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The band gap problem: the accuracy of the Wien2k code confronted
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This paper is a continuation of our detailed study [Phys. Rev. B 86, 195106 (2012)] of the performance of the recently proposed modified
Becke-Johnson potential (mBJLDA) within the known Wien2k code. From the 41 semiconductors that we have considered in our previous
paper to compute the band gap value, we selected 27 for which we found low temperature experimental data in order to pinpoint the relative
situation of the newly proposed Wien2k(mBJLDA) method as compared to other methods in the literature. We found that the GWA gives the
most accurate predictions. The Wien2k (mBJLDA) code is slightly less precise, in general. The Hybrid functionals are less accurate, on the
overall. The GWA is definitely the most precise existing method nowadays. In 88% of the semiconductors considered the error was less than
10%. Both, the GWA and the mBJLDA potential, reproduce the band gap of 15 of the 27 semiconductors considered with a 5% error or less.
An extra factor to be taken into account is the computational cost. If one would seek for precision without taking this factor into account,
the GWA is the method to use. If one would prefer to sacrifice a little the precision obtained against the savings in computational cost, the
empirical mBJLDA potential seems to be the appropriate method. We include a graph that compares directly the performance of the best
three methods, according to our analysis, for each of the 27 semiconductors studied. The situation is encouraging but the problem is not ye
a closed issue.
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1. Introduction of 41 semiconductors [20]. This paper is a continuation of
_ _ ‘that work. We found an important improvement in the pre-
Khon-Sham equations [1] are central to the practical appligictions of the band gap as compared to experiment. The

cation of Density Functional Theory (DFT). To solve them, mBJLDA potential [18] is a empirical potential of the form
an approximation to the exchange and correlation energy is

required from which an exchange and correlation potential is MEBJ BR 2t 4
derived. The way in which this term is approximated is cru- Vo (r) = cVyg(r) o (
cial to the proper description of the band structure of solids. 7

The Local Density Approximation (LDA) [2], the General- wherep, (r) is the spin dependent density of statesy) is
ized Gradient Approximation (GGA) [3-5] and the meta- the kinetic energy density of the particles with spin and
GGA [3, 6], among others, describe very well the electronic.B/(r) is the Becke-Roussel potentiaBR) [21]. The ¢
band structure of even complicated metallic systems. Thegtands for

fail, nevertheless to account for the band gap value of semi- 1/2
conducting systems, a short come known for several years c=a+p ( 1 /d3r| Vp(r) > @)
now [7]. Efforts to solve this problem were done since long Veell p(r)

ago. Approximations as the “scissor operator” [8], the Lo- . .
. . L «a and ¢ are free parameters. The Wien2k code defines
cal Spin Density Approximation, LS_DA+U [9] and methods _ 0012 and3 — 1.023 Bohr/2. These values are

egeneral but certainly fixed experimenting with several cases.
IA particular feature of this potential is that a correspond-
Pﬁg exchange and correlation energy terf,..[p], such that

ory as the GW approximation, GWA [10-12], were proposed.
In the last ten years, these efforts gave rise to substantial
improved results. Some of the new proposals include, th

. . . e mBJLDA potential is obtained in the usual way, namely,
screened hybrid functional of Heyd, Scuseria and Ernzerh P y Y

dE..[p]/dp, is not possible. As a consequence, a
(HSE) [13-15] and the middle-range exchange and CorreIaconmstent optimization procedure to obtain the lattice pa-

tslon hytg'ggm?éoﬁ O;Hert}?erson Iztmaylov ‘T"Cu?ﬁ na ar:jldrameters the Bulk modulus and its derivative with respect
avin ( ) [ ]. Another recent proposal is the mo to pressure are not actually possible. This is a consequence

fied Becke-Johnson potential (MBJLDA) proposed by Tran of the empirical character of this potential. For that rea-

and Blaha [18]. This potential was introduced to the W|en2k
code [19] in 2010. son, Tran and Blaha have proposed the empirical alternative

that prior to a band structure calculation with the mBJLDA
potential, the lattice parameter is found from either a LDA
2. The mBJLDA potential or a GGA optimization procedure and the result introduced
into the code to perform the band structure calculation of
Recently, we made a detailed analysis of the mBJLDA potenthe semiconductor system. Such a procedure gives rise to
tial based on the calculation of the electronic band structurguite improved results as compared to the previous version of
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the Wien2k code. It is known that the LDA underestimatesThe expression for the HSE exchange-correlation energy,
as a rule, the lattice parameters and, on the contrary, GGA&!'SE is

overestimates them. We have explored the possibility of us- HSE HE.SR WPBE.S

ing the averaged value as the lattice parametgg, where Bpe = aBy " w) + (1 - a)E; )

apvg = (GLDA + GGGA>/2. Hereapa (aGGA) is the lattice + E;’PBEvLR(w) + E‘EBE’ (5)
parameter obtained from an LDA (GGA) optimization pro- ) .

cedure. Whemayg is used as input into the Wien2k code im- WhereE;"*Ris the HF short-range functional (SR);P55%
plemented with the mBJLDA potential, a better agreement oftnd E; 7% % are the short-range (SR) and long-range (LR)
the band gap value with experiment is obtained as comparegPmponents of the PBE functionaé is a mixing constant

to the results with eithesi pa or agga. SO this procedure that is derived from perturbation theory [27]. In the litera-
turns out to give better results than the one recommended byre, the functional HSE appears as HSE03 and HSEOQ6. The
Tran and Blaha and its extra computational cost is relativelgﬁ'jyifference is in the choice of the value of We will refer

low. A surprising result was, nevertheless, obtained whert© the HSEO3 simply as HSE, in this work. In 2005, Hestd
the experimental low temperature lattice parametgr, was ~ al- [14] reported a study of the band gap and lattice parame-
introduced instead. Unexpected deviations of the band gal¢'s of semiconductor compounds using the HSE functional.
value from experiment as big as 48% were obtained [20]VWe will comment on these results below.

This is a disturbing result since the lattice parameters ob- Recently, Marquest al. [28] have proposed to relate the
tained from any optimization procedure are judged to be a§lixing constant to dielectric properties of the solid. They
good as the deviation from the experimental lattice paramt00k a = 1/€E5E. Their calculation using the hybrid func-
eter value is small, and so one expects to get the best restiipnal PBEO improves the predictions for the band gap value
(the minimum deviation of the predicted band gap value fromPf the 21 semiconductors considered as compared to the orig-
experiment) when the experimental lattice parameter is used@! formulation. Furthermore, they used~ g, anda ~ g*

This is not the case. This fact throws doubts on the meanin/hereg takes the form of the term in parenthesis in Eq. (2).
of the optimization procedure altogether when the empiricall ey introduced this form of the parameter into the hy-
mBJLDA code is employed. Nevertheless, we stress that th@rid functionals PBEO and HSEOQ6, respectively, and got an
results obtained for the band gap value of semiconductors ugMProved result. These proposals improve the performance
ing the mBJLDA potential represents a relevant improvemen®f the hybrid functionals at no extra cost. We will comment
at relatively low computational cost, a fact that we will em- further on these results below.

phasize below.

4. The HISS potential

3. The HSE method Another successful potential to calculate the band structure
Hybrid functionals are a linear combination of Hartree-FockOf semiconductors is the middle-range hybrid exchange and
(HF), LDA and GGA terms and were proposed initially with correlation Henderdon-Izmaylov-Scuderia-Savia functional

the aim of improving LDA and GGA in the calculation of (HISS)[16,17]. It also uses the PBE potential but in a differ-

the energy bands of molecules [22, 23]. More recently, hy£ntway,

brid functionals were used as an effort to improve the old- EHISS_ SR-PBE| [LR-PBE
standing problem of the band gap of semiconductors; they e ” ”
include the Heyd-Scuseria-Ernzerhof (HSE) functional [13] + EPBE L cyr (EMRHF_ pMR-PBE) (6)

proposed in 2003. It combines a screened short-range HF . _
term and a screened short- and long-range functional Iorov_vhere the last two terms in parentheses are the middle-range
posed by Perdew, Burke and Ernzerhof (PBE) [4]. The(MR) exact exchange and middle-range PBE exchange ener-

screened terms in HSE result from splitting the Coulomb op-g'es’ given by
erator into short- and long-range terms in the following way 1 erfc(wsrr)

1 erfc erf r r

N (WT) _|_ ((.L)T)7 (3) T

T r r

SR LR n erf(wsrr) n erflwsgr) — erf(wirr) R
where the complementary error function r r '
——
erfc(wr) = 1 — erf(wr) LR MR

In 2012, Luceroet al. [29] reported their study of the

andw determines the range. The functional form of HSE is : .
based on the hybrid functional of Perdew, Burke and Ernz-band gap and lattice parameters of some semiconductor com

. ; pounds using HISS, witlisg = 0.84a; ", wir = 0.20ay "y
Z;ZOIE(BPISOET%E‘zl]G](a:soflgﬂgvV\\/lg in the literature as PBElPBEcMR = 0.60. These values were determined by fitting them to

some atomization energies, barriers hights and values of the
EPBEN— oM 4 (1 — a)EPPE 4 EPBE L EPBE - (4)  gap for some compounds.
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5. The GW approximation (GWA) et al. [32, 33] using a self-consistent GWA (GWA + DFT),
o ) . and the self-consistent GW approximation with attractive
Asitis well known, the many-body Sbdinger equation con-  ejectron-hole interaction, scGW(e-h) accounted quite well
tains the Coulomb interaction term which is a two-body po-for the experimental band gap of several semiconductors.
tential and creates the difficulty to solve it for realistic sys-  Now we proceed to analyze some of the different offers in
tems. To address this problem, the Hartree-Fock Approxhe Jiterature in what the calculation of the band gap of semi-

imation (HFA) adds to the average Coulomb potential (theconductors is concerned and compare their results among
Hartree term) a non-local exchange potential which reflectghemselves and with experiment.

the Pauli Exclusion principle. The energy gap of semicon-
ductors predicted in this way turns out to be in most cases to Analvsi
large. This is due to the neglect of correlations or screeniné nalysis

which are crucial in solids. To simulate the effect of corre- | Table I, we present the results obtained for the band gap

Igmons, Sdla:jer introduced thKO]j ;pprothatloSF\qv_hllcth;?_ythusing different methods and approximations. The first two
€ regarded as a precursor of the modern -n » N&olumns refer to our calculation. The resulting values using

ground state energy can be proved to be a functional of thEDA and mBJLDA [20] as in version 2011 of Wien2k code

ground state density but the explicit form of the functional are presented. We have used as lattice parameter the average

i_s not k_nown. The minimizat_ion Pf the total energy func- of the values obtained from an LDA and a GGA optimiza-
tional with respect to the density gives the Kohn-Sham €duag o which. as we found [20], gives the best results for the
tions. The unknown exchange and correlation potential is ap- ' '

. X ) S gap as compared to experiment when the mBJLDA potential
prOX|mated_e|ther by _the local de_nsny approximation (LDA), is used. Next we report the values obtained with the hybrid
the generalized gradient approximation (GGA) or the metary s and HSEO6 functional [29], HSE [13, 14] and GWA.
GGA, among others, which describe metals well but fail to ' ’

t for the band ¢ iconduct Th .. In the column denoted as GWA, we include the most precise
account for the band gap of semiconductors. 1h€ empincgy o jictions for the gap reported in the literature using either
mBJLDA potential is a response. An alternative way to dea

: . : L ) he self consistent GW (scGWA) [33—-40] or the scGWA with
".V"h this problem is the GW approxmatlon (GWA). It is de- attractive electron-hole interaction, scGW(e-h) [32].
rived from many-body perturbation theory [30]. The form of

. . . In Fig. 1, the band gap value is given in the horizontal
the seli-energy in the GWA is the same as in the HFA bUtaxis. Each vertical line is drawn at the experimental low tem-

Eﬂe Coultomb_lntergc:_lo_n IS dyr;e:mclilllz);s?rrﬁened remedé’,'n%erature band gap value for each of the 27 semiconductors
€ most serious deficiency of the - e cormesponding,\sigered. The vertical axis represents the absolute percent

self-energy ?S thereforg non-local and energy dppendent. Th@rror, (Error(%)|) calculated as shown at the bottom of Ta-

Green function is obtained from a Dyson equatlon ofthe for le I. The three data on each vertical line correspond to the
G.; G?tE GOZC; whereGg descrllbtgs thetdlrecif[ propagation o it otained using the mBJLDA potential, the HSE method
without the exchange and correlation interaction ancbn- and the GWA. So, for a particular semiconductor, the graph

tains all possible exchange and correlation interactions wit ompares directly the performance of each of the three best
the system that an electron can have in its propagation. Threﬁethods as found in this work. (see Table I)

GWA may be regarded as a generalization of the HFA but As it is very well known [7] and as it appears in Ta-

with & dynfam|_cally screened Coulomb interaction. The NONple I, the LDA does not reproduce the experimental values of
local HFA is given by the band gap of semiconductors. Furthermore, The Wien2k
(ocg) (LDA) code produces for MgS and MgTe a band structure
¥ (r,r') = Z VH () (v — 1) (8)  Which shows a direct band gap in contradiction with experi-
P ment [20].
The results of the predictions obtained with the GWA are
Wherev(r — r’) is the bare Coulomb interaction. The GWA the most accurate with an averaged error of 5.7%. The em-
corresponds to replacing the bare Coulomb interactiy  pirical mBJLDA potential produces results with an averaged
a screened interaction W. In the language of perturbation thesrror of 8.4%. Next, the errors obtained with the HSE poten-
ory this corresponds to tial result in an averaged error of 10.2%, HSE06 (11.5%) and
i HISS (34.1%). The GWA, the mBJLDA potential, and HSE
Y (r, v w) = Q—/dw’G(r,r’,w +w")W(r,r',w’) (9) functional do better than the ones reported by Marqetes
T al. [28]. They get results with averaged errors 16.5%, 14.4%
For details see Ref. 11. We will analyze the results obtainegt 10.4% using the hybrid functional PBEQ, PBEQyx and
for the semiconductor gap value using this approximation irHSEOQGx, respectively. In this paper, the authors suggest
what follows. the possibility that the mixing parameter should be related to
In 2005, Rinke et al [31] using the so called physical variables. The performance of the GWA is highly
OEPx(cLDA)+GW approximation obtained a reasonableaccurate, 88% of the calculated results recorded here show
agreement with experiment when calculating the band gafess than 10% error. This is to be compared to the one ob-
of a certain number of semiconductors. In 2007, Shishkirtained when using mBJLDA (74%), HSE (54%), HSE (42%),
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TABLE |. We compare the results for the gafg,(, in eV, that we obtained with the Wien2k(LDA) code and with mBJLDA potential, with

the hybrid functionals HISS, HSE06, HSE and with the GWA (see text). The crystal structure and percentage difference with respect to the
experiment is shown in parenthesis. The minus sign means that the calculation underestimates the experimental value. The experimental data
are from Refs. 41 to 49.

Ga
Solid E;DA E;nBJLDA E;HSS ’ E;SEOG EI;SE EgWA ngpt.
The experimental band gap at Low temperature
C(A1) 4.16 (-24%) 4.95 (-9.7%) 6.11 (11.5%) 5.42 (-1.1%) 5.49 (0.2%) 2 @Ra%) 5.48
Si(Al) 0.45 (-62%) 1.17 (0.0%) 1.45 (23.9%) 1.22 (4.3%) 1.28 (9.4%) 11(@40%) 1.17
Ge(Al) 0.00 (-100%) 0.80 (8.1%) 1.08 (45.9%) 0.54 (-27.0%) 0.56 (-24.3%) 2 QL&) 0.74
MgO(B1) 5.00 (-36%) 7.22 (-7.1%) 7.87 (1.3%) 6.40 (-17.6%) 6.50(-16.3%) ° (F0%) 7.77
AlAs(B3) 1.32 (-41%) 2.17 (-2.7%) 2.40 (7.6%) 2.16 (-3.1%) 2.24 (0.4%) 2A1B2%) 2.23
SiC(B3) 1.30 (-46%) 2.26 (-6.6%) 2.74 (13.2%) 2.32 (-4.1%) 2.39 (-1.2%) 1248%) 2.42
AIP(B3) 1.43 (-42%) 2.33 (-4.9%) 2.71 (10.6%) 2.44 (-0.4%) 2.52 (2.9%) A5D%) 2.45
GaN(B3) 1.90 (-46%) 2.94 (-10.9%) 4.05 (22.7%) 2.97 (-10.0%) 3.03 (-8.2%) ' 3.0B%) 3.30
GaAs(B3) 0.47 (-69%) 1.56 (2.6%) 1.86 (22.4%) 1.18 (-22.4%) 1.21 (-20.4%) ¥ 1052%) 1.52
InP(B3) 0.45 (-68%) 1.52 (7.0%) 2.23 (57.0%) 1.61 (13.4%) 1.64 (15.5%) 4 1144%) 142
AISb(B3) 1.14 (-32%) 1.80 (7.1%) 2.05 (22.0%) 1.85 (10.1%) 1.99 (18.5%) 41-84%) 1.68
GasSb(B3) 0.07 (-91%) 0.90 (9.8%) 1.31 (59.8%) 0.70 (-14.6%) 0.72 (-12.2%) ° QBR4%) 0.82
GaP(B3) 1.39 (-41%) 2.24 (-4.7%) 2.67 (13.6%) 2.42 (3.0%) 2.47 (5.1%) 4 PeF) 2.35
InAs(B3) 0.0 (-100%) 0.55 (31.0%) 0.93 (121.4%) 0.36 (-14.3%) 0.39 (-7.1%) 40-4B%) 0.42
InSh(B3) 0.0 (-100%) 0.31 (29.2%) 0.80 (233.3%) 0.28 (16.7%) 0.29 (20.8%) 9 02AB%) 0.24
CdS(B3) 0.93 (-63%) 2.61 (5.2%) 2.72 (9.7%) 2.10 (-15.3%) 2.14 (-13.7%)  °pU2%) 2.48
CdTe(B3) 0.49 (-69%) 1.67 (4.4%) 2.00 (25.0%) 1.49 (-6.9%) 1.52 (-5.0%) " 1oa%) 1.60
CdSe(B3) 0.38 (-79%) 1.87 (5.6%) 1.90 (7.3%) 1.36 (-23.2%) 1.39 (-21.5%) ' @BB%) 1.77
ZnS(B3) 2.08 (-45%) 3.70 (-2.9%) 4.12 (8.1%) 3.37 (-11.5%) 3.42(-10.2%)  *3188%) 3.81
ZnSe(B3) 1.19 (-58%) 2.74 (-2.8%) 2.93 (3.9%) 2.27 (-19.5%) 2.32 (-17.7%) ' @) 2.82
ZnTe(B3) 1.20 (-50%) 2.38 (-0.4%) 2.77 (15.9%) 2.16 (-9.6%) 2.19 (-8.4%) 75507 2.39
MgS(B3) - 5.18 (-4.1%)* 5.17 (-4.3%) 4.48 (-17.0%) 4.78 (-11.5%) - 5.40
MgTe(B3) - 3.59 (-2.2%)* 3.91 (6.5 %) 3.49 (-4.9%) 3.74 (1.9%) - 3.67
GaN(B4) 2.06 (-41%) 3.13 (-10.6%) 4.23 (20.9%) 3.14 (-10.3%) 3.21(-8.3%) 9(3.8%) 3.50
InN(B4) 0.03 (-96%) 0.82 (15.5%) 1.51 (112.7%) 0.66 (-7.0%) 0.71 (0.0%) - 0.71
AIN(B4) 4.11 (-34%) 5.53 (-10.7%) 6.62 (6.9%) 5.50 (-11.2%) 6.45 (4.2%) 9 6B3%) 6.19
ZnO(B4) 0.76 (-78%) 2.76 (-19.8%) - - - 3.2-7.0%) 3.44
A(%) 60.2% 8.4% 34.1% 11.5% 10.2% 5.7% -
The experimental band gap at room temperature
BP(B3) 1.15 (-43%) 1.83 (-8.5%) 2.43 (21.5%) 2.21 (10.5%) 2.16 (8.0%) - 2.00
BN(B3) 4.39 (-29%) 5.85 (-5.6%) 6.69 (7.90%) 5.90 (-4.8%) 5.99 (-3.4%) 7.14 (15.2%) 6.20
MgSe(B1) 1.71 (-31%) 2.89 (17.0%) 3.05 (23.5%) 2.58 (4.5%) 2.62 (6.1%) - 2.47
BaS(B1) 1.93 (-50%) 3.31 (-14.7%) 3.61 (-7.0%) 3.21 (-17.3%) 3.28 (-15.5%) 3.92 (1.0%) 3.88
BaSe(B1) 1.74 (-51%) 2.87 (-19.8%) 3.14 (-12.3%) 2.80 (-21.8%) 2.87 (-19.8% - 3.58
BaTe(B1) 1.37 (-56%) 2.24 (-27.3%) 2.48 (-19.5%) 2.22 (-27.9%) 2.50 (-18.8%) - 3.08
BAs(B3) 1.23 (-16%) 1.72 (17.8%) 2.14 (46.6%) 1.89 (29.5%) 1.92 (31.5%) - 1.46

*with mBJ@r pa). 'scGW(h-e) in Ref. 32F scGW in Ref. 332Ref. 34.PRef. 35.PRef. 36.9Ref. 37.°Ref. 38.fRef. 39.9Ref. 40."Ref. 50.A (%) is the
— EF=PYy w100/ EL"P

average of the absolute percent deviations. We calculate the percent deviation as folloﬂ\%EﬂqrEgTeo-
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FIGURE 1. The vertical axis is the absolute percent erf&rior(%)|). Each vertical line is drawn at the low-temperature experimental band
gap value for each semiconductor. It compares, the three best results (GWA, mBJLDA, and HSE) according to our analysis. The inset show:
in more detail the semiconductors with a gap between 2.2 to 2.5 eV for clarity (see Table | and text).

HISS (35%). On the other hand, more than a 20% deviawith the result of important progress during the last approx-
tion from experiment occurs when using mBJLDA in 7% of imately ten years. As a continuation of our previos work
the cases, and with the GWA in 8% of the semiconductordPRB) where we performed a detailed analysis of the per-
studied, which is to be compared with HSE (15%), HISSformance of the recently published modified Becke-Johnson
(46%). All together, the best results are obtained when uspotential presented in this work our analysis of some different
ing the GWA; mBJLDA is next, but also HSE gives results solutions and compare their results among them to pinpoint
with acceptable accuracy. A special case is the very-low-gathe actual accuracy of this empirical potential as componed to
InSh. In this case none of the methods give less than a 20%ther methods. A group of 27 semiconductors (see Table 1)
error although it would be more reasonable to judge these rdor which we found low temperature data on the band gap
sults from the absolute deviation in electron-volts rather tharvalue were considered. The results of the GWA, the Wien2k
from the percent deviation (see Table ). It is important forimplemented with the mBJLDA potential, and codes using a
the overall picture to stress that the GWA and our calculahybrid functional, HSE, and HISS were taken into consider-
tions with the mBJLDA potential present deviations less tharation. The results reported by Marquetsal. [28] were found
5% in 15 of the 27 semiconductors considered. When th¢o be less accurate than the ones of the GWA, the mBJLDA
HSE potential is considered, 12 of the 27 present less thanpotential and the HSE functional (see text above for the pre-
5% deviation. cise definition used here). The GWA was found to give, all
One more observation. In the previous analysis we tookogether the best results. The mBJLDA potential produces
into account only low temperature band gap data. In Tafesults slightly less accurate and HSE comes next. The two
ble I, we also present some calculations for which we didfirst methods give quite good results (prediction better than
not found experimental reports at low temperature. Since th&% for 15 of the 27 semiconductors studied). In Fig. 1, we
calculations are done at OK, room-temperature measurementompare the performance of the three best methods found in
require extrapolation either using Varshni's law or a quadratighis analysis for each of the 27 semiconductors separately. It
fit or any other suitable method which, in any case, generatds important to stress the empirical character of the mBJLDA
an extra incertitude in the obtained OK data. If we rather usgotential because it prevents the consistent definition of the
the high temperature data, the HSE potentials give a betteptimization procedure which contrasts with the sound bases
agreement with experiment. of the GWA. Even with the several theoretical non-properly
Recently the mBJLDA potential has presented very goodsolved issues, the mBJLDA potential gives rise to acceptable
results in the study of complex systems. Is the case of thgredictions of the band gap value as compared to experiment.
electronic, and magnetic features of the metal-insulator tranAn extra factor to be taken into account is the computational
sition phase of VO2, which are well reproduced using thecost. If one would seek for precision without taking this fac-
mBJ potential [51]. This result does not reproduces correctljor into account, the GWA is the method to use. If one would
using the hybrid functional HSE [52]. prefer to sacrifice a little the precision obtained against the
savings in computational cost, the mBJLDA potential seems
the appropriate method. In conclusion, we can typify the
7. Conclusions state of matters with respect to the calculation of the band
gap of semiconductors as follows. A quite precise method

The accurate calculation of the band gap of semiconductorgpes exist, the GWA approximation. It's computational cost
is a difficult task that has been the object of intense research
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