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Received 10 December 2012; accepted 23 May 2013

The Standard Model (SM), despite of being phenomenologically extremely successful, presents some fundamental questions, like the big
differences in the values of the masses of the quarks (hierarchy of masses), and the possible generation of flavour changing neutral currents
(inspired by the evidence about the oscillations of neutrinos). Hints how these questions might be answered may be obtained by the study of
the Higgs sector of models beyond the standard model. The simplest extension of the SM known as the two-Higgs-doublet-model (2HDM)
involves a second Higgs doublet and predicts the existence of five scalar particles: three neutral (A0), (h0, H0) and two charged (H±). In
this paper we focus our attention on the basic results of the model, the masses of the five particles, and the theoretical constraints imposed
by vacuum stability and the triviality principle. We address, on one side, the range of validity in the energy scale of the 2HDM by means
of the renormalization group equations, and on the other, the consequences of a top/bottom Yukawa coupling unification, assuming that the
hierarchy of the quark masses is atributted to the vacuum expectation valuesv1 andv2 of the Higgs fields and not to the Yukawa couplings.

Keywords: 2HDM Higgs masses; electroweak Higgs sector extensions; beyond standard model.

A pesar de que el modelo estándar (SM) es extremadamente exitoso fenomenológicamente, presenta algunos interrogantes fundamentales,
tales como la gran diferencia en los valores de las masas de los quarks (jerarquı́a de masas) y la posible generación de corrientes d́ebiles
que cambien el sabor (inspirada en la evidencia de las oscilaciones de neutrinos). Algunos indicios de cómo estos interrogantes pueden
ser contestados podrı́an ser obtenidos mediante el estudio del sector de Higgs de modelos más alĺa del modelo estándar. La extensión más
simple del SM, conocida como el modelo estándar con dos dobletes de Higgs (2HDM) involucra un segundo doblete y predice la existencia
de cinco part́ıculas escalares: tres neutras (A0), (h0, H0) y dos cargadas (H±). En este trabajo enfocamos nuestra atención en los resultados
básicos del modelo, las masas de las cinco partı́culas y las restricciones teóricas impuestas por las condiciones de estabilidad del vacı́o y
el principio de trivialidad para determinar, por un lado el alcance en la escala de energı́as del 2HDM mediante las ecuaciones del grupo de
renormalizacíon, y por el otro, las consecuencias de una unificación de los acoplamientos de Yukawa de los sectores up/down de los quarks,
asumiendo que la jerarquı́a de masas de los quarks es atribuı́ble, a los valores esperados en el vacı́o v1 y v2 de los campos de Higgs y no a
los acoplamientos de Yukawa.

Descriptores: Masas Higgses 2HDM; sector Higgs electrodébil extendido; ampliación modelo est́andar.

PACS: 12.15.-y; 12.60.Fr; 12.60.-i; 14.80.Cp.

1. Introduction

The Standard Model(SM) in high energy physics [1–3] has
been remarkably successful in describing the properties of el-
ementary particles, predicting the existence of the quarksc, t
andb, and the third generation of leptonsτ - ντ , the existence
of the eight gluons, the weak bosonsW±, Z0 and the Higgs
boson [4, 5] before their discovery, predicting parity violat-
ing neutral-weak-currents, and in being consistent with all
the experimental results [6, 7]. However, the SM falls short
of being a complete theory of the fundamental interactions
because of its lack of explanation of the probable unification
of the fundamental interactions, the pattern and disparity of
the particle masses (mass hierarchy), the origin of the CP vio-
lation in nature, the matter-antimatter asymmetry, the pattern
of quark mixing, lepton mixing and the reason why there are
3 generations.

As a partial solution to confront these deficiencies, a large
number of parameters must be put in “by hand” into the the-
ory (rather than being derived from first principles), such as
the three gauge couplings (g1, g2, g3), nine fermionic masses
(six quarks and three leptons), the Weinberg angle (θW ), four
quark-mixing parameters (CKM) and two more parameters
in relation to the Higgs potential (µ andλ).

One of the most subtle aspects of the model is associ-
ated with the Higgs sector [8]. The Higgs field and its non-
vanishing vacuum expectation value (vev) is the essential
ingredient to carry out the spontaneous symmetry breaking
(SSB) required to transform the hypothetical massless parti-
cles in the Lagrangian into the actual massive physical parti-
cles.

The extension of the SM with two Higgs doublets
presents also the challenge that the quartic interactions be-
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tween the scalar doublets are not theoretically determined.
This model is widely studied. Recently, it has been reviewed
in the very interesting and complete paper [9], where exten-
sive references to the original literature may be found.

The general properties of the Higgs quartic potential have
been studied in Refs. 10 and 11 on the basis of the Minkowski
space structure of the 2HDM quartic potential. This analysis
was oriented towards the possible topological structure of the
Higgs potential that depends on the parametersλi of the po-
tential and it did not address specific phenomenological prob-
lems. The connection of this analysis with the phenomenol-
ogy is further complicated by the general nature of the con-
sidered transformations which also affect the kinetic part of
the Higgs Lagrangian. Our analysis is compatible with the
results of Refs. 10 to 12.

In this paper we consider this model mainly for three rea-
sons. The first one is that the 2HDM has a much richer Higgs
spectrum (3 neutral and 2 charged Higgses) and a different
high energy behavior. This makes that a lower mass than
in the SM Higgs is permitted. Another reason may be that
a different pattern of hierarchy of the Yukawa couplings is
possible, because of the presence of two independent vacuum
expectation values of the Higgs fields (the importance of such
analysis can be seen for example in the Higgs search scenar-
ios,e.g., see [13,14]). The third reason is that the Higgs sec-
tor of the Minimal Supersymmetric Standard Model (MSSM)
requires at least two Higgs doublets, so the Higgs sectors of
the MSSM and the 2HDM are similar and the study of the
2HDM model may give important information on the prop-
erties of the Higgs sector in the MSSM (see for example
Ref. 15).

The purpose of this work is to consider the masses of the
five remnant particles that the model entails, and their de-
pendence on the parametersλi andvj . As the values of the
quartic interactionsλi between the scalar doublets are not
theoretically determined, we propose several values for them
inspired in some values for the Higgs masses or unification
mechanism, given in the literature [16–25]. The values of
theλ’s that reproduce those masses, are constrained through
stability and triviality principles. By using the proposed pa-
rameters we explore their energy dependence and the reper-
cussion on the energy behaviour of the masses of the Higgses
by numerically solving the renormalization group equations.
Through the former results we obtain the region of validity of
the model.

In Sec. 2, we introduce the Higgs potential for the 2HDM
in a special parametrization, and the SSB for the normal vac-
uum conditions. In Sec. 3 we go over the Higgs mass matrix
and its diagonalization results, mass eigestates and the mass
spectrum. In Sec. 4 we classify the constraints for the quartic
couplings derived from the mass formulas, from the vacuum
stability principle and by imposing extreme stability condi-
tions in which the lightest neutral Higgs boson is massles. In
Sec. 5 we numerically solve the set of the renormalization
group equations. Finally, Sec. 6 is devoted to the presenta-
tion of the results and the conclusions. In the appendix we

present four tables related to the cases in which the model is
valid until the electroweak unification scale.

2. The two-Higgs doublet model

In the SM the fermion masses arise, after the SSB, from the
couplings between the fermions and a single Higgs doublet.
The mass ratio of theb andt quark is of the order of1/40.
To understand in a natural way the origin of this difference
in the values of the masses of the third generation of quarks,
one can assume the existence of a second Higgs-doublet in
the Higgs sector of the SM. In this context one assumes that
the quarkb obtains its mass through theΦ1 doublet and the
quarkt from another doubletΦ2 (there are also other scenar-
ios for the quark mass generation in the 2DHM but we will
not be considering them here). In this way one can explain
in a more natural way the hierarchy problem of the Yukawa
couplings, as long as the free parameters of the new model
acquire the appropriate values.

The Higgs sector of the 2HDM consists of two identical
(hypercharge-one) scalar doubletsΦ1 andΦ2. There are sev-
eral proposals for the Higgs potential to describe the physical
reality in the framework of the 2HDM [9,26,27]. The poten-
tial we consider in this paper is compatible with Ref. 28. It is
such that the CP symmetry (charge-conjugation and parity)
in the Higgs sector is conserved, the neutral-Higgs mediated
flavor-changing neutral currents (FCNC) are suppressed in
the leptonic sector, and in the quark-sector they are also for-
bidden by the GIM mechanism [29] in the one loop approxi-
mation. It is by far the most studied type II 2HDM, since it is
the structure present in the Super Symmetric Models. In the
LagrangianL in which we leave out the leptonic terms,

L = Lgf + LKin + LY − V,

theLgf andLKin correspond to kinetic parts of quarks and
bosons and they contain the covariant derivatives that pro-
vide the interactions among the gauge bosons and the Higgs
bosons. They also give rise, after the SSB, to the masses
of the gauge bosons (mediators of the electroweak interac-
tions). The fermion masses are generated, as follows, from
the Yukawa couplings inLY

LY =
∑

i.j

(
g
(d)
ij ψLiΦ

c
1dRj + g

(u)
ij ψLiΦ2uRj

)
+ h.c.,

between the Higgs bosons and the quarks. InLY , theg
(u,d)
ij

are the Yukawa coupling matrices in the Higgs basis. The su-
perscripts(u, d) refer to the up and down sectors of quarks,
respectively and the subscripts(L,R) correspond to the left
handed doublets and right handed singlets in the quark sec-
tor. The explicit form of the Higgs doublets is given in the
next section. In this paper, we will focus our attention on the
potentialV .

The Higgs potentialV depends on seven real parame-
ters µ2

1, µ
2
2 and λi (i = 1..., 5) from which the five Higgs
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masses come up after the SSB. The most general renormaliz-
ableSU(2) × U(1) invariant Higgs potential, that preserves
a CP and a Z2 symmetry (Φ1 → Φ1, Φ2 → −Φ2) may be
written as

V = µ2
1Φ

†
1Φ1 + µ2

2Φ
†
2Φ2 + λ1

(
Φ†1Φ1

)2

+ λ2

(
Φ†2Φ2

)2

+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)

+
1
2
λ5

[(
Φ†1Φ2

)2

+
(
Φ†2Φ1

)2
]

. (1)

For the sake of simplicity a special basis is introduced

A = Φ†1Φ1, B = Φ†2Φ2, C ′ = D′† = Φ†1Φ2.

In this basis

V = µ2
1A + µ2

2B + λ1A
2 + λ2B

2

+ λ3AB + λ4C
′D′ +

1
2
λ5

[
C ′2 + D′2] .

The two Higgs doublets can be represented by eight real
fieldsφi, i = 1, . . . , 8,

Φ1 =
(

φ1 + iφ2

φ3 + iφ4

)
, Φ2 =

(
φ5 + iφ6

φ7 + iφ8

)
.

If charge is conserved and there is no CP violation in the
Higgs sector, after the SSB, the non-vanishing vacuum ex-
pectation values (vevs) of the fieldsφ3 andφ7 are real, and
the minimum occurs at

〈φ3〉 =
v1√
2
, 〈φ7〉 =

v2√
2
, (2)

hence

〈A〉 =
1
2
v2
1 , 〈B〉 =

1
2
v2
2 , 〈C ′〉 = 〈D′〉 =

1
2
v1v2.

as mentioned before,v1, and v2 are real, positive and
v2
1 + v2

2 = v2. Experimentally,v ≈ 246 GeV.

3. The mass matrix and the Higgs mass-
eigenstates basis

As it is known, the conditions for the potential are obtained
by minimizing

∂V

∂φi

∣∣∣∣
min

= 0,

and demanding that the matrix of the second derivatives at
the minimum:

∂2V

∂φi∂φj

∣∣∣∣
min

be positive definite. Note, that the choice of the vacuum ex-
pectation values given in Eq. (2) is compatible only with the
neutral vacuum [10-12].

From the vanishing of the first derivatives at the mini-
mum and after some simplifications two non trivial equations
are obtained

µ2
1 + λ1v

2
1 + 2λT v2

2 = 0 or v1 = 0,

µ2
2 + λ2v

2
2 + 2λT v2

1 = 0 or v2 = 0,

where
λT ≡ (λ3 + λ4 + λ5)

and we discard the solutions withv1 or v2 equal to 0.
The mass matrix elements are obtained from the equation

M2
ij =

1
2

∂2V

∂φi∂φj

∣∣∣∣
φ3=

v1√
2
,φ7=

v2√
2

.

After the complete diagonalization, the mass spectrum
becomes:

1. The mass eigenvalues for (H0, h0) are

M2
H0,h0 = λ1v

2
1 + λ2v

2
2

±
√

(λ1v2
1 − λ2v2

2)2 + (v1v2λT )2 > 0, (3)

2. The eigenvalues for the mass eigenstatesH± andG±

are

M2
G± = 0 , M2

H± = −1
2

(λ4 + λ5) v2 > 0, (4)

3. Finally, the mass eigenvalues forG0 andA0 are

M2
G0 = 0, M2

A0 = −λ5v
2 > 0, (5)

The three massless Goldstone fieldsG± andG0 become the
longitudinal components of the gauge bosonsW± andZ0.

As one can see, from the values ofMA0 andMH± , which
do not depend explicitly on the parametersλi, (i = 1, 2, 3),
one could infer that there is a complete independence be-
tween theA0, H± and theh0, H0, but this is not all true, in
their energy scale dependence, as we shall see later. To add
more information, we invert the former equations to express
the quartic parameters in terms of the masses of the Higgs
fields.

λ1 =
1

2v2
1

(
M2

H0 cos2 α + M2
h0 sin2 α

)
,

λ2 =
1

2v2
2

(
M2

H0 sin2 α + M2
h0 cos2 α

)
,

λ3 =

(
M2

H0 −M2
h0

)

2v1v2
sin 2α + 2

M2
H±

v2
,

λ4 =
M2

A0 − 2M2
H±

v2
, λ5 = −M2

A0

v2
, (6)

where

tan 2α =
(λ3 + λ4 + λ5) v1v2

(λ1v2
1 − λ2v2

2)
, −π

2
< α <

π

2
.
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4. Vacuum stability constrains (VSC)

To make the discussion more transparent, in this section, let
us introduce a different parametrization of the Higgs poten-
tial at its minimum . We introduce the parametersxi defined
as:x1 = v2

1 , x2 = v2
2 . The potential in Eq. (1) becomes

V =
1
2
V2 +

1
4
V4

where

V2 = µ2
1x1 + µ2

2x2 and V4 = λ1x
2
1 + λ2x

2
2 + λT x1x2.

4.1. Bounds due to the positive mass-values

From previous results in Eqs. (3), (4), (5) and the mass pos-
itivity, one gets information for the allowed values of theλi

parameters in agreement with [28] and [9]

λ1 > 0, λ2 > 0, (λ4 + λ5) < 0, λ5 < 0, λ4 < |λ5| .

plus the implication from Eq. (3)

λ1λ2 >
1
4

(λ3 + λ4 + λ5)
2
.

and more precisely

λT + 2
√

λ1λ2 ≥ 0 , λ3 + 2
√

λ1λ2 ≥ 0.

4.2. Massles Higgs boson

Another interesting case is when the lighter Higgs boson be-
comes massless,Mh0 = 0, which implies the condition

λT = −2
√

λ1λ2. (7)

The general form of the Higgs quartic potentialV4 is

V4 = λ1x
2
1 + λ2x

2
2 + λT x1x2

=
(√

λ1x1 −
√

λ2x2

)2

+
(
λT +2

√
λ1λ2

)
x1x2 ≥ 0.

From condition (7) it follows that the potentialV4 simplifies
to

V4 =
(√

λ1x1 −
√

λ2x2

)2

.

Here we will consider two cases: the first one is whenV4 = 0,
(Extreme condition) which implies

√
λ1

λ2
=

x2

x1
=

v2
2

v2
1

⇒ λ1

λ2
=

v4
2

v4
1

= (tan β)4 .

and

MH0 =

{
(4λ1λ2)1/4v, λ1 6= λ2, v1 6= v2,

(2λ)1/2
v, λ1 = λ2 = λ, v1 = v2 = v/

√
2.

In the general case, whenV4 =
(√

λ1x1 −
√

λ2x2

)2 6= 0,
which means that

λ1

λ2
6= (tanβ)4 , λT = −2

√
λ1λ2,

and theMH0 becomes

MH0 =
√

2
(
λ1v

2 + (λ2 − λ1) v2
2

)1/2
.

In both cases

Mh0 = 0, MH± =
(

1
2
|λ4 + λ5|

)1/2

v,

MA0 = |λ5|1/2
v.

The problem of mass of the lighter Higss boson in the
2HDM model remains open. The experimental limits on the
Higgs mass are firm in the Standard Model [30]. However for
the Minimal Supersymmetric Standard Model the experimen-
tal mass limits in search of neutral Higgs bosons obtained by
LEP [31] are compatible with zero mass of the lighter Higgs
boson.

On the theoretical side, the zero mass of the lighter Higgs
boson implies the reduction of the number of parameters (see
Eq. (7)) and this may be a signal of some additional symme-
try, e.g., the supersymmetricSU(5) model contains naturally
massless Higgs doublets [32]. The crucial test of such tree
level symmetry would be radiative corrections to the Higgs
mass and the stability of such a symmetry under such correc-
tions.

Summarizing, the case of the massless neutral Higgs bo-
son is an interesting possibility for the 2HDM model that is
worth of mentioning and of further study.

FIGURE 1. The v2 dependence of the Higgs masses.tan β = 5

corresponds tov2 = 248.9.
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4.3. Numerical evaluation of the Higgs masses in terms
of tanβ

In general, according to Eqs. (3-5) the mass dependence on
v1, v2 andv can be reformulated in terms ofv andv2. There-
fore, with a fixed knownv one can plot those masses in terms
of v2, and determine theirtanβ (tanβ = v2/

√
v2 − v2

2) de-
pendence, as shown in Fig. 1. One should notice that the
charged and the CP odd Higgs masses remain constant (i.e.,
they do not depend ontanβ, while the CP even neutral Higgs
masses depend significantly ontanβ.

Recently, the bounds on the charged-Higgs mass have
been studied extensively [17-24]. Taking into account some
of the newest results, we will proceed to numerically evalu-
ate the Higgs masses under different stability conditions in
cases whereλ1 = λ2 = λ (one of the symmetries considered
in Ref. 20) orλ1 6= λ2, at the energy scaleE = Mt, where
Mt is the mass of the quark top.

Let us now select some special scenarios. In a first sce-
nario, the MH0 will depend explicitly onv2 and therefore on
tanβ, as shown in Fig. 1, where we reproduce the values
given in Refs. 17 and 18 at their best pointMH± = 608.8
at tanβ = 5, consideringMHA

= 621.7 and assuming
λT = 0. Using Eq. (6), we fix theλ’s as follows

λ1 λ2 λ3 λ4 λ5

3.15 2.91 11.51 -5.51 -6.0

tanβ Mh0 MH0 v2

5.0 125 600.4 248.88
The running properties of the parameters and masses in this
case will be analyzed in the following section.

In a second and third scenarios we assume that
tanβ = v2/v1 = mt/mb = 41.2) and we focus our at-
tention on theλi’s (i = 1, ..., 5) that reproduce the values
in Ref. 21 and 22, to explore the properties for the energy
range of validity of the 2HDM, for smaller values forMH± .
We obtain for the second scenario, according to Ref. 21, for
tanβ/MH± = 0.2, and tanβ = 41.2 for {MH± ,MA}
= {206.2, 206.2}, with λT = −2

√
λ1λ2 = −0.244 and

(λ1/λ2)
1/4 = 1.0, the following values

λ1 λ2 λ3 λ4 λ5

0.122 0.122 1.076 -0.66 -0.66

tanβ Mh0 MH0 v2

41.2 0 125.4 253.7
Finally, the third scenario is an interesting one, due to its
RGE behavior, for a still lower value ofMH± in the inter-

val [80,150] GeV fixed in Ref. 22, when{MH± ,MA}
≈ {129.4, 131.9}, (λ1/λ2) = 1.0 andλT + 2

√
λ1λ2 > 0

λ1 λ2 λ3 λ4 λ5

0.18 0.18 0.3 -0.25 -0.27

tanβ Mh0 MH0 v2

41.2 2.9 152.26 253.7

5. Triviality constrains.

5.1. Renormalization group equations

In this section we explore the asymptotic behavior of the pa-
rameters in the model, and their relations, through the Renor-
malization Group Equations (RGE) [26,33,34]. The RGE are
a powerful tool to determine by the triviality principle, the en-
ergy bounds of the parameters and the validity of the model.
In order to proceed in this way, to numerically evaluate the
energy dependence of theλi quartic couplings, it is neces-
sary to consider the RGE of all the parameters, i.e., the cou-
plingsg1, g2, g3 of the gauge groupU(1)×SU(2)×SU(3),
the vacuum expectation valuesv1, v2, and the Yukawa cou-
plings of the top and the down quark sectorsgt andgd, re-
spectively [35–37].

The RGE determine the dependence of the coupling con-
stants and other parameters of the Lagrangian ont, defined as
t = ln (E/Mt), whereE is the renormalization point energy.
The RGE for the gauge couplingsg1, g2, g3 are:

dgi

dt
=

1
(4π)2

big
3
i (i = 1, 2, 3),

wherebi = (21/5,−2,−7). The RGE for the Yukawa cou-
plings of the top and bottom quarksgt, gb are

dgt

dt
=

1
(4π)2

(
9
2
g2

t +
1
2
g2

b − (
17
20

g2
1 +

9
4
g2
2 + 8g2

3)
)

gt,

dgb

dt
=

1
(4π)2

(
9
2
g2

b +
1
2
g2

t − (
1
4
g2
1 +

9
4
g2
2 + 8g2

3)
)

gb,

and for the vacuum expectation valuesv1 andv2

d

dt
v1 =

1
(4π)2

[−3g2
t + ((9/20) g2

1 + (9/4) g2
2)

]
v1,

d

dt
v2 =

1
(4π)2

[−3g2
b + ((9/20) g2

1 + (9/4) g2
2)

]
v2,

In the equations for the quartic couplings we do include the
quark Yukawa contributions of both sectors.

dλ1

dt
=

1
16π2

{
24 (λ1)

2 − 3λ1

[
3g2 + (g′)2 − 4g2

t

]
+ 2 (λ3)

2 + (λ4)
2 + (λ5)

2 + 2λ3λ4 +
3
8

(
g2 + (g′)2

)2

+
3
4
g4 − 6g4

t

}
,

dλ2

dt
=

1
16π2

{
24 (λ2)

2 − 3λ2

[
3g2 + (g′)2 − 4g2

b

]
+ 2 (λ3)

2 + (λ4)
2 + (λ5)

2 + 2λ3λ4 +
3
8

[
(g′)2 + g2

]2

+
3
4
g4 − 6g4

b

}
,

dλ3

dt
=

1
16π2

{
4 (λ3)

2 + 4 (3λ3 + λ4) (λ1 + λ2)− 3λ3

[
3g2 + (g′)2 − 2

(
g2

t + g2
b

)]
+ 2 (λ4)

2
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+ 2 (λ5)
2 +

3
4

[
g2 − (g′)2

]2

+
3
2
g4 − 12g2

t g2
b

}
,

dλ4

dt
=

1
16π2

{
4 (λ4)

2 + 4λ4 (λ1 + λ2 + 2λ3)− 3λ4

[
3g2 + (g′)2 − 2

(
g2

t + g2
b

)]
+ 8 (λ5)

2 + 3g2 (g′)2 + 12g2
t g2

b

}

dλ5

dt
=

1
16π2

λ5

{
4 (λ1 + λ2 + 2λ3 + 3λ4)− 3

[
3g2 + (g′)2 − 2

(
g2

t + g2
b

)]}
.

The former equations are non linear, coupled, ordinary
differential equations whose solution provides the informa-
tion about the renormalization point energy dependence of
the masses of the five Higgs particles of the 2HDM. To
numerically solve the RGE, the initial or final conditions
for the parameters have to be previously chosen. In or-
der to do so we use Ref. 6. The range of values, we take,
for the energy and the variablet are E = {Mt, Eu} =
{173.2, 1.234 · 1013}, t = {0, tu = 25}, respectively
(see Table I for the correspondence betweent and the en-
ergy E in GeVs), whereMt stands for the mass of the
quark top andEu corresponds to the electroweak unifica-
tion energy whereg1(Et) = g2(Et). The gauge couplings
(g1, g2,g3)E=Mt

' (0.4627, 0.6466, 1.2367, ) are obtained
using the following relations

g1(Mt) =
√

5/3ge/ cos θW , g2(Mt) = ge/ sin θW ,

g3(Mt) =
√

4παs(Mt), αe(Mt) = g2
e/4π = 1/ (127.9) ,

whereθW is the Weinberg angle wheresin2 θW (Mt)=0.235
andαs = 0.1217. The vev standard value that arises from

v = 2Mz/
√

g2
2 + g2

e ,

is v(Mt) = 253.81 GeV atMz = 91.19 GeV.
In order to specify more rigorously the energy limits for the
quartic couplings, we have numerically solved the RGE for
the gauge group couplingsg1, g2, g3, (Fig.2), the vacuum
expectation valuesv1, v2, and the top and the down quark
Yukawa couplingsgt and gd, under the following assump-
tions:

• The heaviest quark masses are related with the vevsv1

andv2 and the Yukawa couplingsg(u) andg(d)

Mt =
v2√
2
gt, Mb =

v1√
2
gb, tanβ =

v2

v1
.

• The gauge bosons masses are related with the gauge
couplingsg′ andg

MW =
1
2
vg, MZ =

MW

cos θW
=

1
2
v

√
g2 + (g′)2,

whereθW is the Weinberg angle ande the electron
charge

e = g sin θW = g′ cos θW .

• Unification of the Yukawa couplings atE = Mt or at
Eu, i.e., gb = gt, andtanβ = Mt/Mb.

It is interesting to explore now, the energy bounds of the
2DHM, through the running of the quartic couplings which
determine the mass values of the Higgses. In the first scenario
considered in the previous section, whenMH± = 609 GeV,
MA = 621.7 GeV, the range of validity of the model is short
Mt < E < 592.2 GeV i.e., 0 < t < 1.23 as can be seen
in Figs. 3. Here the new physics would appear at a very low
energy. The second scenario is depicted at Figs. 4, the model
presents here an intermediate range of validity0 < t . 18.
Now we will rather focus our attention on the cases where
we can explore the universality of the Yukawa couplings and
its unification, to study the mass-hierarchy problem. In this
case, as can be seen in Figs. 5-8, the 2HDM is valid in the
whole range of energies, this meansMt < E < Eu where
Eu is the electroweak unification energy.

In Fig. 5 we observe a very slow dependence of the quar-
tic couplings and the Higgs masses on the renormalization
point energy. The model is characterized by rather small val-
ues of the quartic couplings and the value oftanβ such that
it permits the unification of the Yukawa couplings of the up
and down quarksgt = gb. In Figs. 6, 7 and 8 we show the

FIGURE 2. The energy dependence of the gauge couplings in the
2HDM.
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FIGURE 3. The energy dependence of the quartic couplings and the Higgs masses, in the first scenario withtan β = 5.0.

FIGURE 4. The energy dependence of the quartic couplings and the Higgs masses, in the second scenario withtan β = 41.2 (2D) case.

FIGURE 5. The energy dependence of the quartic couplings and the Higgs masses, in the third scenario withtan β = 41.2.
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FIGURE 6. The first figure shows the unification of the Yukawa couplings at low energy corresponding to the Fig. 11, and the second figure
shows the unification of the Yukawa couplings at high energy corresponding to the Fig. 12.

FIGURE 7. The energy dependence of the quartic couplings and the Higgs masses in thetan β = 41.2 case with Yukawa couplingsgt = gb

at low energy andλ1 = λ2 at high energy.

FIGURE 8. The energy dependence of the quartic couplings and the Higgs masses in thetan β = 41.2 case with equal Yukawa couplings
gt = gb andλ1 = λ2 at high energy.
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evolution of the Yukawa couplings, quartic couplings and the
Higgs masses for the case when the Yukawa couplings are
unified. In the first plot of the Fig. 6 we assume that they
are unified at low energy and in the second plot of the Fig. 6
they are unified at high energy. The evolution of the quartic
couplings and Higgs masses are similar in both cases. As a
complement, in the Appendix, we present several tables with
data associated with figures Figs. 5-8 for the running of the
masses and couplings. In Table II, related to Fig. 5, we con-
sider an additional column refered to a 7 TeV energy in which
the MH0 = 127.7. This value is very close to the one re-
ported in Refs. 4 and 5 as an evidence of the existence of the
SM Higgs Particle.

6. Results and conclusions

With the aim to explore the Higgs mass content of the 2HDM
extension of the standard model, among the different forms
of the Lagrangian describing the same physical reality, we
have chosen a specific one, in which the vacuum expectation
values of both Higgs fields are real, and for simplicity also
preserving the CP symmetry.

We present, the analytical expressions for the masses of
the five predicted physical Higgs particles in terms of the
λi parameters. For completeness, we consider theλi’s in
terms of those masses, with which one can verify convinc-
ingly some of the imposed restrictions on them. We have also
verified, through the mass formulas, a set of constraints to
be satisfied by the scalar parameters that determine the cou-
plings and self-couplings of the Higgs fields.

We have considered the condition on the Higgs poten-
tial for Mh0 = 0 and analyzed using the renormalization
group method the validity of the model in three scenarios.
We performed a numerical analyses of the flow of theλi’s
and masses as governed by the one-loop RGEs, in case when
the Yukawa couplings for the t quark mass is related tov2

and the b quark mass is related tov1 and located the energy
where the Landau pole emerges in those cases.

As many authors base their calculations on symmetry
conditions, such asλ1 = λ2 or impose, for simplicity, spe-
cific and particular values fortanβ , in a phenomenological
study of special events, it is important to analyze the con-
sequences and limitations of such assumptions and conclu-
sions. We tried at least partially to address this problem. We
have considered here symmetries in theλi parameters, unifi-
cation of the Yukawa couplings at low energyE0 (Mt scale)
or high energyEu (weak-unification scale), hierarchy of the
quark masses and determined the energy range of validity of
the model which depends on the values of the Higgs masses.
The main symmetry considered here is the unification of the
Yukawa couplings. It seems this symmetry makes the Higgs
sector very stable as can be seen in Fig. 5, preserves the uni-
tarity conditions Ref. 23 and gives atE = 7 TeV the Higgs
massMH0 = 127.65 GeV. See Table II.

From our analysis, one can observe that lower values of
the charged Higgs massMH± lead to a larger range of va-
lidity of the model and the new physics is shifted to higher
energies.

The most important result of this paper is the derivation
of restrictions for the quartic couplings of the Higgs poten-
tial. The bounds on the couplings are obtained from physical
conditions that have to be fulfilled by the physically consis-
tent theory and they include the positivity of the squares of
the Higgs masses (Eqs. (3-5)). Next we consider a restric-
tion obtained from the assumption on the values the Higgs
masses. A very interesting case follows from the condition
in Eq. (7), from which it follows that vanishing of the mass
the lighter Higgs boson at the tree level is compatible with
the phenomenology of the 2HDM. It is remarkable that this
result depends only on the quartic part of the Higgs potential.
For such a scenario, if there are two Higgs doublets, the re-
cently discovered neutral Higgs boson at LHC [38] would be
the heavier one.

In summary, the results in this paper may be a basis for
further investigation in relation to the behavior and energy
dependent characteristics of the Higgs particles and we be-
lieve that the results of this paper shed new light on physics
of the Higgs sector.

Appendix: Tables with the initial data for the
figures

TABLE I. Energy scale

t Energy [GeV]

0 1.731×102

0.5 2.85393×102

1 4.70535×102

3 3.47681×103

3.7 7.00143×103

6 6.98335×104

9 1.402×106

12 2.817×107

15 5.658×108

18 1.136×1010

21 2.282×1011

22 6.205×1011

23 1.686×1012

24 4.585×1012

25 1.246×1013
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TABLE II. Data for Fig. 5.

E[GeV]=173.1 E[GeV]=7000 E[GeV]=1.2×1013

tan β 41.21 41.21 41.02

v1 6.16 5.97 5.71

v2 253.73 245.87 234.47

v 253.81 245.94 234.53

gt 0.965 0.817 0.508

gb 0.965 0.820 0.524

λ1 0.18 0.135 0.123

λ2 0.18 0.135 0.115

λ3 0.3 0.19 0.095

λ4 -0.25 -0.087 0.56

λ5 -0.27 -0.32 -0.675

mh0 2.92 1.93 2.8

mH0 152.26 127.65 112.27

mA 129.42 110.20 55.84

mH± 131.88 138.01 192.64

TABLE III. Data for Fig. 7 and first plot of Fig. 6.

E[GeV]=173.1 E[GeV]=1.2×1013

tan β 41.21 41.02

v1 6.156 5.715

v2 253.74 234.465

v 253.81 234.534

gt 0.9647 0.5082

gb 0.9647 0.5238

λ1 0.2849 3

λ2 0.2852 3

λ3 0.2347 1

λ4 -0.3487 -1.5

λ5 -0.393 -2

mh0 2.1252 13.9518

mH0 191.684 574.32

mA 159.115 331.682

mH± 154.569 117.267

TABLE IV. Data for Fig. 8 and second plot of Fig. 6.

E[GeV] = 173.1 E[GeV] = 1.2× 1013

tan β 41.21 41.43

v1 6.156 5.6869

v2 253.735 235.641

v 253.81 235.709

gt 0.9729 0.516

gb 0.9567 0.516

λ1 0.2915 2.5

λ2 0.2876 2.5

λ3 0.2043 0.2

λ4 -0.2498 1

λ5 -0.2735 -1.2

mh0 3.9232 12.7164

mH0 192.458 526.909

mA 132.749 258.207

mH± 129.838 74.5378
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