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Trajectory tracking for the chaotic pendulum using PI control law
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This paper presents the application of trajectory tracking using adaptive neural networks to the double chaotic pendulum. The controller
structure proposed is composed by a neural identifier and a PI Control Law. Experimental results with the chaotic pendulum showed the
usefulness of the proposed approach. To verify the analytical results, an example of a dynamical network is simulated and a theorem is
proposed to ensure the tracking of the nonlinear system.
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1. Introduction

A double pendulum system is formed by one pendulum at-
tached to another, as shown in Fig. 1. This is a physical
system that can exhibit chaotic behavior.

FIGURE 1. Chaotic Dynamical Systems.

We consider a double pendulum immersed in a gravita-
tional field, where the massesm1 andm2 are tied to rigid
wires with negligible mass and lengthsl1 and l2, of link q1
and linkq2 respectively.The nonlinear system that describes
the dynamic of the chaotic pendulum will be called the Plant.
The aim of this work is to force this system to follow a nonlin-
ear reference system called the Reference. We propose a PI
Control Law that guarantees the tracking error between the
Plant and the Reference approaches to zero whent → ∞.
We verify this using a Lyapunov function. The problem of

guaranteeing that the tracking error approaches to zero when
t → ∞ is the inverse problem of the previous work found
in [12-14].

The PI control law was developed for a chaotic pendu-
lum to allow trajectory tracking between the plant and the
reference, a Duffing Equation. This is achieved by directly
analyzing and describing the behavior of the system in terms
of relevant parameters, which are the masses and lengths of
the pendulums. For each case we analysed the graphs that
show how angles behave as a function of time. Figures pre-
sented for a time of 200 seconds show the paths followed by
each of the pendulums.

Artificial neural networks, computational models of the
brain, are widely used on engineering applications due to
their ability to estimate the relation between inputs and out-
puts from a learning process. Motivated by the seminal pa-
per [1], there exists a continuously increasing interest in ap-
plying neural networks to identification and control of non-
linear systems. Most of these applications use feedforward
structures [2,3]. Recently, recurrent neural networks are be-
ing developed; as an extension of the static neural networks
capability to approximate nonlinear functions, recurrent neu-
ral networks can approximate nonlinear systems. They allow
more efficient modelling of the underlying dynamical sys-
tems [4]. Three representative books [5,6] and [7] have re-
viewed the application of recurrent neural networks for non-
linear systems identification and control. In particular, [5]
uses off-line learning, [6] analyzes adaptive identification
and control by mean of on-line learning, where stability of
the closed-loop system is established based on the Lyapunov
function method. In Ref. 6, the trajectory tracking problem
is reduced to a linear model following problem, with applica-
tion to DC electric motors. In Ref. 7, analysis of Recurrent
Neural Networks for identification, estimation and control are
developed, with applications to chaos control, robotics and
chemical processes.

Control methods that are applicable to general nonlin-
ear systems have been intensely developed since the early
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1980’s. Main approaches include, for example, the use of
differential geometry theory [8]. Recently, the passivity ap-
proach has generated increasing interest for synthesizing con-
trol laws [9]. An important problem for these approaches is
how to achieve robust nonlinear control in the presence of
unmodelled dynamics and external disturbances. In this di-
rection, there exists the so-calledH∞ nonlinear control ap-
proach [10]. One major difficulty with this approach, along-
side its possible system structural instability, seems to be
the requirement of solving some resulting partial differential
equations. In order to alleviate this computational problem,
the so-called inverse optimal control technique was recently
developed, based on the input-to-state stability concept [11].

On the basis of the inverse optimal control approach, a
control law for generating chaos in a recurrent neural network
was designed in Ref. 12. In Ref. 13 and 14, this methodol-
ogy was modified for stabilization and trajectory tracking of
an unknown chaotic dynamical system, where the former is
used to build an on-line model for the unknown plant and the
latter, to ensure that the unknown plant tracks the reference
trajectory. In this paper, we further improve the design by
adequating it to systems with less inputs than states. The ap-
proach is based on the methodology developed in Ref. 13
and 14, in which the control law is optimal with respect to a
well-defined Lyapunov function.

Robot manipulators present a practical challenge for con-
trol purposes due to the nonlinear and multivariable nature
of their dynamical behavior. Motion control in joint space
is the most fundamental task in robot control; it has moti-
vated extensive research work in synthesizing different con-
trol methods such as fuzzy computed torque control [15],
PI+PD fuzzy control [16] and static neural network control
[17]. An important problem for developing control algo-
rithms is that most robots models neglect practical aspects
such as actuator dynamics, sensor noise, and friction, which,
if are not considered in the design, may cause performance
deterioration.

2. Modeling of the Plant

The unknown nonlinear plant is given as:

·
xp = Fp(xp, u) , fp(xp) + gp(xp)u (1)

Wherexp, fp ∈ Rn, u ∈ Rm, gp ∈ Rnxm. Bothfp and
gp are unknown, and we propose to model (1) by the neural
network state space representation

·
x=A(x)+W ∗Γz(x)+Ωu,

plus one more term modeling error.
We define the modeling error between the neural network

and the plant by:
wper = x− xp (2)

We assume the following hypothesis.
Hypothesis 1. (Objective of Modeling): Modeling error

is exponentially stable, that is:

·
wper = −kwper (3)

In this work we considerk = 1, and now, from (2) we
have

·
wper =

·
x− ·

xp where:
·
xp=

·
x+ wper

The unknown plant can be modeled as:
·
xp =

·
x + wper = A(x) + W ∗Γz(x) + wper + Ωu (4)

W ∗ are the fixed weights but unknown from the neural net-
work. They minimize the modeling error.

3. Trajectory Tracking

Theorem 1 The unknown nonlinear system (1) modeled by
(4), the on-line learning law

tr





·∼
W

T
∼
W



 = −eT

∼
Wσ(x)

and the control law

u = Ω†
[
−

_

WΓ(z(x)− z(xp))− (A + I)(x− xp)

+ Kpe + Ki

t∫

0

e(τ)dτ −Υ
(

1
2

+
1
2

∥∥∥
_

W
∥∥∥

2

L2
φ

)
e

+ fr(xr, ur)−Axr −
_

WΓz(xr)− xr + xp

]

together ensure the trajectory tracking between the Plant and
the Nonlinear Reference Signal

·
xr = fr(xr, ur).

Remark 2 Ω† is the pseudo inverse in the sense of Moore–
Penrose

Proof. We proceed now to analyze the modeling error be-
tween the unknown plant modeled by (4) and the reference
signal defined by:

·
xr = fr(xr, ur), ur ∈ Rn (5)

For this purpose we define the modeling error between
the plant and the reference signal by:

e = xp − xr (6)

whose derivative with respect to time is
·
e =

·
xp− ·

xr=A(x)+W ∗Γz(x)+wper+Ωu−fr(xr, ur) (7)

Adding and subtracting to the right hand side of (7) the

terms
_

WΓz(xr), αr(t,
_

W ), Ae and taking into account that
wper = x− xp, we have

·
e = A(x) + W ∗Γz(x) + x− xp + Ωu− fr(xr, ur) (7)

+
_

WΓz(xr)−
_

WΓz(xr) + Ωαr(t,
_

W ) (8)

− Ωαr(t,
_

W ) + Ae−Ae

·
e = Ae + W ∗Γz(x) + Ωu− fr(xr, ur)

+
_

WΓz(xr) + Ωαr(t,
_

W )−
_

WΓz(xr)

− Ωαr(t,
_

W )− e− xr −Ae + x + A(x) (8)
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In this part, we consider the next supposition:
The neural network will follow the reference signal, even

with the presence of disturbances, if:

Axr +
_

WΓz(xr) + xr − xp + Ωαr(t,
_

W ) = fr(xr, ur).

Then

Ωαr(t,
_

W ) = fr(xr, ur)−Axr−
_

WΓz(xr)−xr +xp (9)

and we get

·
e = Ae + W ∗Γz(x)−

_

WΓz(xr)−Ae + (A + I)(x− xr)

+ Ω(u− αr(t,
_

W )) (10)

where
_

W is the estimate ofW ∗.
Now, adding and subtracting in (10) the term

_

W Γz(x)
we have:

·
e = Ae + (W ∗ −

_

W )Γz(x) +
_

WΓ(z(x)− z(xr))

+ (A + I)(x− xr)−Ae + Ω(u− αr(t,
_

W )) (11)

We define,

∼
W = W ∗ −

_

W and
∼
u = u− αr(t,

_

W ) (12)

and replacing (12) in (11), we obtain

·
e = Ae +

∼
WΓz(x) +

_

WΓ(z(x)− z(xr))

+ (A + I)(x− xr)−Ae + Ω
∼
u

·
e = Ae +

∼
WΓz(x) +

_

WΓ(z(x)− z(xp) + z(xp)− z(xr))

+ (A + I)(x− xp + xp − xr)−Ae + Ω
∼
u (13)

Now, we set: ∼
u = u1 + u2 (14)

So, we define:

Ωu1 = −
_

WΓ(z(x)− z(xp))− (A + I)(x− xp) (15)

and (13) it is reduced to:

·
e = Ae +

∼
WΓz(x) +

_

WΓ(z(xp)− z(xr))

+ (A + I)(xp − xr)−Ae + Ωu2

Considering thate = xp − xr, the last equation can be
written as:

·
e = (A + I)e +

∼
WΓz(x) +

_

WΓ(z(e + xr)− z(xr)) + Ωu2

·
e = (A + I)e +

∼
Wσ(x) +

_

W (σ(e + xr)− σ(xr)) + Ωu2

If φ(e) = σ(e + xr)− σ(xr), we get

·
e = (A + I)e +

∼
Wσ(x) +

_

Wφ(e) + Ωu2 (16)

Now, the problem is to find the control lawΩu2 that sta-
bilizes the system (16). We will obtain the control law by
using the Lyapunov methodology. In the next section we find
the control law and continue the proof of Theorem (1).

4 Stability of the Tracking Error
Once (16) is obtained, we consider its stabilization

in feedforward. We note (e,
_

W )=0, is an asymptotically
stable equilibrium point of the undisturbed autonomous
system(A = −λI andλ > 0). For its stability, we propose
the next PI control law:

Ωu2=Kpe+Ki

t∫

0

e(τ)dτ−Υ
(

1
2
+

1
2

∥∥∥
_

W
∥∥∥

2

L2
φ

)
e (17)

The parametersKp andKi will be determined later, and
L2

φz is the Lipschitz constant ofφz, with Υ > 0, [20].
We will show the feedback system is asymptotically sta-

ble. Replacing (17) in (16), then

·
e = (A + I)e +

∼
Wσ(x) +

_

Wφ(e)

+ Kpe + Ki

t∫

0

e(τ)dτ −Υ
(

1
2

+
1
2

∥∥∥
_

W
∥∥∥

2

L2
φ

)
e (18)

·
e = −(λ− 1−Kp)e +

∼
Wσ(x) +

_

Wφ(e)

+ Ki

t∫

0

e(τ)dτ − γ

(
1
2

+
1
2

∥∥∥
_

W
∥∥∥

2

L2
φ

)
e (19)

and if

w = Ki

t∫

0

e(τ)dτ,

then
•
w = Ki e(τ)dτ, we can rewrite (19) as:

·
e = −(λ− 1−Kp)e +

∼
Wσ(x)

+
_

Wφ(e) + w − γ

(
1
2

+
1
2

∥∥∥
_

W
∥∥∥

2

L2
φ

)
e (20)

We will show the new state (e, w)T is asymptotically sta-
ble and the equilibrium point is (e, w)T = (0, 0)T , when
∼
Wσ(xr) = 0,which is taken as an external disturbance.

Let V be the candidate Lyapunov function [24,25] given
by:

V =
1
2
(eT , wT )(e, w)T +

1
2
tr

{ ∼
W

T

W̃

}
(21)

The time derivative of (21) along the trajectories of (20)
is:

·
V = (eT , wT ) (

•
e,
•
w)T + tr





·∼
W

T
∼
W





= eT
·

e+ wT •
w + tr





·∼
W

T
∼
W



 (22)
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·
V = eT

(
− (λ− 1−Kp)e +

∼
Wσ(x)

+
_

Wφ(e) + w − γ

(
1
2

+
1
2

∥∥∥
_

W
∥∥∥

2

L2
φ

) )
e

+ wT Kie + tr





·∼
W

T
∼
W



 (23)

In this part, we select the next learning law of the neural
network weights as in Ref. 6:

tr





·∼
W

T
∼
W



 = −eT

∼
Wσ(x) (24)

Then (23) is reduced to

·
V = −(λ− 1−Kp)eT e + eT

_

Wφ(e)

+ (1 + Ki)eT w − γ

(
1
2

+
1
2

∥∥∥
_

W
∥∥∥

2

L2
φ

)
eT e (25)

We apply the next inequality to the second term in the
right hand side of (25)

xT y ≤ 1
2
xT x +

1
2
yT y (26)

to get:

·
V ≤− (λ− 1−Kp)eT e +

(
eT e

2
+

1
2

∥∥∥
_

W
∥∥∥

2

L2
φ

)
eT e

+ (1 + Ki)eT w − γ

(
1
2

+
1
2

∥∥∥
_

W
∥∥∥

2

L2
φ

)
eT e (27)

The parameters in (27) are reduced to:

·
V ≤ −(λ− 1−Kp)eT e

− (Υ− 1)
(

1
2

+
1
2

∥∥∥
_

W
∥∥∥

2

L2
φ

)
eT e (28)

In this part, if we chooseλ−1−Kp > 0, andΥ−1 > 0,

then
·
V < 0, ∀ e, w,

_

W 6= 0, the error tracking is asymptot-
ically stable and it converges to zero for everye 6= 0. This
means that the plant follows the reference asymptotically. Fi-
nally, the control law, which affects the plant and the neural
network, is given by:

u = Ω†[−
_

WΓ(z(x)− z(xp))− (A + I)(x− xp)

+ Kpe + Ki

t∫

0

e(τ)dτ −Υ
(

1
2

+
1
2

∥∥∥
_

W
∥∥∥

2

L2
φ

)
e

+ fr(xr, ur)−Axr −
_

WΓz(xr)− xr + xp] (29)

This control law gives asymptotic stability of error dy-
namics and thus ensures the tracking between the plant and
the reference signal.

The results obtained can be confirmed by simulations and
we show this in the next section.

From (28) we have

·
V ≤ −(λ− 1−Kp)eT e− (Υ− 1)

×
(

1
2

+
1
2

∥∥∥
_

W
∥∥∥

2

L2
φ

)
eT e < 0, ∀ e 6= 0, ∀

_

W

whereV is decreasing and bounded from below byV (0), and
since

V =
1
2
(eT , wT )(e, w)T +

1
2
tr

{ ∼
W

T

W̃

}

then we conclude thate,
∼
W ∈ L1; this means that the weights

remain bounded.

4. Simulations

The neural network is modeled by the differential equation:
ẋ = Ax + Wσ(x) + Ωu, with A = −λI, I ∈ R4x4, and
λ = 20, W is estimated by using the learning law given in
(24),σ(x) = (tanh(x1), tanh(x2), ..., tanh(xn))T ,

Ω =
(

0 0 1 0
0 0 0 1

)
T

andu is calculated by using (29).
The plant is stated in Refs. 20, 21, and it is given by:

(m1 + m2)l1
··
θ1 + m2l2

··
θ2 cos(θ1 − θ2)

+ m2l2
·

θ2

2

sin(θ1 − θ2) + (m1 + m2)g sin θ1 = 0

m2l1
··
θ1 cos(θ1 − θ2) + m2l2

··
θ2

−m2l1
·

θ1

2

sin(θ1 − θ2) + m2g sin θ2 = 0

In Fig. 2 the trajectory of the Plane Phase for the Plant
(Chaotic Pendulum) is shown in blue. The trajectory of the
Plane Phase for the Reference (Duffing Equation) is shown
in black.

The time evolution for the angles and applied torque are
shown in Figs. 3-8. As can be seen, trajectory tracking is suc-
cessfully obtained. We try to force this manipulator to track
a reference signal given by the Duffing equation:

ẍ− x + x3 =0.114 cos(1.1t) with

x(0) =1, ẋ(0) = 0.114 (30)

In Figs. 3-6 the states trajectories are shown in blue for
the Chaotic Pendulum and in black for the Duffing Equation
dynamics.
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FIGURE 2. Plane phase portrait of the Plant and the Reference sig-
nal for the trajectory of Duffing equation.

FIGURE 3. Time evolution for the angular positionq1 (rad) of
link 1.

FIGURE 4. Time evolution for the angular positionq2 (rad) of
link 2.

FIGURE 5. Time evolution for the angular velocity of link 1q1
(rad/seg).

FIGURE 6. Time evolution for the angular velocity of link 2q2
(rad/seg).

Note: In the previous figures we showed the Chaotic Pen-
dulum trajectories as well as the reference signal they should
follow.

In Figs. 7-8 we show the torque applied to the links in the
caothic pendulum.

We can see that the Recurrent Neural Controller ensures
rapid convergence of the system outputs to the reference tra-
jectory. The controller is robust [22] in presence of distur-
bances applied to the system. Another important issue of this
approach related to other neural controllers, is that most neu-
ral controllers are based on indirect control, first the neural
network identifies the unknown system and when the identi-
fication error is small enough, the control is applied. In our
approach, direct control is considered, the learning laws for
the neural networks depend explicitly of the tracking error
instead of the identification error. This approach results in
faster response of the system.
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FIGURE 7. Torque (Nm) applied to linkq1.

FIGURE 8. Torque (Nm) applied to linkq2.

5. Conclusions

We have extended the adaptive recurrent neural control previ-
ously developed in Refs. 13, 14 and 18 for trajectory tracking
control problem in order to consider less inputs than states.
Stability of the tracking error is analized via Lyapunov con-
trol functions and the control law is obtained based on the
PI approach. A Chaotic pendulum model with friction terms
and unknown external disturbances is used to verify the de-
sign for trajectory tracking, with satisfactory performance.
Research along this line will continue to implement the con-
trol algorithm in real time and to further test it in a laboratory
environment (see [19,23]).
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