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We propose an alternative geometric mathematical structure for arbitrary phase space. The main guide in our approach is the hidden SL(2,R)-
symmetry which acts on the phase space changing coordinates by momenta andvice versa. We show that the SL(2,R)-symmetry is implicit
in any symplectic structure. We also prove that in any sensible physical theory based on the SL(2,R)-symmetry the signature of the flat
target “spacetime” must be associated with either one-time and one-space or at least two-time and two-space coordinates. We discuss the
consequences as well as possible applications of our approach on different physical scenarios.
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1. Introduction

The importance of theSL(2, R)-group in physics and math-
ematics, specially in string theory [1], two dimensional black
holes [2] and conformal field theory [3-4], has been recog-
nized for long time. Recently such a group structure has been
considered as the key structure in the development of two-
time physics (2t-physics) (see [5-7] and references therein).
An interesting aspect is the relevance of theSL(2, R)-group
in 2t-physics emerging from the Hamiltonian formalism of
ordinary classical mechanics. In fact, theSL(2, R)-group
acts on a phase space, rotating coordinates by momenta and
vice versa. Requiring this symmetry for the constraint Hamil-
tonian system leads us to the conclusion that the flat target
“spacetime” must have either a (1+1)-signature or at least a
(2+2)-signature [8]. However, this result still requires a re-
fined mathematical proof.

Specifically, we prove, in two alternative ways, that in
a constraint Hamiltonian formalism, in which the groups
SL(2, R) andSO(t, s) are symmetries of a classical system,
the possible values fort-time ands-space aret = 1 ands = 1
or t = 2 ands = 2. In the process, we formalize an alter-
native geometric structure for the phase space based on the
SL(2, R)-group.

As an application of our formalism, we develop the Dirac
type equation in(2 + 2)-dimensions. We show that the
SL(2, R)-group is relevant to understand such equation.

The structure of this paper is as follows. In Secs. 2 and 3,
we develop the necessary steps to highlight the importance of
theSL(2, R)-group in classical constraint Hamiltonian sys-
tems. In Sec. 4, we prove the main proposition mentioned
above. In Sec. 5, we construct the Dirac type equation in

(2 + 2)-dimensions. Finally, in Sec. 6 we make some addi-
tional comments.

2. Lagrange-Hamiltonian system

Let us consider the action

S[q] =
∫

dtL(q, q̇), (1)

where the LagrangianL = L(q, q̇) is a function of theqi-
coordinates and the corresponding velocitiesq̇i ≡ dqi/dt,
with i, j = 1, . . . , n.

The canonical momentumpi conjugate toqi is defined to
be

pi ≡ ∂L

∂q̇i
, (2)

Thus the action (1) can be rewritten in the form

S[q, p] =
∫

dt(q̇ipi −Hc), (3)

whereHc = Hc(q, p) is the canonical Hamiltonian,

Hc(q, p) ≡ q̇ipi − L. (4)

If one considersm first class Hamiltonian constraints
HA(q, p) ≈ 0 (here the symbol ”≈” means weakly equal
to zero [9-11]), withA = 1, 2...,m, then the action (3) can
be generalized as follows:

S[q, p] =
∫

dt(q̇ipi −Hc − λAHA). (5)

Here,λA are arbitrary Lagrange multipliers.
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The Poisson bracket for arbitrary functionsf(q, p) and
g(q, p) of the canonical variablesq andp is defined as usual

{f, g} =
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
. (6)

Using (6) we find that

{qi, qj} = 0,

{qi, pj} = δi
j ,

{pi, pj} = 0,

(7)

where the symbolδi
j denotes a Kronecker delta.

3. SL(2, R)-Hamiltonian system

It turns out that an alternative possibility to analyze the pre-
vious program has emerged in the context of 2t-physics [5-7]
(see also Ref. 12 and references therein). The key point
in this new approach is the realization that, since in the ac-
tion (3) there is a hidden invarianceSL(2, R) ∼ Sp(2, R) ∼
SU(1, 1), one may work in a unified canonical phase space
of coordinates and momenta. Let us recall how such a hidden
invariance emerges. Consider first the change of notation

qi
1 ≡ qi, (8)

and
qi
2 ≡ pi. (9)

These two expressions can be unified by introducing the ob-
ject qi

a, with a = 1, 2. The next step is to rewrite (5) in terms
of qi

a rather than in terms ofqi andpi. One finds that, up to a
total derivative, the action (5) becomes [4] (see also Refs. 12
and 13)

S =

tf∫

ti

dt

(
1
2
Jabq̇i

aqbi −H(qi
a)

)
. (10)

Here, Jab = −Jba, whereJ12 = 1 is the antisymmet-
ric SL(2, R)-invariant density (some times denoted with the
symbolεab) and

H(qi
a) = Hc + λAHA. (11)

According to Dirac’s terminology in the constrained Hamil-
tonian systems formalism [14] (see also Refs. 9-11), (11)
corresponds to a total Hamiltonian. From the action (10) one
observes that, while theSL(2, R)-symmetry is hidden in (5),
now in the first term of (10) it is manifest. Thus, it is natural
to require the sameSL(2, R)-symmetry for the total Hamil-
tonianH(qi

a).
Consider the usual Hamiltonian for a free non-relativistic

point particle

H =
pipjδij

2m
+ V (q), (12)

with i = {1, 2, 3}. According to the notation (8)-(9) we have

H =
qi
2q

j
2δij

2m
+ V (q1). (13)

It is evident from this expression thatH in (13) is not
SL(2, R)-invariant Hamiltonian. Thus, a Hamiltonian of
the form (12) does not admit aSL(2, R)-invariant formula-
tion. The same conclusion can be obtained by considering a
Hamiltonian constraintH = λ(pipi +m2) for the relativistic
point particle, where in this casei runs from0 to 3.

Thus, one finds that the simplest example ofSL(2, R)-
invariant Hamiltonian seems to be [5]

H =
1
2
λabqi

aqj
bηij , (14)

which can be understood as the Hamiltonian associated with
a relativistic harmonic oscillator in a phase space. Here, we
assume thatλab = λba is a set of Lagrange multipliers and
ηij = diag(−1,−1, ...,−1, 1, ..., 1). Note that we are con-
sidering a signature of the formn = t + s, with t time-like
ands space-like signature. The reason for this general choice
is that theSL(2, R)-symmetry requires necessarily a target
‘spacetime’ with eithert = 1 ands = 1 or t = 2 ands = 2
as we shall prove below.

Using (14) one sees that (10) can be written in the form

S =
1
2

tf∫

ti

dt
(
Jabq̇i

aqj
bηij − λabHab

)
, (15)

where
Hab = qi

aqj
bηij . (16)

Of courseHab ≈ 0 is the constraint of the theory. Observe
that the constraintHab ≈ 0 is symmetric in the indicesa and
b, that isHab = Hba.

Note that using the definitions (8) and (9) we can write
the usual Poisson bracket (6), for arbitrary functionsf(q, p)
andg(q, p) of the canonical variablesq andp as

{f, g} = Jabη
ij ∂f

∂qi
a

∂g

∂qj
b

. (17)

Thus, from (17) one discovers the algebra

{qi
a, qj

b} = Jabη
ij , (18)

which is equivalent to (7).
Moreover, using (17) one finds thatHab satisfies the

SL(2, R)-algebra

{Hab,Hcd} = JacHbd +JadHbc +JbcHad +JbdHac, (19)

which shows thatHab is a first class constraint. Explicitly,
the nonvanishing brackets of the algebra (19) can be decom-
posed as

{H11,H22} = 4H12, (20)

{H11,H12} = 2H11, (21)
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and
{H12,H22} = 2H22. (22)

By writing

S3 = −1
2
H12, S1 =

1
4
(H11 + H22)

and

S2 =
1
4
(H11 −H22)

one finds that
{S1, S2} = S3, (23)

{S3, S1} = S2, (24)

and
{S2, S3} = −S1, (25)

which can be succinctly written as

{Sµ, Sν} = ε α
µν Sα (26)

or

{Sµν , Sαβ} = ηµαSνβ−ηµβSνα+ηνβSµα−ηναSµβ . (27)

Here

ηµν = (−1, 1, 1), Sµν = −Sνµ and Sµ =
1
2
εµναSνα,

with ε123 = −1 andε123 = 1. This is one way to see that
the algebrasl(2, R) is equivalent to the algebraso(1, 2). Fur-
thermore, the groupSL(2, R) is double cover ofSO(1, 2).

All this developments are relevant for quantization. In
this case, one defines the Poisson brackets in classical phase
space and then associate operatorsf̂(q̂, p̂) andĝ(q̂, p̂) to the
functions f(q, p) andg(q, p). Without constraints, the tran-
sition from classical to quantum mechanics is made by pro-
moting the canonical HamiltonianHc as an operator̂Hc via
the nonvanishing commutator

[q̂i, p̂j ] = iδi
j , (28)

(with ~ = 1) obtained from the second bracket in (7), and by
writing the quantum formula

Ĥc|Ψ〉 = i
∂

∂t
|Ψ〉, (29)

which determines the physical states|Ψ〉 (see Refs. 9-11 for
details). Here, the bracket[Â, B̂] = ÂB̂ − B̂Â denotes the
commutator. This is in agreement with the meaning ofĤc

as the generator of temporal evolution for operators in the
Hilbert space.

If we have a constrained Hamiltonian system character-
ized bym first class constraintsHA, one also imposes that
the correspondent operators acts on the physical states as
ĤA|Ψ〉 = 0.

4. SL(2, R)-symplectic structure and the
(2+2)-signature

Applying Noether’s procedure to (15) one learns that the an-
gular momentum

Lij = qipj − qjpi (30)

or
Lij = Jabqi

aqj
b (31)

is a conserved dynamic variable. Using (7) and (30) one can
show thatLij obeys Lorentz group algebra

{Lij , Lkl} = ηikLjl − ηilLjk + ηjlLik − ηjkLil. (32)

Alternatively, one can show that this result also follows from
(18) and (31).

We are now ready to write and prove the following propo-
sition:
Proposition: Let (t+s) be the signature of the flat metricηij

associated with a phase space described with coordinatesqi
a

which determine theSL(2, R)-symplectic structure given by
the Poisson brackets (17). Then, only in the casest = 1 and
s = 1 or t = 2 ands = 2 there exist coordinatesqi

a different
from zero such that

Hab = 0 (33)

and
Lij 6= 0. (34)

Proof: Consider aSL(2, R)-symplectic structure as in (17).
For the ηij-symbol we shall assume the general case of
(t + s)-signature corresponding tot-time ands-space coor-
dinatesqi. First observe that explicitly, (33) yields

qiqjηij = 0, (35)

qipjηij = 0, (36)

and
pipjηij = 0. (37)

Of course a theory witht = 0 ands = 0 is vacuous, so we
shall assume thatt 6= 0 or s 6= 0. From (35) and (37) one
finds that ift = 0 ands 6= 0, that is ifηij is Euclidean, then
qi = 0 andpi = 0. This shows the need for at least one
time-like dimension, that ist > 0. Note that one can multi-
ply (35)-(37) by a minus sign. This changes the signature of
ηij from t + s to s + t. This means that if one assumest 6= 0
ands = 0, it results that the theory should have at least one
space-like dimension, that iss > 0. So putting together these
two results we have a consistent solution of (35)-(37) only if
t = 1 ands = 1.

We shall show that the caset = 1 ands = 1 is an excep-
tional solution of (35)-(37). In this case, these expressions
become

−(q1)2 + (q2)2 = 0, (38)

−q1p1 + q2p2 = 0 (39)
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and
−(p1)2 + (p2)2 = 0, (40)

respectively. Using (38) and (40), one can verify that (39)
is an identity. Thus (38) and (40) do not lead to any rela-
tion betweenq andp and therefore in this case the angular
momentum condition (34) is satisfied.

It remains to explore consistency whent = 1 ands = 2
(or t = 2 ands = 1 due to the sign freedom in (35)-(37)). A
well known result is that whent = 1 ands = 2 two light-
like orthogonal vectors are necessarily parallel. Hence, in
this case we get the expressionqi = api which, according to
(30), impliesLij = 0. This clearly contradicts our assump-
tion (34). The same result holds for the caset = 2 ands = 1.
Hence, we have shown that (33) and (34) makes sense only if
t = 1 ands = 1 or t = 2 ands = 2.

Therefore, since (34) is linked to theSO(t, s)-symmetry
one may concludes a consistentSL(2, R)-theory can be ob-
tained only in the casesSO(1, 1) or SO(t = 2, s = 2).
From the perspective thatSO(2, 2) is a minimal alternative,
we have shown that the signatures(1 + 1) and(2 + 2) are
exceptional.

An alternative method for arriving at the same result is as
follows. Let us separate from (35)-(37) one time variable in
the form

−(q1)2 + qi′qj′ηi′j′ = 0, (41)

−q1p1 + qi′pj′ηi′j′ = 0, (42)

and
−(p1) + pi′pj′ηi′j′ = 0, (43)

where the indicesi′, j′, etc. run from2 to t + s. The formula
(42) leads to

(q1)2(p1)2 − qi′pj′ηi′j′q
k′pl′ηk′l′ = 0. (44)

Using (41) and (43) we find that (44) becomes

qi′qj′ηi′j′p
k′pl′ηk′l′ − qi′pj′ηi′j′q

k′pl′ηk′l′ = 0, (45)

which can also be written as

(δj′

i′ δ
l′
k′ − δl′

i′δ
j′

k′)q
i′qj′p

k′pl′ = 0. (46)

Observe that this implies that12Li′j′Li′j′ = 0. If ηk′l′ is a
Euclidean metric this result in turn impliesLi′j′ = 0 which
means thatqi′ = ςpi′ , that isqi′ andpi′ are parallel quanti-
ties. The combination of (41) and (43) implies thatq1 = ςp1.
This is another way to show that two light-like orthogonal
vectors are parallel.

Let us now introduce the completely antisymmetric sym-
bol

εi′2...i′t+s . (47)

This is a rank-t + s − 1 tensor which values are+1 or −1
depending on even or odd permutations of

ε2...t+s, (48)

respectively. Moreover,εi′2...i′t+s takes the value0, unless the
indicesi′2...i

′
t+s are all different.

Relation (46) can be written in terms ofεi′2...i′t+s in the
form

εj′l′i′4...i′t+sεi′k′i′4...i′t+s
qi′qj′p

k′pl′ = 0, (49)

where we have dropped the nonzero factor1/(t + s− 2)!.
Moreover, (49) can be rewritten as

εj′l′i′4...i′t+sεi′k′i′4...i′t+s
Li′k′Lj′l′ = 0. (50)

Here, we used (30) and dropped some numerical factors. Ob-
serve that

Li′4...i′t+s
=

1
2
εi′k′i′4...i′t+s

Li′k′ (51)

is the dual tensor ofLi′k′ .
The lower dimensional case in which (50) holds is

εj′l′εi′k′L
i′k′Lj′l′ = 0, (52)

which implies
εi′k′L

i′k′ = 0. (53)

Consequently, this givesLj′l′ = 0. Hence this proves that
the signature solutions(1 + 2) or (2 + 1) are not consistent
with (34). So, it remains to prove that(1 + (s > 2)) is also
no consistent with (34). In general we have that (50) and (51)
imply

Li′4...i′t+s
Li′4...i′t+s = 0. (54)

But in the case(1 + s > 2), (54) is an Euclidean expression
and thereforeLi′4...i′t+s

= 0, which in turn impliesLj′l′ = 0.
Thus, a consistent solution is also possible in the caset = 2
and s = 2. Hence, this is an alternative proof that with
two time-like dimensions, the minimal case in which the
SL(2, R)-symmetry is consistent with Lorentz symmetry, is
the2 + 2-signature. In principle we may continue with this
procedure founding that3 + 3 and so on are consistent pos-
sibilities. But, considering that (35)-(37) are only three con-
straints we see that there are not enough constraints to elim-
inate all additional degrees of freedom in all possible cases
with t ≥ 3 ands ≥ 3. In fact, one should expect that this will
lead to unwanted results at the quantum level [5-7].

Note what happens with the Lorentz Casimir operator

C ≡ 1
2
LijLij = det(Hab). (55)

From (31) we have

C =
1
2
LijLij =

1
2
Jabqi

aqj
bJ

cdqciqdj

=
1
2
JabJcdqi

aqciq
j
bqdj =

1
2
JabJcdHacHbd. (56)

Hence, whenHab = 0 we haveC = 0 which means that
in this case the Lorentz Casimir operator vanishes.

Summarizing, by imposing theSL(2, R)-symmetry and
the Lorentz symmetrySO(t, s) in the Lagrangian (15) we
have shown that there existqi

a consistent with these symme-
tries only in the signatures1 + 1 andt = 2 + s = 2.
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5. The Dirac equation and the (2+2)-signature

As an application of our previous developments, in this sec-
tion we consider the Dirac equation in (2+2)-dimensions.
This type of equation has already be mentioned in Ref. 15,
but here we construct it from first principles. For this pur-
pose, let us consider a relativistic point particle described by
the action

S = −m0

∫
dτ (−ẋµẋνξµν)1/2

. (57)

In this section, we also use the notationẋµ = dxµ(τ)/dτ ,
whereτ is an arbitrary parameter. The tensorξµν is a flat
metric with signatureξµν = diag(−1,−1, 1, 1).

Starting from the Lagrangian associated with (57)

L1 = −m0 (−ẋµẋνξµν)1/2
, (58)

one finds that the canonical moments associated withxµ,
namely

Pµ =
∂L1

∂ẋµ
, (59)

lead to
Pµ=

m0ẋ
νξµν

(−ẋαẋβξαβ)1/2
. (60)

From (60), one can verify that

H ≡ PµPνξµν + m2
0 = 0, (61)

whereξµν = diag(−1,−1, 1, 1) is the inverse flat metric of
ξµν . Moreover, if we define the canonical Hamiltonian

Hc ≡ ẋµPµ − L1, (62)

one sees that (60) also implies that

Hc ≡ 0. (63)

According to the Dirac constraint Hamiltonian system
formalism, one can write the total Hamiltonian as

HT = Hc + λH, (64)

whereλ is a Lagrange multiplier. By using the constraint
(61), as well as (63) and (64), one can write the first-order
Lagrangian

L2 = ẋµPµ − λ

2
(PµPνξµν + m2

0). (65)

At the quantum level one requires to apply the constraint (61)
to the physical satesΦ in the form

[P̂µP̂νξµν + m2
0]Φ = 0, (66)

whereP̂µ is an operator associated withPµ.
By starting with (66), our goal now is to construct

a Dirac-type equation in(2 + 2)-dimensions. Let us first
write (66) in the form

[−P̂1P̂1 + P̂aP̂bη
ab + m2

0]Φ = 0. (67)

Here, the flat metricηab is given byηab = diag(−1, 1, 1), and
the indicesa, b, ... take values in the set{2, 3, 4}. Consider
matrices%a such that

%a%b + %b%a = 2ηab. (68)

Using (68) one sees that (67) can be written as

[(−P̂1 + %aP̂a)(P̂1 + %bP̂b) + m2
0]Φ = 0. (69)

Now, we define two spinors

ΦL ≡ Φ (70)

and
ΦR ≡ − 1

m0
(P̂1 + %bP̂b)ΦL. (71)

Explicitly (71) leads to

(P̂1 + %bP̂b)ΦL + m0ΦR = 0, (72)

while (69), (70) and (71) give

(P̂1 − %aP̂a)ΦR + m0ΦL = 0. (73)

These last two equations can be expressed in a matrix form
([

0 I
I 0

]
P̂1+

[
0 %a

−%a 0

]
P̂a

+
[

I 0
0 I

]
m0

)(
ΦR

ΦL

)
= 0, (74)

whereI = diag(1, 1) is the identity matrix in two dimen-
sions. One can of course write (74) in the more compact
form

(ΓµP̂µ + m0)Ψ = 0. (75)

Here, we used the following definitions

Ψ ≡
(

ΦR

ΦL

)
, (76)

Γ1 ≡
[

0 I
I 0

]
(77)

and

Γa ≡
[

0 %a

−%a 0

]
. (78)

By promotingP̂µ → i∂µ, one recognize in (75) the Dirac
type equation in(2 + 2)-dimensions.

We shall show that (75) is deeply linked to theSL(2,R)-
group. First, observe that an explicit representation of the
matrices%1 and%a in (78) is

%1 =
(

1 0
0 1

)
, %2 =

(
0 −1
1 0

)
,

%3 =
(

1 0
0 −1

)
, %4 =

(
0 1
1 0

)
. (79)
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Notice first that the determinant of each of the matrices (79)
is different from0. This suggests to relate such matrices with
the general groupGL(2,R). Indeed, the matrices in (79) can
be considered as a basis for a general matrixM in the follow-
ing manner:

M =
(

A B
C D

)
= %1a + %2b + %3c + %4d, (80)

wherea, b, c, d ∈ R, given by

a = 1
2 (A + D), b = 1

2 (−B + C),

c = 1
2 (A−D), d = 1

2 (B + C),
(81)

Explicitly, (80) can be read

M =
(

a + c −b + d
b + d a− c

)
. (82)

Without loss of generality, one may assume thatdet(M) 6= 0,
in such a way thatM is contained in the Lie groupGL(2,R).
If one also impose the condition thatdet(M) = 1, the matrix
M belongs to the Lie groupSL(2,R).

It is worthwhile to mention that, by writing%a in tensorial
notation

εij = %2, ηij = %3, λij = %4, (83)

one can construct a gravity model in 2 dimensions (see
Ref. 16 for details).

Rewriting (72) and (73) respectively as follows

(%1P̂1 + %2P̂2 + %3P̂3 + %4P̂4)ΦL + m0ΦR = 0, (84)

and

(%1P̂1 − %2P̂2 − %3P̂3 − %4P̂4)ΦR + m0ΦL = 0, (85)

one sees that both (84) and (85) have the matrix form (80).
This means that these two equations can be indentified with
the Lie groupSL(2,R). Indeed, taking into account (80), we
see that (84) and (85) can be rewritten as

[
P̂1 + P̂3 −P̂2 + P̂4

P̂2 + P̂4 P̂1 − P̂3

]
ΦL + m0ΦR = 0. (86)

and [
P̂1 − P̂3 P̂2 − P̂4

−P̂2 − P̂4 P̂1 + P̂3

]
ΦR + m0ΦL = 0, (87)

respectively. One observes that (86) and (87) are matrix-like
moments similar to the general matrix (80). Similarly, one
can identify the moments matrices contained in the expres-
sions (86) and (87) with the symmetry groupSL(2,R). Let
us introduce a new momenta matrix

P̂± =
1

m0

[
P̂1 ± P̂3 ±(−P̂2 + P̂4)

±(P̂2 + P̂4) P̂1 ∓ P̂3

]
. (88)

Consequently, the equations (86) and (87) become

P̂+ΦL + ΦR = 0 (89)

and
P̂−ΦR + ΦL = 0. (90)

Note that taking into account the constraint (86) we have

det P̂±ΦR,L = ΦR,L. (91)

Symbolically, we can consider

det P̂± = I (92)

But this means that botĥP+ and P̂− are elements of
SL(2,R)-group and therefore the Dirac type Eq. (74) or
(79) has a structure associated with the groupSL(2,R)+ ×
SL(2,R)−. In fact, this may be understood considering the
isomorphismSO(2, 2) ∼ SL(2,R)× SL(2,R).

As it is known, the Dirac equation describes massive par-
ticles with (1/2)-spin. When the massm0 is the mass of the
electron, the Dirac equation correctly determines the quan-
tum theory of the electron. On the other hand, the Dirac type
equation (74) in(2 + 2)-dimensions also describes massive
particles with (1/2)-spin,. However, there is a significant dis-
tinction for this signature: while in the case of Dirac equation
in (1 + 3)-dimensionsΨ can be choosen as a Majorana or
Weyl spinor (but not both at the same time), one can choose
Ψ as a Majorana-Weyl spinor in(2 + 2)-dimensions.

6. Final Comments

We have proved in some detail thatSL(2, R)-symmetry and
Lorentz symmetrySO(t, s) imply together that the signa-
tures1 + 1 and2 + 2 are exceptional. One may be moti-
vated to relate this result with different physical scenarios.
Of course, the signature1 + 1 can be related to string theory.
But what about the2 + 2 signature? We already know that
this signature arises in a number of physical scenarious, in-
cluding in a background forN = 2 strings [17-18] (see also
Refs. 19-21), Yang-Mills in Atiyah Singer background [22]
(see also Refs. 23 for the importance of the2 + 2 signature
in mathematics), Majorana-Weyl spinor [24-25] and more re-
cently in loop quantum gravity in terms of oriented matroid
theory [26] (see also Refs. 27-29). But one wonders whether
the 2 + 2 signature can be linked to quantum gravity itself
in 1 + 3 dimensions. One possibility to answer this question
is to search for a mechanism which can transform self-dual
canonical gravity in2 + 2 dimensions into self-dual canon-
ical gravity in1 + 3. This is equivalent to change one time
dimension by one space dimension andvice versa. Surpris-
ingly this kind of transformation has already be considered in
the context of the sigma model (see Ref. 30 and references
therein). In fact, it was shown in Ref. 27 that similar mech-
anism can be implemented at the level of quantum self-dual
canonical gravity2 + 2 dimensions.
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