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This paper is a continuation of our detailed study [Phys. Rev. B 86, 195106 (2012)] of the performance of the recently proposed modified
Becke-Johnson potential (mBJLDA) within the known Wien2k code. From the 41 semiconductors that we have considered in our previous
paper to compute the band gap value, we selected 27 for which we found low temperature experimental data in order to pinpoint the relative
situation of the newly proposed Wien2k(mBJLDA) method as compared to other methods in the literature. We found that the GWA gives the
most accurate predictions. The Wien2k (mBJLDA) code is slightly less precise, in general. The Hybrid functionals are less accurate, on the
overall. The GWA is definitely the most precise existing method nowadays. In 88% of the semiconductors considered the error was less than
10%. Both, the GWA and the mBJLDA potential, reproduce the band gap of 15 of the 27 semiconductors considered with a 5% error or less.
An extra factor to be taken into account is the computational cost. If one would seek for precision without taking this factor into account,
the GWA is the method to use. If one would prefer to sacrifice a little the precision obtained against the savings in computational cost, the
empirical mBJLDA potential seems to be the appropriate method. We include a graph that compares directly the performance of the best
three methods, according to our analysis, for each of the 27 semiconductors studied. The situation is encouraging but the problem is not yet
a closed issue.
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1. Introduction

Khon-Sham equations [1] are central to the practical appli-
cation of Density Functional Theory (DFT). To solve them,
an approximation to the exchange and correlation energy is
required from which an exchange and correlation potential is
derived. The way in which this term is approximated is cru-
cial to the proper description of the band structure of solids.
The Local Density Approximation (LDA) [2], the General-
ized Gradient Approximation (GGA) [3–5] and the meta-
GGA [3, 6], among others, describe very well the electronic
band structure of even complicated metallic systems. They
fail, nevertheless to account for the band gap value of semi-
conducting systems, a short come known for several years
now [7]. Efforts to solve this problem were done since long
ago. Approximations as the “scissor operator” [8], the Lo-
cal Spin Density Approximation, LSDA+U [9] and methods
based on the use of Green’s functions and perturbation the-
ory as the GW approximation, GWA [10–12], were proposed.
In the last ten years, these efforts gave rise to substantially
improved results. Some of the new proposals include, the
screened hybrid functional of Heyd, Scuseria and Ernzerhof
(HSE) [13–15] and the middle-range exchange and correla-
tion hybrid functional of Henderson, Izmaylov, Scuseria and
Savin (HISS) [16, 17]. Another recent proposal is the mod-
ified Becke-Johnson potential (mBJLDA) proposed by Tran
and Blaha [18]. This potential was introduced to the Wien2k
code [19] in 2010.

2. The mBJLDA potential

Recently, we made a detailed analysis of the mBJLDA poten-
tial based on the calculation of the electronic band structure

of 41 semiconductors [20]. This paper is a continuation of
that work. We found an important improvement in the pre-
dictions of the band gap as compared to experiment. The
mBJLDA potential [18] is a empirical potential of the form
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α and β are free parameters. The Wien2k code defines
α = −0.012 and β = 1.023 Bohr1/2. These values are
general but certainly fixed experimenting with several cases.
A particular feature of this potential is that a correspond-
ing exchange and correlation energy term ,Exc[ρ], such that
the mBJLDA potential is obtained in the usual way, namely,
Vxc = δExc[ρ]/δρ, is not possible. As a consequence, a
consistent optimization procedure to obtain the lattice pa-
rameters, the Bulk modulus and its derivative with respect
to pressure are not actually possible. This is a consequence
of the empirical character of this potential. For that rea-
son, Tran and Blaha have proposed the empirical alternative
that prior to a band structure calculation with the mBJLDA
potential, the lattice parameter is found from either a LDA
or a GGA optimization procedure and the result introduced
into the code to perform the band structure calculation of
the semiconductor system. Such a procedure gives rise to
quite improved results as compared to the previous version of
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the Wien2k code. It is known that the LDA underestimates
as a rule, the lattice parameters and, on the contrary, GGA
overestimates them. We have explored the possibility of us-
ing the averaged value as the lattice parameter,aAvg, where
aAvg = (aLDA + aGGA)/2. HereaLDA (aGGA) is the lattice
parameter obtained from an LDA (GGA) optimization pro-
cedure. WhenaAvg is used as input into the Wien2k code im-
plemented with the mBJLDA potential, a better agreement of
the band gap value with experiment is obtained as compared
to the results with eitheraLDA or aGGA. So this procedure
turns out to give better results than the one recommended by
Tran and Blaha and its extra computational cost is relatively
low. A surprising result was, nevertheless, obtained when
the experimental low temperature lattice parameter,aLT , was
introduced instead. Unexpected deviations of the band gap
value from experiment as big as 48% were obtained [20].
This is a disturbing result since the lattice parameters ob-
tained from any optimization procedure are judged to be as
good as the deviation from the experimental lattice param-
eter value is small, and so one expects to get the best result
(the minimum deviation of the predicted band gap value from
experiment) when the experimental lattice parameter is used.
This is not the case. This fact throws doubts on the meaning
of the optimization procedure altogether when the empirical
mBJLDA code is employed. Nevertheless, we stress that the
results obtained for the band gap value of semiconductors us-
ing the mBJLDA potential represents a relevant improvement
at relatively low computational cost, a fact that we will em-
phasize below.

3. The HSE method

Hybrid functionals are a linear combination of Hartree-Fock
(HF), LDA and GGA terms and were proposed initially with
the aim of improving LDA and GGA in the calculation of
the energy bands of molecules [22, 23]. More recently, hy-
brid functionals were used as an effort to improve the old-
standing problem of the band gap of semiconductors; they
include the Heyd-Scuseria-Ernzerhof (HSE) functional [13]
proposed in 2003. It combines a screened short-range HF
term and a screened short- and long-range functional pro-
posed by Perdew, Burke and Ernzerhof (PBE) [4]. The
screened terms in HSE result from splitting the Coulomb op-
erator into short- and long-range terms in the following way

1
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where the complementary error function

erfc(ωr) = 1− erf(ωr)

andω determines the range. The functional form of HSE is
based on the hybrid functional of Perdew, Burke and Ernz-
erhof (PBEh) [24] (also known in the literature as PBE1PBE
and PBE0) [25,26], as follows
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The expression for the HSE exchange-correlation energy,
EHSE

xc , is
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whereEHF,SR
x is the HF short-range functional (SR),EωPBE,SR

x

andEωPBE,LR
x are the short-range (SR) and long-range (LR)

components of the PBE functional.a is a mixing constant
that is derived from perturbation theory [27]. In the litera-
ture, the functional HSE appears as HSE03 and HSE06. The
difference is in the choice of the value ofω. We will refer
to the HSE03 simply as HSE, in this work. In 2005, Heydet
al. [14] reported a study of the band gap and lattice parame-
ters of semiconductor compounds using the HSE functional.
We will comment on these results below.

Recently, Marqueset al. [28] have proposed to relate the
mixing constanta to dielectric properties of the solid. They
took a = 1/εPBE

∞ . Their calculation using the hybrid func-
tional PBE0 improves the predictions for the band gap value
of the 21 semiconductors considered as compared to the orig-
inal formulation. Furthermore, they useda ∼ ḡ, anda ∼ ḡ4

whereḡ takes the form of the term in parenthesis in Eq. (2).
They introduced this form of thea parameter into the hy-
brid functionals PBE0 and HSE06, respectively, and got an
improved result. These proposals improve the performance
of the hybrid functionals at no extra cost. We will comment
further on these results below.

4. The HISS potential

Another successful potential to calculate the band structure
of semiconductors is the middle-range hybrid exchange and
correlation Henderdon-Izmaylov-Scuderia-Savia functional
(HISS) [16,17]. It also uses the PBE potential but in a differ-
ent way,

EHISS
xc =ESR-PBE

x +ELR-PBE
x

+EPBE
c +cMR(EMR-HF

x −EMR-PBE
x ), (6)

where the last two terms in parentheses are the middle-range
(MR) exact exchange and middle-range PBE exchange ener-
gies, given by
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In 2012, Luceroet al. [29] reported their study of the
band gap and lattice parameters of some semiconductor com-
pounds using HISS, withωSR = 0.84a−1

0 , ωLR = 0.20a−1
0 y

cMR = 0.60. These values were determined by fitting them to
some atomization energies, barriers hights and values of the
gap for some compounds.
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5. The GW approximation (GWA)

As it is well known, the many-body Shrödinger equation con-
tains the Coulomb interaction term which is a two-body po-
tential and creates the difficulty to solve it for realistic sys-
tems. To address this problem, the Hartree-Fock Approx-
imation (HFA) adds to the average Coulomb potential (the
Hartree term) a non-local exchange potential which reflects
the Pauli Exclusion principle. The energy gap of semicon-
ductors predicted in this way turns out to be in most cases too
large. This is due to the neglect of correlations or screening
which are crucial in solids. To simulate the effect of corre-
lations, Slater introduced theXα approximation which may
be regarded as a precursor of the modern DFT. In DFT, the
ground state energy can be proved to be a functional of the
ground state density but the explicit form of the functional
is not known. The minimization of the total energy func-
tional with respect to the density gives the Kohn-Sham equa-
tions. The unknown exchange and correlation potential is ap-
proximated either by the local density approximation (LDA),
the generalized gradient approximation (GGA) or the meta-
GGA, among others, which describe metals well but fail to
account for the band gap of semiconductors. The empirical
mBJLDA potential is a response. An alternative way to deal
with this problem is the GW approximation (GWA). It is de-
rived from many-body perturbation theory [30]. The form of
the self-energy in the GWA is the same as in the HFA but
the Coulomb interaction is dynamically screened remedying
the most serious deficiency of the HFA. The corresponding
self-energy is therefore non-local and energy dependent. The
Green function is obtained from a Dyson equation of the form
G = G0 + G0ΣG whereG0 describes the direct propagation
without the exchange and correlation interaction andΣ con-
tains all possible exchange and correlation interactions with
the system that an electron can have in its propagation. The
GWA may be regarded as a generalization of the HFA but
with a dynamically screened Coulomb interaction. The non-
local HFA is given by

Σx(r, r′) =
(occ)∑

kn

ψ∗(r)ψ(r′)ν(r− r′) (8)

Whereν(r− r′) is the bare Coulomb interaction. The GWA
corresponds to replacing the bare Coulomb interactionν by
a screened interaction W. In the language of perturbation the-
ory this corresponds to

Σx(r, r′, ω) =
i

2π

∫
dω′G(r, r′, ω + ω′)W (r, r′, ω′) (9)

For details see Ref. 11. We will analyze the results obtained
for the semiconductor gap value using this approximation in
what follows.

In 2005, Rinke et al. [31] using the so called
OEPx(cLDA)+GW approximation obtained a reasonable
agreement with experiment when calculating the band gap
of a certain number of semiconductors. In 2007, Shishkin

et al. [32, 33] using a self-consistent GWA (GWA + DFT),
and the self-consistent GW approximation with attractive
electron-hole interaction, scGW(e-h) accounted quite well
for the experimental band gap of several semiconductors.

Now we proceed to analyze some of the different offers in
the literature in what the calculation of the band gap of semi-
conductors is concerned and compare their results among
themselves and with experiment.

6. Analysis

In Table I, we present the results obtained for the band gap
using different methods and approximations. The first two
columns refer to our calculation. The resulting values using
LDA and mBJLDA [20] as in version 2011 of Wien2k code
are presented. We have used as lattice parameter the average
of the values obtained from an LDA and a GGA optimiza-
tion which, as we found [20], gives the best results for the
gap as compared to experiment when the mBJLDA potential
is used. Next we report the values obtained with the hybrid
HISS and HSE06 functional [29], HSE [13, 14] and GWA.
In the column denoted as GWA, we include the most precise
predictions for the gap reported in the literature using either
the self consistent GW (scGWA) [33–40] or the scGWA with
attractive electron-hole interaction, scGW(e-h) [32].

In Fig. 1, the band gap value is given in the horizontal
axis. Each vertical line is drawn at the experimental low tem-
perature band gap value for each of the 27 semiconductors
considered. The vertical axis represents the absolute percent
error, (|Error(%)|) calculated as shown at the bottom of Ta-
ble I. The three data on each vertical line correspond to the
result obtained using the mBJLDA potential, the HSE method
and the GWA. So, for a particular semiconductor, the graph
compares directly the performance of each of the three best
methods as found in this work. (see Table I).

As it is very well known [7] and as it appears in Ta-
ble I, the LDA does not reproduce the experimental values of
the band gap of semiconductors. Furthermore, The Wien2k
(LDA) code produces for MgS and MgTe a band structure
which shows a direct band gap in contradiction with experi-
ment [20].

The results of the predictions obtained with the GWA are
the most accurate with an averaged error of 5.7%. The em-
pirical mBJLDA potential produces results with an averaged
error of 8.4%. Next, the errors obtained with the HSE poten-
tial result in an averaged error of 10.2%, HSE06 (11.5%) and
HISS (34.1%). The GWA, the mBJLDA potential, and HSE
functional do better than the ones reported by Marqueset
al. [28]. They get results with averaged errors 16.5%, 14.4%
y 10.4% using the hybrid functional PBE0ε∞ , PBE0mix and
HSE06mix, respectively. In this paper, the authors suggest
the possibility that the mixing parameter should be related to
physical variables. The performance of the GWA is highly
accurate, 88% of the calculated results recorded here show
less than 10% error. This is to be compared to the one ob-
tained when using mBJLDA (74%), HSE (54%), HSE (42%),
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TABLE I. We compare the results for the gap (Eg), in eV, that we obtained with the Wien2k(LDA) code and with mBJLDA potential, with
the hybrid functionals HISS, HSE06, HSE and with the GWA (see text). The crystal structure and percentage difference with respect to the
experiment is shown in parenthesis. The minus sign means that the calculation underestimates the experimental value. The experimental data
are from Refs. 41 to 49.

Gap

Solid ELDA
g EmBJLDA

g EHISS
g EHSE06

g EHSE
g EGWA

g EExpt.
g

The experimental band gap at Low temperature

C(A1) 4.16 (-24%) 4.95 (-9.7%) 6.11 (11.5%) 5.42 (-1.1%) 5.49 (0.2%) 5.6a (2.2%) 5.48

Si(A1) 0.45 (-62%) 1.17 (0.0%) 1.45 (23.9%) 1.22 (4.3%) 1.28 (9.4%) 1.24† (6.0%) 1.17

Ge(A1) 0.00 (-100%) 0.80 (8.1%) 1.08 (45.9%) 0.54 (-27.0%) 0.56 (-24.3%) 0.75a (1.4%) 0.74

MgO(B1) 5.00 (-36%) 7.22 (-7.1%) 7.87 (1.3%) 6.40 (-17.6%) 6.50(-16.3%) 7.7b (-0.9%) 7.77

AlAs(B3) 1.32 (-41%) 2.17 (-2.7%) 2.40 (7.6%) 2.16 (-3.1%) 2.24 (0.4%) 2.18c (-2.2%) 2.23

SiC(B3) 1.30 (-46%) 2.26 (-6.6%) 2.74 (13.2%) 2.32 (-4.1%) 2.39 (-1.2%) 2.53† (4.5%) 2.42

AlP(B3) 1.43 (-42%) 2.33 (-4.9%) 2.71 (10.6%) 2.44 (-0.4%) 2.52 (2.9%) 2.57† (4.9%) 2.45

GaN(B3) 1.90 (-46%) 2.94 (-10.9%) 4.05 (22.7%) 2.97 (-10.0%) 3.03 (-8.2%) 3.27† (-0.9%) 3.30

GaAs(B3) 0.47 (-69%) 1.56 (2.6%) 1.86 (22.4%) 1.18 (-22.4%) 1.21 (-20.4%) 1.52‡ (0.0%) 1.52

InP(B3) 0.45 (-68%) 1.52 (7.0%) 2.23 (57.0%) 1.61 (13.4%) 1.64 (15.5%) 1.44d (1.4%) 1.42

AlSb(B3) 1.14 (-32%) 1.80 (7.1%) 2.05 (22.0%) 1.85 (10.1%) 1.99 (18.5%) 1.64d (-2.4%) 1.68

GaSb(B3) 0.07 (-91%) 0.90 (9.8%) 1.31 (59.8%) 0.70 (-14.6%) 0.72 (-12.2%) 0.62d (-24.4%) 0.82

GaP(B3) 1.39 (-41%) 2.24 (-4.7%) 2.67 (13.6%) 2.42 (3.0%) 2.47 (5.1%) 2.55d (8.5%) 2.35

InAs(B3) 0.0 (-100%) 0.55 (31.0%) 0.93 (121.4%) 0.36 (-14.3%) 0.39 (-7.1%) 0.40d (-4.8%) 0.42

InSb(B3) 0.0 (-100%) 0.31 (29.2%) 0.80 (233.3%) 0.28 (16.7%) 0.29 (20.8%) 0.18d (-25%) 0.24

CdS(B3) 0.93 (-63%) 2.61 (5.2%) 2.72 (9.7%) 2.10 (-15.3%) 2.14 (-13.7%) 2.45e (-1.2%) 2.48

CdTe(B3) 0.49 (-69%) 1.67 (4.4%) 2.00 (25.0%) 1.49 (-6.9%) 1.52 (-5.0%) 1.76f (10.0%) 1.60

CdSe(B3) 0.38 (-79%) 1.87 (5.6%) 1.90 (7.3%) 1.36 (-23.2%) 1.39 (-21.5%) 2.01f (13.6%) 1.77

ZnS(B3) 2.08 (-45%) 3.70 (-2.9%) 4.12 (8.1%) 3.37 (-11.5%) 3.42 (-10.2%) 3.86‡ (1.3%) 3.81

ZnSe(B3) 1.19 (-58%) 2.74 (-2.8%) 2.93 (3.9%) 2.27 (-19.5%) 2.32 (-17.7%) 2.84f (0.7%) 2.82

ZnTe(B3) 1.20 (-50%) 2.38 (-0.4%) 2.77 (15.9%) 2.16 (-9.6%) 2.19 (-8.4%) 2.57f (7.5%) 2.39

MgS(B3) - 5.18 (-4.1%)* 5.17 (-4.3%) 4.48 (-17.0%) 4.78 (-11.5%) - 5.40

MgTe(B3) - 3.59 (-2.2%)* 3.91 (6.5 %) 3.49 (-4.9%) 3.74 (1.9%) - 3.67

GaN(B4) 2.06 (-41%) 3.13 (-10.6%) 4.23 (20.9%) 3.14 (-10.3%) 3.21 (-8.3%) 3.5g (0.0%) 3.50

InN(B4) 0.03 (-96%) 0.82 (15.5%) 1.51 (112.7%) 0.66 (-7.0%) 0.71 (0.0%) - 0.71

AlN(B4) 4.11 (-34%) 5.53 (-10.7%) 6.62 (6.9%) 5.50 (-11.2%) 6.45 (4.2%) 5.8g (-6.3%) 6.19

ZnO(B4) 0.76 (-78%) 2.76 (-19.8%) - - - 3.2† (-7.0%) 3.44

∆(%) 60.2% 8.4% 34.1% 11.5% 10.2% 5.7% -

The experimental band gap at room temperature

BP(B3) 1.15 (-43%) 1.83 (-8.5%) 2.43 (21.5%) 2.21 (10.5%) 2.16 (8.0%) - 2.00

BN(B3) 4.39 (-29%) 5.85 (-5.6%) 6.69 (7.90%) 5.90 (-4.8%) 5.99 (-3.4%) 7.14 (15.2%) 6.20

MgSe(B1) 1.71 (-31%) 2.89 (17.0%) 3.05 (23.5%) 2.58 (4.5%) 2.62 (6.1%) - 2.47

BaS(B1) 1.93 (-50%) 3.31 (-14.7%) 3.61 (-7.0%) 3.21 (-17.3%) 3.28 (-15.5%) 3.92 (1.0%)h 3.88

BaSe(B1) 1.74 (-51%) 2.87 (-19.8%) 3.14 (-12.3%) 2.80 (-21.8%) 2.87 (-19.8% - 3.58

BaTe(B1) 1.37 (-56%) 2.24 (-27.3%) 2.48 (-19.5%) 2.22 (-27.9%) 2.50 (-18.8%) - 3.08

BAs(B3) 1.23 (-16%) 1.72 (17.8%) 2.14 (46.6%) 1.89 (29.5%) 1.92 (31.5%) - 1.46

∗with mBJ(aLDA). †scGW(h-e) in Ref. 32.‡ scGW in Ref. 33.aRef. 34.bRef. 35.bRef. 36.dRef. 37.eRef. 38. fRef. 39.gRef. 40.hRef. 50.∆(%) is the

average of the absolute percent deviations. We calculate the percent deviation as follows Error(%) = (ETeo.
g − EExpt

g ) ∗ 100/EExpt
g .
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FIGURE 1. The vertical axis is the absolute percent error (|Error(%)|). Each vertical line is drawn at the low-temperature experimental band
gap value for each semiconductor. It compares, the three best results (GWA, mBJLDA, and HSE) according to our analysis. The inset shows
in more detail the semiconductors with a gap between 2.2 to 2.5 eV for clarity (see Table I and text).

HISS (35%). On the other hand, more than a 20% devia-
tion from experiment occurs when using mBJLDA in 7% of
the cases, and with the GWA in 8% of the semiconductors
studied, which is to be compared with HSE (15%), HISS
(46%). All together, the best results are obtained when us-
ing the GWA; mBJLDA is next, but also HSE gives results
with acceptable accuracy. A special case is the very-low-gap
InSb. In this case none of the methods give less than a 20%
error although it would be more reasonable to judge these re-
sults from the absolute deviation in electron-volts rather than
from the percent deviation (see Table I). It is important for
the overall picture to stress that the GWA and our calcula-
tions with the mBJLDA potential present deviations less than
5% in 15 of the 27 semiconductors considered. When the
HSE potential is considered, 12 of the 27 present less than a
5% deviation.

One more observation. In the previous analysis we took
into account only low temperature band gap data. In Ta-
ble I, we also present some calculations for which we did
not found experimental reports at low temperature. Since the
calculations are done at 0K, room-temperature measurements
require extrapolation either using Varshni’s law or a quadratic
fit or any other suitable method which, in any case, generates
an extra incertitude in the obtained 0K data. If we rather use
the high temperature data, the HSE potentials give a better
agreement with experiment.

Recently the mBJLDA potential has presented very good
results in the study of complex systems. Is the case of the
electronic, and magnetic features of the metal-insulator tran-
sition phase of VO2, which are well reproduced using the
mBJ potential [51]. This result does not reproduces correctly
using the hybrid functional HSE [52].

7. Conclusions

The accurate calculation of the band gap of semiconductors
is a difficult task that has been the object of intense research

with the result of important progress during the last approx-
imately ten years. As a continuation of our previos work
(PRB) where we performed a detailed analysis of the per-
formance of the recently published modified Becke-Johnson
potential presented in this work our analysis of some different
solutions and compare their results among them to pinpoint
the actual accuracy of this empirical potential as componed to
other methods. A group of 27 semiconductors (see Table I)
for which we found low temperature data on the band gap
value were considered. The results of the GWA, the Wien2k
implemented with the mBJLDA potential, and codes using a
hybrid functional, HSE, and HISS were taken into consider-
ation. The results reported by Marqueset al. [28] were found
to be less accurate than the ones of the GWA, the mBJLDA
potential and the HSE functional (see text above for the pre-
cise definition used here). The GWA was found to give, all
together the best results. The mBJLDA potential produces
results slightly less accurate and HSE comes next. The two
first methods give quite good results (prediction better than
5% for 15 of the 27 semiconductors studied). In Fig. 1, we
compare the performance of the three best methods found in
this analysis for each of the 27 semiconductors separately. It
is important to stress the empirical character of the mBJLDA
potential because it prevents the consistent definition of the
optimization procedure which contrasts with the sound bases
of the GWA. Even with the several theoretical non-properly
solved issues, the mBJLDA potential gives rise to acceptable
predictions of the band gap value as compared to experiment.
An extra factor to be taken into account is the computational
cost. If one would seek for precision without taking this fac-
tor into account, the GWA is the method to use. If one would
prefer to sacrifice a little the precision obtained against the
savings in computational cost, the mBJLDA potential seems
the appropriate method. In conclusion, we can typify the
state of matters with respect to the calculation of the band
gap of semiconductors as follows. A quite precise method
does exist, the GWA approximation. It’s computational cost
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is higher. A relatively quicker code, the Wien2k implemented
with the mBJLDA potential, gives somehow less accurate re-
sults but quite acceptable at lower computational cost. Other
methods do exist but are less accurate. Very recently, the new
approximation announced in the Ref. [53] was implemented
in the Wien2k 12.1 code for public use. The new hybrid func-
tional YS-PBE0 is “equivalent” to the HSE one, according to
the authors. We will study this new functional in future work.
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49. G. Raḿırez-Flores, H. Navarro-Contreras, A. Lastras-Martı́nez,
R. C. Powell and J. E. Greene,Phys. Rev. B50 (1994) 8433.

50. L. Tie-Yu, C. De-Chan and H. Mei-Chun,Chinese Phys. Lett.
23 (2005) 943.

51. R. Grau-Crespo, H. Wang and U. Schwingenschlogl,Phys. Rev.
B 86 (2012) 081101(R).

52. Z. Zhu and U. Schwingenschlogl,Phys. Rev. B86 (2012)
075149.

53. F. Tran and P. Blaha,Phys. Rev. B83 (2011) 235118.

Rev. Mex. Fis.59 (2013) 453–459


