freedom in all possible cases
with ¢ > 3 ands > 3. In fact, one should expect that this will
lead to unwanted results at the quantum level [5-7].

Note what happens with the Lorentz Casimir operator

1 ..
C = iLwLij = det(Hab). (55)
From (31) we have
1 ij 1 ab i J 7ed
C= §L Li; = §J 4o 9y J " qeiqds
1 ab red i 7 1 ab yed
= §J J 404ciqy4dj = §J JHycHpq. (56)

Hence, wherf{,;, = 0 we haveC = 0 which means that
in this case the Lorentz Casimir operator vanishes.

Summarizing, by imposing th8L(2, R)-symmetry and
the Lorentz symmetn5O(t, s) in the Lagrangian (15) we
have shown that there exig} consistent with these symme-
tries only in the signatures+ 1 andt = 2 + s = 2.
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5. The Dirac equation and the (2+2)-signature Here, the flat metrig®® is given byn®® = diag(—1,1,1), and

o ) o the indicesa, b, ... take values in the s€t2,3,4}. Consider
As an application of our previous developments, in this seCmatricesy® such that

tion we consider the Dirac equation in (2+2)-dimensions.

This type of equation has already be mentioned in Ref. 15, 020" + 0% 0% = 2. (68)
but here we construct it from first principles. For this pur- )

pose, let us consider a relativistic point particle described by'Sing (68) one sees that (67) can be written as

the action . P .
[(=P1+ 0" P)(PL + ¢"Py) + mg]® = 0. (69)
- v 1/2
S= _mo/dT (—dHd" € ) - (57)  Now, we define two spinors
In this section, we also use the notatiot = da*(7)/dr, o, =0 (70)
wherer is an arbitrary parameter. The tenggy, is a flat
metric with signaturg,,, = diag(—1,—1,1,1). and 1 . .
Starting from the Lagrangian associated with (57) Pp = —%(P1 +0"P)®y. (71)
L1 =—mg (—x’“x”’gw)lﬂ 7 (58)  Explicitly (71) leads to
one finds that the canonical moments associated with (Pr+ 0" Py) @, + mo®r =0, (72)
namel . .
Yy oL, (59) while (69), (70) and (71) give
Py — 0"P,)® & =0. 73
lead to ” (P1 = 0"Pa)®r +mo®L =0 (73)
“:LWW' (60) These last two equations can be expressed in a matrix form
(_jfaj?ﬁgaﬁ)
From (60), one can verify that ([ 5)_ é } Pt { f(;a QO“ :|Pa
H = P,P,E" +mi =0, (61)
whereé#” = diag(—1, —1,1, 1) is the inverse flat metric of 4 { é ? ] mo) ( iR > =0, (74)
&,,. Moreover, if we define the canonical Hamiltonian L
H. = ilP, — L4 (62) wherel = diag(1, 1) is the identity matrix in two dimen-
: ’ sions. One can of course write (74) in the more compact
one sees that (60) also implies that form .
(T*P, +mp)¥ = 0. (75)
He = 0. (63) g

Here, we used the following definitions
According to the Dirac constraint Hamiltonian system

formalism, one can write the total Hamiltonian as U= ( iR ) , (76)
L
Hr =He + \H, (64)
I'= { 0 1 } (77)
where ) is a Lagrange multiplier. By using the constraint 10

(61), as well as (63) and (64), one can write the first-order, 4

Lagrangian
o [ 0 o
. A , re = [ . 90 } . (78)
Ly =@M Py = S(BuPE" +mf). (65) 0
At the quantum level one requires to apply the constraint (618Y Promoting £, — id,,, one recognize in (75) the Dirac
to the physical sate® in the form ype equation ir2 + 2)-dimensions.
o We shall show that (75) is deeply linked to tBé& (2, R)-
[P.P,&" + mi|® =0, (66) group. First, observe that an explicit representation of the

. ) ) matriceso; andg, in (78) is
whereP, is an operator associated wikh,.

By starting with (66), our goal now is to construct 01 = < Lo ) 03 = < 0 -1 )
a Dirac-type equation irf2 + 2)-dimensions. Let us first 0 1)’ Lo )’
write (66) in the form ” < 1 0 ) . < 0 1 ) 79)
A A A A 3 — ’ 4 — .
[—PL Py + B, Py + m2)® = 0. (67) 0 -1 1.0
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Notice first that the determinant of each of the matrices (79and

is different from0. This suggests to relate such matrices with P dp+®, =0. (90)
the general grouprL(2, R). Indeed, the matrices in (79) can
be considered as a basis for a general matfii the follow-
ing manner:

Note that taking into account the constraint (86) we have

detﬁi(I)RL :(I)R,L- (91)
M = < é g > = 010 + 02b + 03¢ + 04d, (80)  Symbolically, we can consider
p+
wherea, b, ¢, d € R, given by detP= =1 (92)
a=LYA+D), b=1L-B+0), But this means that bottP* and P~ are elements of
(81) SL(2,R)-group and therefore the Dirac type Eq. (74) or
c=1A-D), d=3i(B+C), (79) has a structure associated with the gréug2, R)™ x
. SL(2,R)~. In fact, this may be understood considering the
Explicitly, (80) can be read isomorphismSO(2,2) ~ SL(2,R) x SL(2,R).
at+c —b+d As it is known, the Dirac equation describes massive par-
M= ( b+d a—c > (82) ticles with (L/2)-spin. When the mass,, is the mass of the

electron, the Dirac equation correctly determines the quan-
Without loss of generality, one may assume tha{ /) # 0,  tum theory of the electron. On the other hand, the Dirac type
in such away that/ is contained in the Lie grou@'L(2, R).  equation (74) in(2 + 2)-dimensions also describes massive
If one also impose the condition thadt(1/) = 1, the matrix  particles with { /2)-spin,. However, there is a significant dis-

M belongs to the Lie group L(2, R). tinction for this signature: while in the case of Dirac equation
It is worthwhile to mention that, by writing,, intensorial  in (1 + 3)-dimensions¥ can be choosen as a Majorana or
notation Weyl spinor (but not both at the same time), one can choose

¥ as a Majorana-Weyl spinor if2 + 2)-dimensions.
€ij = 02, MNij = 03, >\ij = 04, (83) @ )

one can construct a gravity model in 2 dimensions (se§§. Final Comments
Ref. 16 for details).
Rewriting (72) and (73) respectively as follows We have proved in some detail th&L.(2, R)-symmetry and
. . . . Lorentz symmetrySO(t, s) imply together that the signa-
(01P1 + 02P2 + 03P3 + 04 Pa)®r + mo®r =0, (84)  tyres1 + 1 and2 + 2 are exceptional. One may be moti-
vated to relate this result with different physical scenarios.
Of course, the signaturie+ 1 can be related to string theory.
(91151 — 09D — 03P5 — 94}54)<1>R +mo®r =0, (85) Bgt what about t'ha + 2 signature? We a!ready know that_
this signature arises in a number of physical scenarious, in-
one sees that both (84) and (85) have the matrix form (80)luding in a background foN = 2 strings [17-18] (see also
This means that these two equations can be indentified witRefs. 19-21), Yang-Mills in Atiyah Singer background [22]
the Lie groupSL(2, R). Indeed, taking into account (80), we (see also Refs. 23 for the importance of the 2 signature
see that (84) and (85) can be rewritten as in mathematics), Majorana-Weyl spinor [24-25] and more re-
- - - - cently in loop quantum gravity in terms of oriented matroid
[Pl +P; —P+ Pﬂ o _ '
. A N N L +mog®Pgr = 0. (86) theory [26] (see also Refs. 27-29). But one wonders whether
PB+P P-P the 2 + 2 signature can be linked to quantum gravity itself
and R R A . in 1 4+ 3 dimensions. One possibility to answer this question
Pr—P; P,—P By 4 modr — 0 87) is to search for a mechanism which can transform self-dual
PP, Py ETTOTLTD canonical gravity ir2 + 2 dimensions into self-dual canon-

respectively. One observes that (86) and (87) are matrix-likic@l gravity inl + 3. This is equivalent to change one time
moments similar to the general matrix (80). Similarly, onedimension by one space dimension afice versa Surpris-

can identify the moments matrices contained in the expreé-”gly this kind of transformation has already be considered in

sions (86) and (87) with the symmetry grodii(2, R). Let the cpntext of thg sigma mode_l (see Ref. 30 a_nq references
us introduce a new momenta matrix therein). In fact, it was shown in Ref. 27 that similar mech-

anism can be implemented at the level of quantum self-dual

and

Pt _ 1 { 13; + pl} i(jp2 4:134)] . (88)  canonical gravity + 2 dimensions.
mo |£(P2 + Py) P F P
Consequently, the equations (86) and (87) become Acknowledgments
Ptd, +dr =0 (89)  This work was partially supported by PROFAPI-UAS 2009.
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