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Atomic radiative corrections without QED: role of the zero-point field
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We derive the atomic radiative corrections predicted byQED using an alternative approach that offers the advantage of physical clarity and
transparency. The element that gives rise to these corrections is the fluctuating zero-point radiation field (ZPF) of average energy~ω/2 per
mode, which —in contrast withQED— is taken here as a primordial real entity in permanent interaction with matter and responsible for
its quantization. After briefly recalling how quantum mechanics itself emerges as a result of the balance between theZPF and radiation
reaction, the most important higher-order effects of the radiative terms on the atom are studied. The nonrelativisticQED formulas for the
lifetimes and the Lamb shift, as well as the corrections to the latter due to external factors that modify the vacuum field, are thus obtained in
a self-consistent approach and without the need to resort to second quantization to the present order of approximation.
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1. Introduction

The random zero-point radiation field (ZPF) of mean energy
~ω/2 per normal mode, taken as a real field, has been shown
in a series of recent papers [1-3] to be responsible for the
basic quantum properties of matter. In particular, the usual
quantum description, as affordede.g. by the Schr̈odinger
equation, is obtained as a result of reducing the original
phase-space description of the entire particle-ZPF system to
the configuration space of the particle in the time-asymptotic
limit, in which an energy balance is reached between radia-
tion reaction and theZPF and higher-order effects of the ra-
diative terms can be neglected.

This paper is concerned with the main effects on the atom
of the previously neglected radiative terms, calculated to low-
est order inα = e2/~c. After briefly reviewing some conse-
quences of the energy-balance condition and the role of the
ZPF in fixing the atomic stationary states, an analysis of the
dynamics in the absence of energy balance is made, leading
to formulas for the radiative lifetimes of excited states. Fur-
ther, a calculation of the contribution of the radiative terms
to the average energy gives the nonrelativistic formula for the
Lamb shift. Finally, a modification of the background field
through the presence of an external field or material objects
is shown to produce in general a change in the radiative life-
times and a shift of the atomic energy levels.

The nonrelativistic, spinless, electric dipole approxima-
tion is made throughout the paper. The correct results (i.e.
those predicted by non-relativistic quantum electrodynamics,
QED and confirmed by experiment) are obtained in all cases.
With these results we demonstrate that the theory of stochas-
tic electrodynamics in its present form [1-3] takes usbeyond
quantum mechanics, to the realm ofQED. Though most of
the results for the radiative corrections derived in the present
work are well known, their connection with the condition of
energy balance between theZPFand radiation reaction is not.

An interesting point is that in each case explicit formulas
leading to the effects discussed are obtained, along with a
clear physical picture of their meaning.

The theory used here should be clearly distinguished from
what is called semiclassical theory (e.g. [4]). The SED ap-
proach isnot an attempt to replace quantum physics with a
classical (or semiclassical) theory; quite the contrary, it is an
endeavour intended to give deep physical support to quan-
tum theory by answering fundamental questions as,e.g., on
the physical mechanism that leads to the quantization and the
stability of the atom, or the physical cause and nature of the
quantum fluctuations. In this approach theZPF is seen to
play a crucial role for atomic stability through the energy-
balance condition; there is no quantization in the absence of
this field. The already quantized atom continues to interact
with the ZPF, which leads to the radiative corrections here
studied. Although in the quantum regime also the field sat-
isfies quantum rules, as discussed in Refs. 5 and 6, these
are not explicitly needed for the present purposes. Quantized
matter under the action of theZPF is sufficient to obtain the
nonrelativistic radiative corrections to lowest order inα.

2. The quantum regime

2.1. Radiationless approximation

For clarity in the exposition, let us recall in this section the
main steps leading to the Schrödinger equation on the basis
of the existence of theZPF. For details see [2,3].

The motion of the particle is governed in the nonrelativis-
tic limit by the equations (we use one-dimensional notation
wherever possible, for simplicity)

ẋ = p/m, ṗ = f(x) + mτ
...
x + eE(t), (1)

wheref(x) is the external (conservative) force,E(t) is the
electric component of the randomZPF in the long-wavelength
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approximation andmτ
...
x is the radiation reaction force in

the Abraham-Lorentz approximation, withτ = 2e2/3mc3

(≈ 10−23 s for the electron). The densityR of points in the
particle’s phase space is determined by

∂

∂t
R +

∂

∂x
(ẋR)

+
∂

∂p
(f(x) + mτ

...
x) R = − ∂

∂p
E(t)R. (2)

Averaging over the realizations of the field one obtains
for the (mean) density in the phase space of the parti-

cle,R(x, p, t)
E ≡ Q(x, p, t), the generalized Fokker-Planck

equation
∂

∂t
Q + L̂Q = e2 ∂

∂p
D̂(t)Q, (3)

with L̂ the operator

L̂ =
1
m

∂

∂x
p +

∂

∂p
(f + mτ

...
x) (4)

andD̂ the diffusion operator, given to first order ine2 by

e2D̂(t)Q = e2

t∫
dt′E(t)E(t′)

E
e−L̂(t−t′) ∂Q

∂p
. (5)

The correlation of the electric field components is related
with the spectral energy density of the field through

E(t)E(t′)
E

= (4π/3)

∞∫

0

ρ(ω) cos ω(t− t′)dω. (6)

For theZPF (the field at temperatureT = 0) the spectral en-
ergy density is given by

ρ(ω, T )T=0 = ρ0(ω) =
~ω3

2π2c3
. (7)

To make the transition from the phase-space Eq. (3) to a
description in configuration space, the characteristic function

Q̃(x, z, t) =
∫

Q(x, p, t)eipzdp

is introduced, so that the marginal probability density is

ρ(x, t) =
∫

Q(x, p, t)dp = Q̃(x, 0, t).

By expanding the Fourier transform of Eq. (3) into a power
series aroundz = 0 and separating the coefficients ofzk

(k = 0, 1, 2, . . .), a hierarchy of coupled equations for mo-
ments ofp of increasing order is obtained. The first two are
the continuity equation and the equation for the transfer of
momentum, which with the help of the change of variables

z± = x± ηz (8)

are shown to lead, in the limitz → 0 (when bothz+ and
z− reduce tox) and in the radiationless approximation, to

the Schr̈odinger equation in terms of the parameterη (to be
determined below)

−2
η2

m

∂2ψ

∂x2
+ V (x)ψ = 2iη

∂ψ

∂t
(9)

and its complex conjugate, with

ρ(x, t) = ψ∗(x)ψ(x). (10)

It is important to stress that Eq. (10) is an integral part of the
theory; it is not a subsidiary postulate. This result indicates
that a regime of unitary (time-reversible) evolution has been
attained, in which the mechanical subsystem has acquired its
quantum properties [2,3].

2.2. The meaning of~ in the Schrödinger equation

In order for (9) to be fully equivalent to the Schrödinger equa-
tion, the value of the parameterη appearing in it must be
independent of the problem, and equal to}/2. Although the
calculation ofη has been presented in previous work [3,7], we
briefly reproduce it here because it serves to disclose the pre-
cise point of entry of Planck’s constant into the Schrödinger
equationi.

The value ofη will be determined by resorting to the
energy-balance condition, which equates the average power
lost by the particle through Larmor radiation, to the average
power extracted by the particle from the random field. To es-
tablish the energy-balance condition we take the generalized
Fokker-Planck Eq. (3), namely

∂

∂t
Q +

1
m

∂

∂x
pQ

+
∂

∂p
(f + mτ

...
x)Q = e2 ∂

∂p
D̂(t)Q, (11)

(p = mẋ), multiply it by p2 and integrate over the entire par-
ticle phase space. Assuming that the system is bounded so
thatQ vanishes at infinity, we obtain

1
2m

d

dt

〈
p2

〉
=

1
2m

d

dt

∫
p2Qdxdp

=
1
m

〈
fp + mτp

...
x − e2pD̂

〉
,

where

〈g〉 =
∫

g(x, p)Qdxdp.

Sinced 〈V 〉 /dt = −〈fp〉 /m, the total average energy gain
or loss per unit time is given by

d

dt
〈H〉 =

d

dt

〈
1

2m
p2 + V

〉

= mτ 〈ẋ ...
x〉 − e2

m

〈
pD̂

〉
, (12)
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whereH is the mechanical Hamiltonian function.. The first
term on the right-hand side represents the average power dis-
sipated by the particle through Larmor radiation; the second
term represents the average power extracted by the particle
from the ZPF and absorbed by the momentum fluctuations.
For energy balance to hold in the mean, these terms must
compensate each other,i.e.,

mτ 〈ẋ ...
x〉 =

e2

m

〈
pD̂

〉
. (13)

When the balance regime has been attained, the terms of
orderτ ∼ e2 (or higher) represent merely radiative correc-
tions to the (radiationless) motion governed by Eq. (9). Such
corrections can therefore be found by using the solutions of
Eq. (9) (containing the parameterη) in the calculations for
the above average values. We will proceed in this way in
order to calculate both terms in Eq. (13) to lowest order in
τ ∼ e2. Since theZPF represents the background field in its
ground state, the particle must also be in its ground state (de-
noted with the subindex0). For the left-hand side of Eq. (13)
this leads to

mτ 〈ẋ ...
x〉0 = −mτ

∑

k

ω4
0k |x0k|2 , (14)

where

ω0k = (E0 − Ek) /2η, x0k =
∫

ψ∗0xψkdx,

Ek are the energy eigenvalues andψk the corresponding
eigenfunctions. For the calculation of the right-hand side of
Eq. (13), which is somewhat more elaborate, we introduce
Eq. (7) for the spectral energy density of the field —which is
proportional to}— into Eq. (5), whence

e2

m

〈
pD̂

〉
0
=
}τ
π

∫
dω ω3

∫
dt′ cos ω(t−t′)I(t−t′) (15)

with

I(t− t′) =
∫

dx

∫
dp p e−L̂(t−t′) ∂

∂p
Q(t′)

=
∫

dx

∫
dp p

∂

∂p′
Q(x′, p′, t′), (16)

wherex′, p′ are the position and momentum variables, re-
spectively, which evolve deterministically (under the action
of L̂) towards their final valuesx = x(t), p = p(t). Upon
integration by parts, and writing

∫
dxdp =

∫
dx′dp′

to zero order ine2, we get

I(t− t′) =
〈

∂p

∂p′

〉

0

=
1

2iη
〈[x̂′, p̂]〉0

=
m

η

∑

k

ωk0 |x0k|2 cos ωk0(t− t′). (17)

Now we insert (17) into (15) and integrate over time starting
at−∞ (with y = t− t′), to take into account that energy bal-
ance is established after particle and field have interacted for
a sufficiently long time,i.e. in the so-called time-asymptotic
limit

e2

m

〈
pD̂

〉
0

= −}mτ

πη

∑

k

ωk0 |x0k|2

×
∞∫

0

dω ω3

∞∫

0

dy cos ωy cos ωk0y

= −}mτ

2η

∑

k

ωk0 |x0k|2

×
∞∫

0

dω ω3[δ(ω + ωk0) + δ(ω − ωk0)]. (18)

For ωk0 > 0 (as is the case for the ground state) the first
integral is nil, whence

e2

m

〈
pD̂

〉
0

= −}mτ

2η

∑

k

ω4
0k |x0k|2 . (19)

On comparing with Eq. (14) we obtain

η = }/2, (20)

and Eq. (9) becomes the Schrödinger equation,

i~
∂ψ

∂t
= − }

2

2m
∇2ψ + V ψ. (21)

Note that theZPF has played a crucial role in leading to
this result. Firstly, it is the source of the Planck constant
in this equation, through the spectral energy density given
by Eq. (7). Further, a field with energy spectrum propor-
tional to ω3 (responsible for theω4

0k factor in Eq. (19)) is
the single one that guaranteesdetailedbalance, by ensuring
that Eqs. (14) and (19) have exactly the same structure. This
means that energy balance holds not only globally but term
by term, or for each frequency. This differs essentially from
the result obtained for aclassicalmultiply periodic system
in equilibrium with a radiation field, in which case balance
is attained only if the field has a Rayleigh-Jeans spectrum,
proportional toω2 [8].

2.3. Detailed balance for an excited harmonic oscillator

Let us now consider the particle in an excited staten, with
the background field still being in its ground state (theZPF).
Then instead of (14) we have

mτ 〈ẋ ...
x〉n = −mτ

∑

k

ω4
nk |xnk|2 , (22)
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and instead of (19) (withη = }/2) we have

e2

m

〈
pD̂

〉
n

= −mτ
∑

k

ω4
nk |xnk|2 sign(ωkn). (23)

Whilst in Eq. (22) all terms have the same sign, Eq. (23)
contains now a mixture of positive and negative terms. As a
result there is a net average loss of energy,

d

dt
〈H〉n ≡

dHn

dt
= −mτ

∑

k

ω4
nk |xnk|2 (1− sign(ωkn))

= −2mτ
∑

k<n

ω4
nk |xnk|2 . (24)

This means that the excited staten is not a true stationary
state (as predicted by the stationary Schrödinger equation, de-
rived when all radiative terms are neglected) but has a finite
lifetime. Consideration of the radiative corrections takes us
thus from the Schr̈odinger to the QED realm, where the only
true stationary state is the ground state (n = 0).

Let us now assume that also the background field is in an
excited state, and inquire whether in this case there can be
equilibrium between particle and field. We write the spectral
density of the excited field as

ρ(ω) = ρ0(ω)γ(ω), γ(ω) ≥ 1

where the additional contribution

ρa(ω) = ρ− ρ0 = ρ0(γ − 1) ≡ ρ0γa (25)

can represent an excitation of the background field or an
external field. Now observe that the generalized form of
Eq. (23) for the caseγ(ω) > 1,

e2

m

〈
pD̂

〉
n

= −mτ
∑

k

ω4
nk |xnk|2

× γ(|ωnk|)sign(ωkn), (26)

contains again a mixture of terms with different signs depend-
ing on the sign ofωkn, so that

dHn

dt
= −mτ

∑

k

ω4
nk |xnk|2

× [1− γ(|ωnk|)sign(ωkn)]. (27)

When the values of|ωnk| differ for differentk, the positive
and the negative terms in this equation cannot compensate
each other in general. In such case detailed balance breaks
down: there is a net radiation of the particle to the field at cer-
tain frequencies and a net absorption from the field at other
frequencies. However, when all values of|ωnk| in Eq. (27)
happen to be equal, the positive and negative terms can com-
pensate each other ifγ(|ωnk|) has the right value. This is
precisely the case of the harmonic oscillator: all|ωnk| that

contribute to (27) are equal and moreover coincide with the
oscillator frequencyω0. With

|xnn+1|2 = a(n + 1), |xnn−1|2 = an,

and|xnk|2 = 0 for k 6= n±1, wherea = }/2mω0, Eqs. (22)
and (26) give

mτ 〈ẋ ...
x〉n = −1

2
}τω3

0(2n + 1),

e2

2m

〈
pD̂

〉
n

= −1
2
}τω3

0γ(ω0),

whence the energy gain or loss is given by

dHn

dt
= −1

2
}τω3

0 [(2n + 1)− γ(ω0)].

Therefore, detailed balance exists between a harmonic oscil-
lator in its excited staten and an (excited) background field
with γ(ω0) = 2n + 1. According to Eq. (25), the spectral
energy density of this field is

ρn(ω) = ρ0(ω)(2n + 1)

=
~ω3

2π2c3
(2n + 1), (28)

corresponding to an energy(1/2)}ω(2n + 1) per normal
mode, equal to the energy of the mechanical oscillators with
which it is in equilibrium. This is simply the condition for
balance between field and matter oscillators of the same fre-
quency —and a result that links with the Planck distribution
in the case of thermal equilibrium (see [6] and Sec. 3.2 be-
low).

3. Spontaneous and induced transitions

3.1. Radiative lifetimes

Equation (27) determines the average rate of energy loss or
gain by the mechanical system in an excited staten due to
(upward or downward) transitions to statesk with k > n and
k < n, respectively. In order to analyze this equation in detail
it is convenient to writeγ(ω) = 1 + γa(ω), as follows from
Eq. (25), and separate the positive from the negative terms,

dHn

dt
= −mτ

∑

k

ω4
nk |xnk|2

× [1− (1 + γa(|ωnk|))sign(ωkn)]

= mτ
∑

k

ω4
nk |xnk|2

× [(γa)ωkn>0 − (2 + γa)ωkn<0] . (29)

The first term within brackets in (29) represents the upward
transitions (absorptions) and the second one, the downward
transitions (emissions). It is clear that upward transitions can
take place only when there is an additional fieldγa(ωkn)
from which the atom may absorb the necessary energy; in
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other words, the atom does not (‘spontaneously’) absorb en-
ergy from theZPF. This is an important point that explains,
for example, why optical detectors, including photographic
plates, are not activated by the vacuum. Emissions, on the
other hand, can be either ‘spontaneous’ (in presence of just
the ZPF) or else stimulated by the additional fieldγa(ωkn),
according to the second term in (29). Notice in particular
that the ground state (n = 0, ωkn > 0) is absolutely stable
against spontaneous transitions.

Let us now relate the coefficients appearing in the various
terms of Eq. (29), with the respective EinsteinA andB coef-
ficients. By writing the rate of energy change in terms of the
latter

dHn

dt
=

∑

k>n

} |ωnk| [ρa(|ωnk|)Bkn]

−
∑

k<n

} |ωnk| [Ank + ρa(|ωnk|)Bnk] (30)

and comparing term by term with (29), we obtain for the
‘spontaneous’ emission coefficient

Ank =
2τm

}
|ωnk|3 |xnk|2 =

4e2 |ωnk|3
3}c3

|xnk|2 (31)

and for the stimulated transition coefficients

Bnk = Bkn

=
mτ |ωnk|4 |xnk|2 γa(|ωnk|)

} |ωnk| ρa(|ωnk|) =
4π2e2

3}2
|xnk|2 , (32)

in full agreement with the respectiveQED formulas [9,10].

3.2. Spontaneous decay and the zero-point field

One can frequently find in the literature that all the spon-
taneous decay is attributed to either the vacuum fluctua-
tions or radiation reaction, more often to the latter (seee.g.
([10,11-14]). Let us look at this issue from the perspective of
the present theory.

From Eqs. (31) and (32), the ratio of theA to B coeffi-
cients is

Ank

Bnk
=
~ |ωnk|3

π2c3
= 2ρ0(|ωnk|). (33)

Incidentally, this relation and the equality of the coefficients
Bnk = Bkn were predicted by Einstein on the basis of his
statistical considerations ([15]; see below).

Notice in particular the factor 2 in Eq. (33). Given the
definition of the coefficients, one could expect the ratio in
this equation to correspond exactly to the spectral density of
the ZPF, which would mean a factor of 1. However, as fol-
lows from Eq. (29), one should actually interpret the factor
2 as2 = (1 + 1). One of these two equal contributions to
spontaneous decay is due to the effect of the fluctuations im-
pressed on the particle by theZPF; the other one is due to
Larmor radiation. Their equality (with opposite signs) leads

to the exact balance of these two contributions when the par-
ticle is in its ground state, thus guaranteeing its stability (cf.
Eq. (24) forn = 0).

A brief digression is in place regarding the point at which
Einstein introduced quantization in his 1917 paper [15], so as
to arrive at the Planck distribution. It is frequently argued that
he did so through the assumption of discrete atomic levels.
However, some time after Einstein’s original work, Einstein
and Ehrenfest [16] showed that this was not the case, by redo-
ing the calculations with a continuous distribution of atomic
levels. In line with the results presented here and in previ-
ous work [1,3] quantization enters through the introduction
of a source that includes theZPF, able to generate ‘sponta-
neous’ transitions. This can be easily verified by omitting
in the calculation any of the three terms that lead to matter-
field equilibrium: stimulated absorptions and emissions, or
spontaneous emissions. The absence of the latter leads to ab-
surd results, as happens also with the omission of stimulated
absorptions. The omission of the term related to stimulated
emissions leads to the expression for the blackbody law pro-
posed by Wien, which correctly approximates Planck’s law at
low temperatures, so it already contains some quantum prin-
ciple due to the presence of the term associated with spon-
taneous emissions. All this can be easily seen in the present
context by focusing on just two statesn and k, with En−
Ek = }ωnk > 0 and respective populationsNn, Nk. When
the system is in thermal equilibrium at temperatureT, the re-
lation (kB is Boltzmann’s constant)

Nk/Nn = exp(En − Ek)/kBT

holds (disregarding inconsequential degeneracies). Since ac-
cording to Eq. (29) the number of emissions is proportional
to Nnγa(ωnk) and the number of absorptions is proportional
to Nk[2 + γa(ωnk)], from the (detailed) balance condition
Nnγa = Nk(2 + γa) one obtains indeed Planck’s law (for
the thermal field) as is well known since 1917 [15],

γa(ωnk) =
2

exp }ωnk/kBT − 1
. (34)

4. Radiative corrections to the energy

The determination of the Lamb shift has been one of the most
frequently studied problems inSED and has produced some
successful results in the past, though basically restricted to
the linear-force problem. Early related works are [17-20];
additional references can be seen in Refs. 21 and 22. The
theory ofSED as developed recently and used in this paper,
has the advantage of being applicable to nonlinear forces in
general and to the atomic problem in particular. Since this
theory includes the radiative terms from the outset, we can
use it also to derive general formulas for the radiative energy
corrections. Here we present a full derivation of the non-
relativistic atomic Lamb shift and associated effects within
the present framework. The results obtained are in line with
the predictions deriving fromQED; however, the procedure
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followed for their derivation offers a clear picture of their
physical meaning and allows a comparison with alternative
interpretations of the Lamb shift found in the literature.

4.1. The Lamb shift

To calculate the energy corrections we go back to the gen-
eralized Fokker-Planck Eq. (11) and multiply it now byxp
before integrating over the entire phase space; the result is
(recalling that all surface terms vanish at infinity) [23]

d

dt
〈xp〉 =

1
m

〈
p2

〉

+ 〈xf〉+ mτ 〈x ...
x〉 − e2

〈
xD̂

〉
. (35)

In the radiationless approximation, corresponding to quan-
tum mechanics, the last two terms are neglected and Eq. (35)
reduces to

d

dt
〈xp〉 =

1
m

〈
p2

〉
+ 〈xf〉 . (36)

Further, in a stationary state (denoted again byn) the time
derivative of〈xp〉 is zero and Eq. (36) reduces to the virial
theorem,

1
m

〈
p2

〉
n

= 2 〈T 〉n = −〈xf〉n , (37)

where〈T 〉n is the average kinetic energy. Hence Eq. (35)
can be interpreted as a time-dependent version of the virial
theorem, with radiative corrections included. Observe that
here the average is taken not over time, but over the full par-
ticle phase space, which is equivalent to an ensemble average.
This is but an example of application of the ergodic proper-
ties acquired by the quantum states as discussed in detail in
Refs. 1 and 5.

In the stationary state, the two previously neglected terms
can therefore be taken as radiative corrections to the (kinetic)
energy,

δEn = δ 〈T 〉n = −mτ

2
〈x ...

x〉n +
e2

2

〈
xD̂

〉
n

. (38)

This is a general expression for the Lamb shift. Notice that
the general laws derived here –such as (12) or (38)– are for-
eign to quantum theory, where the notion of diffusion (and
the related diffusion operator) does not appear at all.

The right-hand side of Eq. (38) will again be calculated
to lowest order ine2, which means calculating the two aver-
age values,〈x ...

x〉n and
〈
xD̂

〉
n

, to zero order inα = e2/}c.
For the first one we get

−mτ

2
〈x ...

x〉n =
τ

2
〈ẋ f〉n =

τ

2
d

dt
〈T 〉n = 0,

which means that the Larmor radiation term does not con-
tribute to the energy shift in the mean, in a stationary state.
The correction to the energy comes exclusively from the fluc-
tuations due to the action of the background field on the parti-
cle, represented by the second term in Eq. (38). To calculate

it we use again Eq. (5), multiply it this time byx,

e2xD̂(t)Q =
2}

3πc3
e2

∫
dω

×
∫

dt′ω3 cos ω(t− t′)x e−L̂(t−t′) ∂

∂p
Q(t′),

and integrate over phase space, thus obtaining

e2

2

〈
xD̂

〉
n

=
}e2

3πc3

∫
dω ω3

×
∫

dt′ cos ω(t− t′)Jn(t− t′), (39)

with

Jn(t− t′) =
∫

dx

∫
dp x e−L̂(t−t′) ∂

∂p
Q(t′)

∣∣∣∣
n

.

Upon an integration by parts (again with
∫

dxdp =
∫

dx′dp′

to zero order inα) we haveJn(t−t′) = −〈∂x/∂p′〉n , where

Jn(t− t′) =
〈

∂x

∂p′

〉

n

=
1
i}
〈[x̂, x̂′]〉n

= −2
}

∑

k

|xnk|2 sinωkn(t− t′).

Inserting this result into (39) we obtain

e2

2

〈
xD̂

〉
n

= − 2e2

3πc3

∑

k

|xnk|2
∞∫

0

dω ω3

×
t∫
dt′ cos ω(t− t′) sin ωkn(t− t′). (40)

Extending the initial time integral to−∞ (as corresponds to
the time-asymptotic limit) we have (withy = t− t′)

∞∫

0

dy cos ωy sinωkny =
1
2

∞∫

0

dy
[
sin(ωkn + ω)y

+ sin(ωkn − ω)y
]

=
ωkn

ω2
kn − ω2

, (41)

which introduced in Eq. (40) gives for the radiative correc-
tion to the (mean kinetic) energy (we write the result in three
dimensions, for comparison purposes)

δEn =
e2

2

〈
x · D̂

〉
n

= − 2e2

3πc3

∑

k

|xnk|2 ωkn

×
∞∫

0

dω
ω3

ω2
kn − ω2

. (42)
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This result coincides with the formula derived by
Power [24] for the Lamb shift on the basis of Feynman’s ar-
gument [25]. We recall that according to Feynman, the pres-
ence of the atom creates a weak perturbation on the nearby
field, thereby acting as a refracting medium. The effect of this
perturbation is to change the frequencies of the background
field fromω to ω/n(ω), n(ω) being the refractive index. The
shift of theZPFenergy due to the presence of the atom in state
n is then ([10,24])

∆En =
∑ 1

2
}ωkn

nn(ωkn)

−
∑ 1

2
}ωkn ' −

∑
[nn(ωkn)− 1]

1
2
}ωkn,

where a summation over the polarizations is included, and
the refractive index is given in this approximation by

nn(ω) ' 1 +
4π

3}
∑
m

|dmn|2 ωmn

ω2
mn − ω2

, (43)

wheredmn = exmn is the transition dipole moment. After
an integration over the solid angle and summation over the
polarizations, Power obtains in the continuum limit forωk

the formula

∆En = − 2
3πc3

∑
m

|dmn|2 ωmn

∞∫

0

dω
ω3

ω2
mn − ω2

,

which is equal to our result, Eq. (42).
The Lamb shiftproper(the observable Lamb shift) is ob-

tained by subtracting from the total energy shift given by
Eq. (42), the free-particle contributionδEfp. This latter is rep-
resented by (42) in the limit of continuous electron energies
(in the limit of a very loosely bound particle, whenωkn can
be ignored compared withω in the denominator),

δEfp =
2e2

3πc3

∑

k

|xnk|2 ωkn

∞∫

0

dω ω

=
e2}

πmc3

∞∫

0

dω ω. (44)

To write the last equality we used the sum rule
Σk |xnk|2 ωkn = 3}/2m. Since according to Eqs. (6) and (7)

A2
E

=
2}
πc

∞∫

0

dω ω, (45)

with A the electromagnetic potential associated with theZPF,
(44) can be rewritten as

δEfp =
1

2m
A2

E
, (46)

which identifies this ‘free-particle contribution’ to the Lamb
shift with the contribution from the (free) background field.

Its value is independent of the state of the particle; it is a tes-
timony of the ubiquitous presence of theZPF. Inserting the
usual cutoff frequencyωc = mc2/} in the integral in Eq. (44)
gives the finite resultδEfp = (α/2π)mc2.

By subtracting (44) from (42) we obtain for the Lamb
shift proper

δELn = δEn − δEfp

= − 2e2

3πc3

∑

k

|xnk|2 ω3
kn

∞∫

0

dω
ω

ω2
kn − ω2

. (47)

Inserting once more the cutoff frequencyωc = mc2/} in the
integral givesii

δELn =
2e2

3πc3

∑

k

|xnk|2 ω3
kn ln

∣∣∣∣
mc2

}ωkn

∣∣∣∣ , (48)

which is Bethe’s well-known expression [26].
An important difference between the procedures used in

the present paper and inQED to arrive at the Lamb shift for-
mula concerns the mass renormalization. We recall that in
theQED case, second-order perturbation theory is used, with
the interaction Hamiltonian given bŷHint = −(e/mc)Â · p̂.
But the energy derived from this term, namely [10]

− 2e2

3πc3

∑

k

|xnk|2 ω2
kn

∞∫

0

dω
ω

ω − ωnk
,

still contains the (linearly divergent) free-particle contribu-
tion

− 2e2

3πc3

∑

k

|xnk|2 ω2
kn

∞∫

0

dω

= − 4e2

3πc3

(
1

2m

∑

k

|pnk|2
) ∞∫

0

dω

that must be subtracted to obtain the Lamb shift proper. Be-
cause this result is proportional to the mean kinetic energy,
the ensuing correction is taken to represent a mass renormal-
ization,

δm =
4e2

3πc3

∞∫

0

dω, (49)

which with the usual cutoffωc = mc2/} becomes
δm = (4α/3π)m.

By contrast, in the derivation presented here to obtain
δELn, Eq. (47), there was no mass renormalization. The
result (49) is just theclassicalcontribution to the mass pre-
dicted by the Abraham-Lorentz equation ([22], Eq. 3.114)
(or Maxwell’s equations). In the equations of motion (1)
this contribution has been already subtracted, so there is no
more need to renormalize the mass. However, and as is well
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known, the formula (47) (common to bothSEDand renormal-
izedQED) still has a logarithmic divergence that can be reme-
died by introducing the cutoff frequencyωc, as was done by
Bethe, thus obtaining a very satisfactory result for the Lamb
shift.

4.2. Alternative interpretations of the Lamb shift

The interpretation of the Lamb shift as a change of the atomic
energy levels due to the interaction with the surroundingZPF

is fully in line with the present theory. It constitutes one ad-
ditional manifestation of the influence of the particle on the
field, which is then fed back on the particle. An alternative
way of looking at this reciprocal influence is by considering
the general relation between the atomic polarizabilityα and
the refractive index of the medium affected by it, which for
n(ω) ' 1 can be written as follows,

n(ω) = 1 + 2πα(ω).

Comparing this expression with Eq. (43) we obtain

αn(ω) =
4π

3}
∑
m

|dmn|2 ωmn

ω2
mn − ω2

, (50)

which is the Kramers-Heisenberg formula [11]. This indi-
cates that the Lamb shift can also be viewed as a (second-
order ineE) Stark shift associated with the dipole moment
d(ω) = α(ω)E induced by the electric component of the
ZPF on the atom.

Equation (47) can be further recast in an (approximate)
form that is usual to find in textbooks and Lamb-shift calcu-
lations, by assuming that the integral depends so weakly on
the indexk that such dependence can be ignored. Express-
ing (47) in terms of energy levels, with~ωnk = En−Ek, one
gets then

δELn = − 2e2

3πc3

∑

k

|xnk|2 ω3
kn

∞∫

0

dE E
(Ek − En)2 − E2

= − 2αIn

3πc2m2

∑

k

|pnk · pkn|2 (Ek − En) ,

which after a series of transformations becomes [10]

δELn =
2αIn

3πc2m2
i~ 〈n|∇V̂ · p̂ |n〉

=
α~2In

3πc2m2
〈n|

[
∇2V̂

]
|n〉 .

This result suggests to interpret the Lamb shift as due to
the variations of the potential energy originating in the
fluctuations inx-space [28]. For the Coulomb potential,
∇2V = 4πZe2δ3(x), so only the wave function at the origin
(s states) contributes to the Lamb shift in this approximation.
This makes this formula particularly practical for numerical
calculations.

4.3. External effects on the radiative corrections

From the results obtained above it is clear that certain basic
properties of the vacuum –such as the intensity of its fluctu-
ations or its spectral distribution– are directly reflected in the
radiative corrections. This means that a change in such prop-
erties can in principle lead to an observable modification of
these corrections. The background field can be altered, for
instance, by raising the temperature of the system, by adding
external radiation, or by introducing objects that affect the
distribution of the normal modes of the field.

Such external or ‘environmental’ effects have been stud-
ied for over six decades [29], normally within the frame-
work of quantum theory, although some calculations have
been made also withinSED, again for the linear-force (or
single-frequency) problem only, leading to comparable re-
sults (see [30,31]). The results of the previous sections, by
contrast, can be applied to the general case, without restrict-
ing the calculations to the linear-force problem. In the fol-
lowing we present an illustrative selection of results derived
for both lifetimes and energy levels. The task is facilitated
by the use of the present theory because the influence of the
background radiation field (and its modifications) is clearly
pictured from the beginning.

In Sec. 3.1 we have already come across one observ-
able effect of a change in the background field: according
to Eq. (29) the rates of stimulated atomic transitions are di-
rectly proportional to the spectral distribution of the external
(or additional) field, be it a thermal field or otherwise. In the
case of a thermal field in particular, withγa(|ωnk|) given by
Eq. (34), the (induced) transition rate from staten to statek
becomes (using Eqs. (30) and (32))

dNnk

dt
= ρ0(|ωnk|)γa(|ωnk|)Bnk

=
4e2 |ωnk|3 |xnk|2

3}c3

1
e}|ωnk|/kBT − 1

. (51)

This result shows that no eigenstate is stable atT > 0 —as
is well known— because the thermal field induces both up-
ward and downward transitions. For downward transitions
(ωnk > 0) we can rewrite Eq. (51) for comparison purposes
in terms ofAnk as given by Eq. (31), obtaining

dNnk

dt
=

Ank

e}|ωnk|/kBT − 1
. (52)

At room temperature (kBT ' .025 eV) the effect of the ther-
mal field on the decay rate is barely noticeable, since for
typical atomic frequencies the inverse of the denominator,
(exp } |ωnk| /kBT − 1)−1

, ranges betweenexp(−40) and
exp(−400). The decay of excited states is therefore mostly
spontaneous in this case. For the thermal field to have a no-
ticeable effect on the decay rate, the temperature would have
to be of the order of 104 K, at which other effects on the
atom (assuming it still exists at this high temperature) cannot
be ignored.
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When the geometry or the spectral distribution of the field
is modified by the presence of conducting objects (such as
metallic plates or the walls of a cavity), the transition rates are
affected accordingly. Let us assume, for simplicity, that the
modified field is still isotropic, with the density of modes of
a given frequency|ωnk| reduced by a factorγa(|ωnk|) < 1:
then according to the results of Sec. 3.1 the corresponding
spontaneous and induced transition rates are reduced by pre-
cisely this factor, sinceboth A andρB are proportional to
the density of modesiii. By enclosing the atoms in a high-
quality cavity that excludes the appropriate modes one can
therefore virtually inhibit the corresponding transition. For
the more general (anisotropic) case the calculations are some-
what more complicated, without however leading to a sub-
stantial difference from a physical point of view. Such cavity
effects have been the subject of a large number of fine ex-
perimental tests since the early works of Kleppner and others
within QED ([32-35]; for more recent work see,e.g., [36,37]).

For illustration purposes, let us also briefly indicate how
Eqs. (44) and (47) can be used to calculate the changes in the
atomic energy shifts produced by the addition of an (external
or thermal) field. As in Eq. (25), we denote byρa = ρ0γa the
spectral (energy) density of the additional field. The formulas
for the variations of the (first-order) radiative corrections are
readily obtained by determining the shifts produced by the to-
tal field (ρ0 +ρa) and subtracting the original shifts produced
by theZPF alone. The results are

∆(δEfp) =
e2}

πmc3

∞∫

0

dω γaω, (53)

∆(δELn) = − 2e2

3πc3

∑

k

|xnk|2 ω3
kn

×
∞∫

0

dω γa
ω

ω2
kn − ω2

, (54)

for a homogeneous, isotropic field. If the additional field rep-
resents blackbody radiation at temperatureT , γa is given by
Eq. (34),i.e. γa(T ) = 2/(exp y − 1) with y = (}ω/kBT ),
and we obtain from Eq. (53)

∆T (δEfp) =
2α

πmc2
(kBT )2

∞∫

0

dy
y

exp y − 1
, (55)

whence the free-particle energy increases by the amount

∆T (δEfp) =
πα

3mc2
(kBT )2. (56)

The formula for the change in the Lamb shift is given from
Eq. (54) by

∆(δELn) = − 4e2

3πc3

∑

k

|xnk|2 ω3
kn

×
∞∫

0

dω
ω

ω2
kn − ω2

(
1

e}ω/kT − 1

)
.

These results coincide with those obtained through consider-
ably more cumbersome procedures withinQED [38,39], and
the corresponding thermal shifts have also been experimen-
tally confirmed ([40]; see also [41]). From the point of view
of SED (or QED) their interpretation is clear: they represent
additional contributions to the kinetic energy impressed on
the particle by the thermal field, according to the discussion
at the beginning of Sec. 4.1.

5. Concluding remarks

All results contained in this paper for a nonrelativistic spin-
less particle point to the stochastic zero-point radiation field
as the source not only of quantum behavior itself, but also
of the radiative effects on quantum systems. The stochastic
problem posed by the action of theZPF on the particle led
to a generalized Fokker-Planck equation for the particle, and
all results presented here have been directly derived from this
equation. Although as a result of the matter-ZPF interaction
both matter and field end up quantized, for the present cal-
culations of the radiative corrections (to lowest order inα)
it sufficed to consider theZPF as a classical function. In-
deed, the theory furnishes an alternative way to derive self-
consistently results usually considered to be the exclusive
province of nonrelativisticQED. Important advantages of the
present procedure are physical transparency and simplicity;
there was no need to resort to heuristic arguments along the
derivations. These advantages are particularly apparent in the
calculation of environmental effects on the atomic lifetimes
and energy levels.

It is important to stress that the present theory implies
quantization of both matter and radiation field [1,2,6]. This is
the ultimate reason that guarantees its equivalence withQED.
The difference between these two theories lies not in their fi-
nal results, but in the whole conceptual picture and the gained
clarification of the physics. The present approach gives well-
defined answers to deep questions, such as the origin and ulti-
mate meaning of the Schrödinger equation and other puzzles
of quantum theory. The consideration of theZPF as a funda-
mental ingredient of the theory is thus not a subterfuge con-
ceived to simplify or guide the calculations, but a fundamen-
tal step to unfold the deep meaning of the quantum behaviour
of matter and fieldiv.

However, it should also be stressed that there can be dif-
ferences. The present theory gives, by construction, only an
approximate description of nature. It could be that its fur-
ther development in search of a more detailed or refined de-
scription leads to discrepancies, open to resolution only by
experiment. In addition, some important results pertaining to
the quantum domain require further study within the present
approach; from among these, one that stands out due to its
relevance is the mechanism underlying the spin-statistics the-
orem. Future investigation on this issue will certainly throw
light on the physical nature of spin and the dynamics of
fermionic (or bosonic) systems.
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i. In addition, the present calculation serves to correct a factor
1/2 mistakenly introduced in previously published versions of
Eq. (12) and the following.

ii. Note that to get a correct (and finite) result, it is essen-
tial to leave in the denominator of this formula the term
τ2ω4

mn ' τ2ω4 under resonance due to the presence of ra-
diation reaction ([17,27]). This is a natural term in bothQED

andSED.

iii. Interestingly, however, by virtue of this proportionality, the ra-
tio of spontaneous to induced transition rates is not altered by a
modification of the density of modes.

iv. It seems convenient to comment here on another approach,
known asFluctuational Electrodynamics(FE) (see, for example
[42,43]), that deals with fluctuating electromagnetic fields to
study the emission of thermal radiation and heat transfer prob-
lems (generally at a macroscopic level). According toFE, the
charges that constitute matter at temperatureT produce, due
to thermal agitation, a fluctuating electromagnetic field that is
solution of the ”stochastic Maxwell equations”, which include
fluctuating current sources. Contact with the thermodynamics
is then established by resorting to the fluctuation-dissipation
theorem. As in theFE approach, inSED we are dealing with
a random field and derive statistical properties of the system,
but in the present theory the field is also present atT = 0
(being precisely theZPF) and, contrary to what is done inFE,
here we study the effects of this field on matter at a most fun-
damental level (both in a physical and a conceptual sense): in
SED we are concerned with the properties theZPF imprints in
atomic level systems in order to develop a fundamental theory
of quantum mechanics. Thus, both approaches pursue different
aims, though they may share some qualitative features.
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