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Atomic radiative corrections without QED: role of the zero-point field
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We derive the atomic radiative corrections predicted®p using an alternative approach that offers the advantage of physical clarity and
transparency. The element that gives rise to these corrections is the fluctuating zero-point radiatioprjefigverage energiw/2 per

mode, which —in contrast wit@ED— is taken here as a primordial real entity in permanent interaction with matter and responsible for

its quantization. After briefly recalling how quantum mechanics itself emerges as a result of the balance betweeratieradiation

reaction, the most important higher-order effects of the radiative terms on the atom are studied. The nonrepativistimulas for the

lifetimes and the Lamb shift, as well as the corrections to the latter due to external factors that modify the vacuum field, are thus obtained in
a self-consistent approach and without the need to resort to second quantization to the present order of approximation.
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1. Introduction An interesting point is that in each case explicit formulas
leading to the effects discussed are obtained, along with a
The random zero-point radiation fieldrF) of mean energy clear physical picture of their meaning.
hw/2 per normal mode, taken as a real field, has been shown The theory used here should be clearly distinguished from
in a series of recent papers [1-3] to be responsible for thgyhat is called semiclassical theorg.¢ [4]). The SED ap-
basic quantum properties of matter. In particular, the usugbroach isnot an attempt to replace quantum physics with a
quantum description, as affordedg by the Schidinger  classical (or semiclassical) theory; quite the contrary, it is an
equation, is obtained as a result of reducing the originabndeavour intended to give deep physical support to quan-
phase-space description of the entire partizhe-system to  tum theory by answering fundamental questionseag, on
the configuration space of the particle in the time-asymptoti¢he physical mechanism that leads to the quantization and the
limit, in which an energy balance is reached between radiastability of the atom, or the physical cause and nature of the
tion reaction and thepr and higher-order effects of the ra- quantum fluctuations. In this approach ther is seen to
diative terms can be neglected. play a crucial role for atomic stability through the energy-

This paper is concerned with the main effects on the atonbalance condition; there is no quantization in the absence of
of the previously neglected radiative terms, calculated to lowthis field. The already quantized atom continues to interact
est order im: = ¢2/he. After briefly reviewing some conse- with the zPF, which leads to the radiative corrections here
guences of the energy-balance condition and the role of thstudied. Although in the quantum regime also the field sat-
zPFin fixing the atomic stationary states, an analysis of theisfies quantum rules, as discussed in Refs. 5 and 6, these
dynamics in the absence of energy balance is made, leadirgre not explicitly needed for the present purposes. Quantized
to formulas for the radiative lifetimes of excited states. Fur-matter under the action of ttePF is sufficient to obtain the
ther, a calculation of the contribution of the radiative termsnonrelativistic radiative corrections to lowest ordenin
to the average energy gives the nonrelativistic formula for the
Lamb shift. Finally, a modification of the background field
through the presence of an external field or material objectS™
is shown to produce in general a change in the radiative lifep 1. Radiationless approximation
times and a shift of the atomic energy levels.

The nonrelativistic, spinless, electric dipole approxima-For clarity in the exposition, let us recall in this section the
tion is made throughout the paper. The correct results ( main steps leading to the Sélinger equation on the basis
those predicted by non-relativistic quantum electrodynamicspf the existence of thepr. For details see [2,3].

QED and confirmed by experiment) are obtained in all cases. The motion of the particle is governed in the nonrelativis-
With these results we demonstrate that the theory of stocha$ic limit by the equations (we use one-dimensional notation
tic electrodynamics in its present form [1-3] takesbeyond ~ wherever possible, for simplicity)

guantum mechanics, to the realm@&bD. Though most of . .

the results for the radiative corrections derived in the present #=p/m, p=fz)+mri+ k), (1)
work are well known, their connection with the condition of where f(x) is the external (conservative) forcg(t) is the

energy balance between ther and radiation reaction is not. electric component of the randarmFin the long-wavelength

The quantum regime
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approximation andnrz is the radiation reaction force in the Schodinger equation in terms of the parametgto be
the Abraham-Lorentz approximation, with = 2¢2? /3mc3 determined below)
(=~ 10~23 s for the electron). The densif of points in the

particle’s phase space is determined by 7277;&22715 YV (@) = 2“)%5 )
0 0 .
aR + %(xR) and its complex conjugate, with
0 7] «
+ o (f(z) + m7%) R = —%E(t)R- ) p(z,t) =" (x)Y (). (10)

Averaging over the realizations of the field one obtainsltis important to stress that Eq. (10) is an integral part of the
for the (mean) density in the phase space of the partitheory; it is not a subsidiary postulate. This result indicates
cle, R(z, p, t)E = Q(x, p, t), the generalized Fokker-Planck that a regime of unitary (time-reversible) evolution has been

equation attained, in which the mechanical subsystem has acquired its
0 . 0 - uantum properties [2,3].
L0 +iqg=e2Dwe. @@ duanumproperies (3]
ot dp
with L the operator 2.2. The meaning ofi in the Schrodinger equation
i igp n g(f +mr) @) In order for (9) to be fully equivalent to the Sdtinger equa-

Op tion, the value of the parameterappearing in it must be

. o _ _ _ independent of the problem, and equakhj@. Although the

and D the diffusion operator, given to first order i by calculation of) has been presented in previous work [3,7], we

: briefly reproduce it here because it serves to disclose the pre-
9 A ) rEra e E ,ﬁ(t,t/)ﬁﬁ cise point of entry of Planck’s constant into the Sidinger

2DHO = e / WEDED) e e © eeon

. L . The value ofny will be determined by resorting to the
The correlation of the electric field components is relatedener _balance condition. which equates the average power
with the spectral energy density of the field through 9y : a gep

lost by the particle through Larmor radiation, to the average

o0 power extracted by the particle from the random field. To es-
= (47/3) | p(w)cosw(t —t')dw. (6)  tablish the energy-balance condition we take the generalized
Fokker-Planck Eg. (3), namely

EDOE®)

For thezpF (the field at temperatur€ = 0) the spectral en-

0 190
ergy density is given by a9t maa?
0
27

th
e ap

T 2m2c3
To make the transition from the phase-space Eq. (3) to & = m.), multiply it by p? and integrate over the entire par-
description in configuration space, the characteristic functioniicle phase space. Assuming that the system is bounded so
_ ‘ that() vanishes at infinity, we obtain

Q(xa 2, t) = /Q((E7p7 t)elpzdp

p(w, T)r=0 = po(w) @) + a%(f +mrE)Q = D#)Q, (11

1d,, 1d [,
. . N o = (0*) = 5—— [ p’Qdudp
is introduced, so that the marginal probability density is 2m dt 2m dt
- _ 1 tee 2 Kl
M%ﬂ=/@@@ﬂ@=@@&ﬂ- = 2 (ot mrpi = pD),
By expanding the Fourier transform of Eq. (3) into a powerVnere
series around = 0 and separating the coefficients of (9) = /g(m,p)Qdmdp.
(k = 0,1,2,...), a hierarchy of coupled equations for mo-
ments ofp of increasing order is obtained. The first two are Sinced (V') /dt = — (fp) /m, the total average energy gain

the continuity equation and the equation for the transfer obr loss per unit time is given by
momentum, which with the help of the change of variables

d d /1
ZUHY = = 2
2y =xEn2 (8) dt (H) dt <2mp * V>
. . 2
are shown to lead, in the Ilmli_ — 0 (when bothz+ gnd — mr (& F) — e’ <pD>, (12)
z_ reduce tor) and in the radiationless approximation, to m
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where H is the mechanical Hamiltonian functiorThe first ~ Now we insert (17) into (15) and integrate over time starting
term on the right-hand side represents the average power diat —oo (with y = ¢ —t’), to take into account that energy bal-
sipated by the particle through Larmor radiation; the secon@nce is established after particle and field have interacted for
term represents the average power extracted by the partickesufficiently long timeij.e. in the so-called time-asymptotic
from the zPF and absorbed by the momentum fluctuations.limit

For energy balance to hold in the mean, these terms must

compensate each othee., e” <p[)> _ _@ Zwko |x0k|2

9 m 0 ™ -

mr (i %) = = (pD). (13) o e
m 3
When the balance regime has been attained, the terms of x /dw w /dy Cos WY €o8 Wroy

orderT ~ €2 (or higher) represent merely radiative correc- 0 0
tions to the (radiationless) motion governed by Eq. (9). Such hmt 9
corrections can therefore be found by using the solutions of - o wWro [ok|
Eqg. (9) (containing the parametgy in the calculations for k
the above average values. We will proceed in this way in s
order to calculate both terms in Eq. (13) to lowest order in x /dw W3[d(w + wro) + 6(w — wro)]- (18)
T ~ €2. Since thezPF represents the background field in its b

ground state, the particle must also be in its ground state (de-
noted with the subinde®). For the left-hand side of Eq. (13) Forwyo > 0 (as is the case for the ground state) the first

this leads to integral is nil, whence
mr (i )y = —m7 Z Wor ‘ka‘Q ) (14) e? ) . hmt 4 2
:  (PD), = =g Metelanel®. 1)
where
On comparing with Eq. (14) we obtain
wor = (€0 — &k) /20, Tok = /wswkdx,
_ | n="h/2, (20)
&, are the energy eigenvalues agg the corresponding
eigenfunctioqs. Eor the calculation of the right—haqd side ofynq Eq. (9) becomes the Sékinger equation,
Eq. (13), which is somewhat more elaborate, we introduce
Eq. (7) for the spectral energy density of the field —which is o n_,
proportional tofi— into Eq. (5), whence thor =5V U+ VY. (21)
2
i< [)> :hl /dww3/dt’ cosw(t—t')I(t—t') (15)  Note that thezpF has played a crucial role in leading to
m o 7 this result. Firstly, it is the source of the Planck constant
with in this equation, through the spectral energy density given
9 by Eq. (7). Further, a field with energy spectrum propor-
I(t—t) = /dm/dppe*”t*t )8—Q(t’) tional to w?® (responsible for thesd, factor in Eq. (19)) is
p

the single one that guarantedstailedbalance, by ensuring
that Egs. (14) and (19) have exactly the same structure. This
means that energy balance holds not only globally but term
by term, or for each frequency. This differs essentially from
the result obtained for alassicalmultiply periodic system

in equilibrium with a radiation field, in which case balance
is attained only if the field has a Rayleigh-Jeans spectrum,
proportional tav? [8].

0
= /da:/dpp 87),62(:10/,}?/,5), (16)

wherex’, p’ are the position and momentum variables, re-
spectively, which evolve deterministically (under the action
of L) towards their final values = z(t), p = p(t). Upon
integration by parts, and writing

/dmdp = /dm’dp’
2.3. Detailed balance for an excited harmonic oscillator

to zero order ire?, we get _ o _ _
Let us now consider the particle in an excited statevith

It —t) = < Ip > 1 (&, p]) the background field still being in its ground state (dwe).
“\op /" 2ig Pl i
D" /o Ui Then instead of (14) we have
m 2 ’
= — ., S N —t . 17 . s
n Zk wko |ok|” cos wro( ) @) mr (&), = —m7 E wik |9Unk|2 , (22)
k
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and instead of (19) (with = #/2) we have contribute to (27) are equal and moreover coincide with the
) oscillator frequencyy. With
e ~ 4 2 .
poey <pD>n = *mT;wnk |Znk|” SIgN(win,)- (23) Zni]? = aln+ 1), |Znn_1|* = an,

2
=0f +1,wh =h/2 Egs. (22
Whilst in Eg. (22) all terms have the same sign, Eq. (23)223‘&"&‘ giveo ork # n-t 1, wherea = h/2me, Bgs. (22)

contains now a mixture of positive and negative terms. As a

i 1

result there is a net average loss of energy, mr (&), = _§ﬁ7w8(2n 1),

d dH, 2 .

—(H), = =—m7 Y wiy [enkl” (1 = sign(wyn)) 2/ 1 .

dt dt - o < D>n = —§ﬁ7w07(w0),

= —2mr Z Wiy |zanl? (24)  whence the energy gain or loss is given by
k<n dHn 1 .
. . . ) = —Shrwg[(2n + 1) — v(wo)]-

This means that the excited statds not atrue stationary dt 2

state (as predicted by the stationary $ctinger equation, de- Therefore, detailed balance exists between a harmonic oscil-
rived when all radiative terms are neglected) but has a finitdator in its excited state and an (excited) background field
lifetime. Consideration of the radiative corrections takes uswith y(wy) = 2n + 1. According to Eq. (25), the spectral
thus from the Sclirdinger to the QED realm, where the only energy density of this field is

true stationary state is the ground state<( 0).

Let us now assume that also the background field is in an pn(w) = po(w)(2n + 1)
excited state, and inquire whether in this case there can be 3
equilibrium between particle and field. We write the spectral =5 (2ntl), (28)
density of the excited field as )
corresponding to an energyl/2)Aw(2n + 1) per normal
p(w) = po(w)y(w), ~(w)>1 mode, equal to the energy of the mechanical oscillators with
which it is in equilibrium. This is simply the condition for
where the additional contribution balance between field and matter oscillators of the same fre-
quency —and a result that links with the Planck distribution
pa(W)=p—po=po(y—1) = pova (25)  in the case of thermal equilibrium (see [6] and Sec. 3.2 be-
low).

can represent an excitation of the background field or an

external field. Now observe that the generalized form of3. Spontaneous and induced transitions
Eqg. (23) for the casg(w) > 1,

3.1. Radiative lifetimes

2 R 4 9
— <pD> = —mTank |k | . )
m n . Equation (27) determines the average rate of energy loss or
) gain by the mechanical system in an excited statiue to
X Y (|lwnk|)Sign(win), (26)  (upward or downward) transitions to statewith & > n and

k < n, respectively. In order to analyze this equation in detail
it is convenient to writey(w) = 1 4+ v,(w), as follows from
Eqg. (25), and separate the positive from the negative terms,

contains again a mixture of terms with different signs depend
ing on the sign ofuy,,, so that

dHn 4 2 dHn
dt = —mT;wnk ‘xnk‘ at = —/rn/rzk:wik |xnk|2
x [1 = y(|wnk])signwin )] (27) X [1 = (14 va(Jwnk|))Sign(win )]
When the values ofu,,;| differ for different &, the positive =m7 Y _ wiy |kl
and the negative terms in this equation cannot compensate 2

each other in general. In such case detailed balance breaks _
down: there is a net radiation of the particle to the field at cer- X [00Jonn>0 = @2+ Yoo <ol (29)

tain frequencies and a net absorption from the field at otheThe first term within brackets in (29) represents the upward
frequencies. However, when all values|of,;| in Eq. (27) transitions (absorptions) and the second one, the downward
happen to be equal, the positive and negative terms can cortransitions (emissions). It is clear that upward transitions can
pensate each other if(|w,x|) has the right value. This is take place only when there is an additional fielf{ws,)
precisely the case of the harmonic oscillator: |all;| that ~ from which the atom may absorb the necessary energy; in

Rev. Mex. Fis59(2013) 433-443



ATOMIC RADIATIVE CORRECTIONS WITHOUT QED: ROLE OF THE ZERO-POINT FIELD 437

other words, the atom does not (‘spontaneously’) absorb ene the exact balance of these two contributions when the par-
ergy from thezpr. This is an important point that explains, ticle is in its ground state, thus guaranteeing its stability (cf.
for example, why optical detectors, including photographicEq. (24) forn = 0).
plates, are not activated by the vacuum. Emissions, on the A brief digression is in place regarding the point at which
other hand, can be either ‘spontaneous’ (in presence of juginstein introduced quantization in his 1917 paper [15], so as
the zPF) or else stimulated by the additional field(wr,),  to arrive at the Planck distribution. It is frequently argued that
according to the second term in (29). Notice in particularhe did so through the assumption of discrete atomic levels.
that the ground staten(= 0, wy, > 0) is absolutely stable However, some time after Einstein’s original work, Einstein
against spontaneous transitions. and Ehrenfest [16] showed that this was not the case, by redo-
Let us now relate the coefficients appearing in the variousng the calculations with a continuous distribution of atomic
terms of Eq. (29), with the respective Einsteirand B coef-  levels. In line with the results presented here and in previ-
ficients. By writing the rate of energy change in terms of theous work [1,3] quantization enters through the introduction

latter of a source that includes tlePF, able to generate ‘sponta-

dH neous’ transitions. This can be easily verified by omitting

~ = Z B wnk] [pa(|wnk]) Bin] in the calculation any of the three terms that lead to matter-

dt E>n field equilibrium: stimulated absorptions and emissions, or

spontaneous emissions. The absence of the latter leads to ab-

- Z flwnk| [Ank + pa(lwnr)Bar] — (30)  gurd results, as happens also with the omission of stimulated

k<n absorptions. The omission of the term related to stimulated

and comparing term by term with (29), we obtain for the €missions leads to the expression for the blackbody law pro-
‘spontaneous’ emission coefficient posed by Wien, which correctly approximates Planck’s law at

low temperatures, so it already contains some quantum prin-
ciple due to the presence of the term associated with spon-
taneous emissions. All this can be easily seen in the present
context by focusing on just two statesand k, with &, —

Ex = hwy,r > 0 and respective populations,,, N,. When

the system is in thermal equilibrium at temperaftirthe re-
lation (kp is Boltzmann’s constant)

. 2™m 3 2 4e? |wnk\3
nk = T ‘Wnk| |$nk| = W

and for the stimulated transition coefficients

lzakl? (3)

Bnk‘ = Bkn

_mt ‘Wnk|4 |xnk|27a(|wnk|) _ 4m2e?
ﬁ|wnk‘ pa(‘wnkD 3h2

znk]?, (32) Ni/N, = exp(E, — &) /ksT

holds (disregarding inconsequential degeneracies). Since ac-
cording to Eq. (29) the number of emissions is proportional
to N,,va (wni ) @and the number of absorptions is proportional
t0 Ni[2 + Ya(wnk)], from the (detailed) balance condition

One can frequently find in the literature that all the spon-Vn7a = Nk(2 + 7a) One obtains indeed Planck’s law (for

taneous decay is attributed to either the vacuum fluctuathe thermal field) as is well known since 1917 [15],

tions or radiation reaction, more often to the latter (sep 2

([10,11-14]). Let us look at this issue from the perspective of Ya(wnk) = oxp g [T —1° (34)

the present theory. iIRB
From Eqgs. (31) and (32), the ratio of theto B coeffi-

cients is

in full agreement with the respectigED formulas [9,10].

3.2. Spontaneous decay and the zero-point field

4. Radiative corrections to the energy

3
Ank — h|wni] = 2p0(|wnk|)- (33)  The determination of the Lamb shift has been one of the most
Bk, w2t frequently studied problems iseD and has produced some
Incidentally, this relation and the equality of the coefficientssuccessful results in the past, though basically restricted to
B,r = By, were predicted by Einstein on the basis of histhe linear-force problem. Early related works are [17-20];
statistical considerations ([15]; see below). additional references can be seen in Refs. 21 and 22. The
Notice in particular the factor 2 in Eq. (33). Given the theory of SED as developed recently and used in this paper,
definition of the coefficients, one could expect the ratio inhas the advantage of being applicable to nonlinear forces in
this equation to correspond exactly to the spectral density ofeneral and to the atomic problem in particular. Since this
the zpF, which would mean a factor of 1. However, as fol- theory includes the radiative terms from the outset, we can
lows from Eq. (29), one should actually interpret the factoruse it also to derive general formulas for the radiative energy
2 as2 = (1+1). One of these two equal contributions to corrections. Here we present a full derivation of the non-
spontaneous decay is due to the effect of the fluctuations inrelativistic atomic Lamb shift and associated effects within
pressed on the particle by tlzF, the other one is due to the present framework. The results obtained are in line with
Larmor radiation. Their equality (with opposite signs) leadsthe predictions deriving fron@eD; however, the procedure
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followed for their derivation offers a clear picture of their it we use again Eq. (5), multiply it this time hy;
physical meaning and allows a comparison with alternative

interpretations of the Lamb shift found in the literature. eQxf)(t)Q = 3%3 e? / dw
TC
4.1. The Lamb shift y /dt'w3 cosw(t — ') (t’t/)aﬁQ(t'),
P

To calculate the energy corrections we go back to the gen- o
eralized Fokker-Planck Eq. (11) and multiply it now by  and integrate over phase space, thus obtaining
before integrating over the entire phase space; the result is 9
n 37TC3 /dww
d

(recalling that all surface terms vanish at infinity) [23] < <
= 2 !/ ! !
dt < ) X /dt cosw(t —t")Jn(t —t'), (39)

2
+(xf) + mr (xF) — €2 <ﬂclA)> . (35)  with

In the radiationless approximation, corresponding to quan- Tt —t) = /dm/dpxe—i(t—t’)ﬁQ(t/)
tum mechanics, the last two terms are neglected and Eq. (35) 0

reduces to Upon an integration by parts (again with

4 ap) = — () + (of). (36)

Further, in a stationary state (denoted again:pyhe time / dzdp = / da’dp’

derivative of (zp) is zero and Eqg. (36) reduces to the virial
theorem, to zero order i) we haveJ,, (t—t') = — (0z/0p’),, , where

Loy —om - 37

o 7 =20 = el o7 Int = 1) = <8x> - = (8.4,
where(T'), is the average kinetic energy. Hence Eq. (35) o'/, ih

can be interpreted as a time-dependent version of the virial 9 . ,
theorem, with radiative corrections included. Observe that -7y Z k| sin wien (= 17).
here the average is taken not over time, but over the full par- k

ticle phase space, which is equivalent to an ensemble averagaserting this result into (39) we obtain

This is but an example of application of the ergodic proper- -
262 2
-2 Y ol [ dow?
k 0

ties acquired by the quantum states as discussed in detail in ¢2 < f)>
T _

Refs. 1 and 5. D)
In the stationary state, the two previously neglected terms
can therefore be taken as radiative corrections to the (kinetic) t
energy, X /dt’ cosw(t —t')sinwy, (t —t'). (40)
mT 62 ~ .
0, =0(T), = 5 (), + 5 <:ED>n . (38)  Extending the initial time integral te-co (as corresponds to

the time-asymptotic limit) we have (with= ¢ — t’)
This is a general expression for the Lamb shift. Notice that
the general laws derived here —such as (12) or (38)- are for- ) 1 )
eign to quantum theory, where the notion of diffusion (and /dy COSWYSINWknY = o /dy[sm(wkn +w)y
the related diffusion operator) does not appear at all. 0 0

oo

The right-hand side of Eqg. (38) will again be calculated + sin( —w) ] __ Wkn (41)

to lowest order ire?, which means calculating the two aver- Tk = &Y wi —w?’
e ~ . 2
age valu_es<x Fh and<xD>n o zero order i = e*/hc. which introduced in Eq. (40) gives for the radiative correc-
For the first one we get tion to the (mean kinetic) energy (we write the result in three
dimensions, for comparison purposes
T i), = T f) = S (T, = parison puposes
62 2

. .. 57,:*<XD> = - 3Z|Xnk| Wkn
which means that the Larmor radiation term does not con- 2 n 3mc -
tribute to the energy shift in the mean, in a stationary state.
The correction to the energy comes exclusively from the fluc- w3
tuations due to the action of the background field on the parti- /dw R (42)
cle, represented by the second term in Eq. (38). To calculate 0 "
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This result coincides with the formula derived by Its value is independent of the state of the particle; it is a tes-
Power [24] for the Lamb shift on the basis of Feynman’s ar-timony of the ubiquitous presence of ther. Inserting the
gument [25]. We recall that according to Feynman, the presusual cutoff frequency,. = mc?/fin the integral in Eq. (44)
ence of the atom creates a weak perturbation on the nearlgives the finite resuli€s, = (a/2m)mc?.
field, thereby acting as a refracting medium. The effect of this By subtracting (44) from (42) we obtain for the Lamb
perturbation is to change the frequencies of the backgrounshift proper
field fromw to w/n(w), n(w) being the refractive index. The
shift of thezPFenergy due to the presence of the atomin state 0L, = &, — 6&p

n is then ([10,24]) oo
w
1 hAwgn = Z %k w,m/dw . (47)
AE, = Z o (w]m) 37rcd ) wi, —w?
_ Z iﬁwkn ~ Z[nn(wkn) _ 1]%;1%“, Inserting once more the cutoff frequenocy = mc? /A in the

integral give¥
where a summation over the polarizations is included, and

the refractive index is given in this approximation by 5EL, = 2 Y I WP wd In mc? (48)
n 3 n n ﬁw N )

|dmn| wmn
nn(w) =1 + 3h Z ’ (43) which is Bethe’s well-known expression [26].

An important difference between the procedures used in
whered,,,, = ex;,» is the transition dipole moment. After the present paper and @ED to arrive at the Lamb shift for-
an integration over the solid angle and summation over thénula concerns the mass renormalization. We recall that in
polarizations, Power obtains in the continuum limit fof  the QeD case, second-order perturbation theory is used, with
the formula the interaction Hamiltonian given b/, = —(e/mc)A - p.

00 i But the energy derived from this term, namely [10]
AE, = 37Tc3 Z |dmn| wmn/dw ﬁ,

n 2¢? 2 w

- . 0 —37‘_72 ‘Xnk:| win/dw m,
which is equal to our result, Eq. (42). k 0

The Lamb shiffproper (the observable Lamb shift) is ob-
tained by subtracting from the total energy shift given by>
Eq. (42), the free-particle contributi@dy,. This latter is rep-
resented by (42) in the limit of continuous electron energies 5
(in the limit of a very loosely bound particle, when.,, can _ 2e” Z |X”k‘2w2n /dw
be ignored compared with in the denominator), RYe

so 26 ) . 42 1 D\ T
o= g 2 il [ doe = g \am 2ol | [
k 0 k 0

h [ that must be subtracted to obtain the Lamb shift proper. Be-
= /dw w. (44)
0

still contains the (linearly divergent) free-particle contribu-

T amed cause this result is proportional to the mean kinetic energy,
the ensuing correction is taken to represent a mass renormal-

To write the last equality we used the sum ruleization,

Sk |xn;€|2 wkn = 3h/2m. Since according to Egs. (6) and (7) 42 T
00 377'03
—E 2h 0
AP = e dw w, (45) which with the usual cutoffu, = mc?/h becomes
0 om = (4da/3m)m.
with A the electromagnetic potential associated withzihg By contrast, in the derivation presented here to obtain
(44) can be rewritten as 0&Ln, Eq. (47), there was no mass renormalization. The
| & result (49) is just thelassicalcontribution to the mass pre-
6&p = %A2 , (46)  dicted by the Abraham-Lorentz equation ([22], Eq. 3.114)

(or Maxwell's equations). In the equations of motion (1)
which identifies this ‘free-particle contribution’ to the Lamb this contribution has been already subtracted, so there is no
shift with the contribution from the (free) background field. more need to renormalize the mass. However, and as is well
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known, the formula (47) (common to bosiEDand renormal-  4.3. External effects on the radiative corrections
izedQED) still has a logarithmic divergence that can be reme-
died by introducing the cutoff frequency., as was done by From the results obtained above it is clear that certain basic

Bethe, thus obtaining a very satisfactory result for the LamhProperties of the vacuum —such as the intensity of its fluctu-

shift. ations or its spectral distribution— are directly reflected in the
radiative corrections. This means that a change in such prop-
4.2. Alternative interpretations of the Lamb shift erties can in principle lead to an observable modification of

these corrections. The background field can be altered, for
The interpretation of the Lamb shift as a change of the atomiinstance, by raising the temperature of the system, by adding
energy levels due to the interaction with the surrounding  external radiation, or by introducing objects that affect the
is fully in line with the present theory. It constitutes one ad-distribution of the normal modes of the field.
ditional manifestation of the influence of the particle on the  Such external or ‘environmental’ effects have been stud-
field, which is then fed back on the particle. An alternativeied for over six decades [29], normally within the frame-
way of looking at this reciprocal influence is by consideringwork of quantum theory, although some calculations have
the general relation between the atomic polarizabilitgnd  been made also withisep, again for the linear-force (or
the refractive index of the medium affected by it, which for single-frequency) problem only, leading to comparable re-

n(w) ~ 1 can be written as follows, sults (see [30,31]). The results of the previous sections, by
contrast, can be applied to the general case, without restrict-
n(w) =1+ 2ra(w). ing the calculations to the linear-force problem. In the fol-

lowing we present an illustrative selection of results derived

for both lifetimes and energy levels. The task is facilitated

|d | w by the use of the present theory because the influence of the

Z ——, (50)  background radiation field (and its modifications) is clearly
- pictured from the beginning.

D . oL In Sec. 3.1 we have already come across one observ-
which is the Kramers-Heisenberg formula [11]. This indi- ble effect of a change in the background field: according
cates that the Lamb shift can also be viewed as a (seconé1

order n.E) Stark shift associated with the cpole moment, . S8 50 8 TUU o B U el
d(w) = a(w)E induced by the electric component of the y prop P

2pEon the atom (or additional) field, be it a thermal field or otherwise. In the

Equation (47) can be further recast in an (approximt;ttegdse(:gjl)a ttrr:eer(riT::lecI:iIg)l?rgr?srflicour:i;t\lg Iﬁ%(kgfg)tﬁg)“é?:tgg
form that is usual to find in textbooks and Lamb-shift calcu- becomes (using Egs. (30) and (32))

lations, by assuming that the integral depends so weakly on

the indexk that such dependence can be ignored. Express- dN,,}.

Comparing this expression with Eq. (43) we obtain

ing (47) in terms of energy levels, withv,,;, = &, — £, one a pollwnk|)va(lwnk]) Bk
ets then
’ 4€? |wni | |7k 1 51
SR Py s E
2e &
0t =g > Xl wi, [ A€ — . _ _
3me 3 . (Ep— &) — &2 This result shows that no eigenstate is stablé at 0 —as
0 is well known— because the thermal field induces both up-
_ 20y, . 26, _ ¢ ward and downward transitions. For downward transitions
- 2.9 Z |pnk le| ( k n) i .
3mecm (wnk > 0) we can rewrite Eq. (51) for comparison purposes

in terms ofA,,;, as given by Eq. (31), obtaining
which after a series of transformations becomes [10]

ELn = ——" il (n| VV - p|n) dt ePlomsl/EsT Z1°
3mc2m?2
oh2] At room temperaturei(z 1 ~ .025 eV) the effect of the ther-

=5 5 (1] [VQV} [n) . mal field on the decay rate is barely noticeable, since for
dmem typical atomic frequencies the inverse of the denominator,

This result suggests to interpret the Lamb shift as due tdexp /i |wni| /ksT — 1) ", ranges betweenxp(—40) and
the variations of the potential energy originating in theexp(—400). The decay of excited states is therefore mostly
fluctuations inx-space [28]. For the Coulomb potential, spontaneous in this case. For the thermal field to have a no-
V2V = 4rZe%53(x), so only the wave function at the origin ticeable effect on the decay rate, the temperature would have
(s states) contributes to the Lamb shift in this approximationto be of the order of 10K, at which other effects on the
This makes this formula particularly practical for numerical atom (assuming it still exists at this high temperature) cannot
calculations. be ignored.
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When the geometry or the spectral distribution of the fieldThese results coincide with those obtained through consider-
is modified by the presence of conducting objects (such aably more cumbersome procedures withiep [38,39], and
metallic plates or the walls of a cavity), the transition rates arghe corresponding thermal shifts have also been experimen-
affected accordingly. Let us assume, for simplicity, that thetally confirmed ([40]; see also [41]). From the point of view
modified field is still isotropic, with the density of modes of of SED (or QED) their interpretation is clear: they represent
a given frequencyw,,| reduced by a factoy, (Jw.x|) < 1:  additional contributions to the kinetic energy impressed on
then according to the results of Sec. 3.1 the correspondinthe particle by the thermal field, according to the discussion
spontaneous and induced transition rates are reduced by pr&-the beginning of Sec. 4.1.
cisely this factor, sincéoth A andpB are proportional to
the density of modé¥. By enclosing the atoms in a high- _
quality cavity that excludes the appropriate modes one caR- Concluding remarks
therefore virtually inhibit the corresponding transition. For
the more general (anisotropic) case the calculations are somAll results contained in this paper for a nonrelativistic spin-
what more complicated, without however leading to a subless particle point to the stochastic zero-point radiation field
stantial difference from a physical point of view. Such cavity as the source not only of quantum behavior itself, but also
effects have been the subject of a large number of fine exof the radiative effects on quantum systems. The stochastic
perimental tests since the early works of Kleppner and othergroblem posed by the action of ttx®F on the particle led
within QED ([32-35]; for more recent work see.g, [36,37]).  to a generalized Fokker-Planck equation for the particle, and

For illustration purposes, let us also briefly indicate howall results presented here have been directly derived from this
Egs. (44) and (47) can be used to calculate the changes in tigguation. Although as a result of the matter interaction
atomic energy shifts produced by the addition of an (externapoth matter and field end up quantized, for the present cal-
or thermal) field. As in Eq. (25), we denote py = poy, the  culations of the radiative corrections (to lowest orderdn
spectral (energy) density of the additional field. The formulagdt sufficed to consider thepr as a classical function. In-
for the variations of the (first-order) radiative corrections aredeed, the theory furnishes an alternative way to derive self-
readily obtained by determining the shifts produced by the toconsistently results usually considered to be the exclusive
tal field (po + p.) and subtracting the original shifts produced province of nonrelativistiQEb. Important advantages of the

by thezpFalone. The results are present procedure are physical transparency and simplicity;
,, there was no need to resort to heuristic arguments along the
A (5) = e i / o o, (53) derlvatu_)ns. Thesg advantages are particularly ap_pa_ren_t in the

mme calculation of environmental effects on the atomic lifetimes

0 and energy levels.

A (68Ln) = — 2¢? Z Ix k-|2w3 It is important to stress that the present theory implies
" 3med £ il quantization of both matter and radiation field [1,2,6]. This is
the ultimate reason that guarantees its equivalenceqeth

o0

w The difference between these two theories lies not in their fi-
X /d‘“ Va w2 — w2 G4 nal results, but in the whole conceptual picture and the gained
0 " clarification of the physics. The present approach gives well-

for a homogeneous, isotropic field. If the additional field rep-defined answers to deep questions, such as the origin and ulti-
resents blackbody radiation at temperatiirey, is given by  mate meaning of the Sabdinger equation and other puzzles
Eq. (34),i.e. v.(T) = 2/(expy — 1) with y = (fw/kpT),  of quantum theory. The consideration of ther as a funda-

and we obtain from Eq. (53) mental ingredient of the theory is thus not a subterfuge con-
oo ceived to simplify or guide the calculations, but a fundamen-
Ar (66p) = 2a S (kpT)? / dy Yy 7 (55) talstepto unfo!d the deep meaning of the quantum behaviour
mme expy — 1 of matter and fielt .

However, it should also be stressed that there can be dif-

whence the free-particle energy increases by the amount . :
ferences. The present theory gives, by construction, only an

Ar (0&p) = %(kBT)Q. (56) approximate description of nature. It could be that its fur-
me e ther development in search of a more detailed or refined de-
The formula for the change in the Lamb shift is given from __". . . . .
scription leads to discrepancies, open to resolution only by
Eq. (54) by ) ” : o
) experiment. In addition, some important results pertaining to
46 . . . .
A (5EL,) = e Z ‘Xnk|2 w3 the quant!,lm domain require further study within the present
Tl approach; from among these, one that stands out due to its

- relevance is the mechanism underlying the spin-statistics the-
/d w ( 1 ) orem. Future investigation on this issue will certainly throw
w
2
0

light on the physical nature of spin and the dynamics of
fermionic (or bosonic) systems.
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