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Trajectory tracking for the chaotic pendulum using PI control law
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This paper presents the application of trajectory tracking using adaptive neural networks to the double chaotic pendulum. The contr
structure proposed is composed by a neural identifier and a Pl Control Law. Experimental results with the chaotic pendulum showec
usefulness of the proposed approach. To verify the analytical results, an example of a dynamical network is simulated and a theore
proposed to ensure the tracking of the nonlinear system.
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1. Introduction guaranteeing that the tracking error approaches to zero when
t — oo is the inverse problem of the previous work found

A double pendulum system is formed by one pendulum atin [12-14].

tached to another, as shown in Fig. 1. This is a physical

o . . The PI control law was developed for a chaotic pendu-
system that can exhibit chaotic behavior. b P

lum to allow trajectory tracking between the plant and the
reference, a Duffing Equation. This is achieved by directly
analyzing and describing the behavior of the system in terms
of relevant parameters, which are the masses and lengths of
the pendulums. For each case we analysed the graphs that
show how angles behave as a function of time. Figures pre-
sented for a time of 200 seconds show the paths followed by
each of the pendulums.

Artificial neural networks, computational models of the
brain, are widely used on engineering applications due to
their ability to estimate the relation between inputs and out-
puts from a learning process. Motivated by the seminal pa-
per [1], there exists a continuously increasing interest in ap-

[ plying neural networks to identification and control of non-

2 linear systems. Most of these applications use feedforward
structures [2,3]. Recently, recurrent neural networks are be-
ing developed; as an extension of the static neural networks
capability to approximate nonlinear functions, recurrent neu-

. ral networks can approximate nonlinear systems. They allow
more efficient modelling of the underlying dynamical sys-
mz tems [4]. Three representative books [5,6] and [7] have re-
viewed the application of recurrent neural networks for non-
linear systems identification and control. In particular, [5]
uses off-line learning, [6] analyzes adaptive identification
We consider a double pendulum immersed in a gravitaf’md control by mean ofion-line .Iearning, where stability of
tional field, where the masses, andm, are tied to rigid the c!osed—loop system is establlshgd based on'the Lyapunov
wires with negligible mass and lengthsandls, of link g1 functlon methoo_l. In Ref. 6, the tr_ajectory tracklr_lg prob_lem
and link g2 respectively. The nonlinear system that describedS réduced to a linear model following problem, with applica-
the dynamic of the chaotic pendulum will be called the Plantion to DC electric motors. In Ref. 7, analysis of Recurrent
The aim of this work iis to force this system to follow a nonlin- Neural Networks for identification, estimation and control are
ear reference system called the Reference. We propose a #§veloped, with applications to chaos control, robotics and
Control Law that guarantees the tracking error between th&hemical processes.
Plant and the Reference approaches to zero when oc. Control methods that are applicable to general nonlin-
We verify this using a Lyapunov function. The problem of ear systems have been intensely developed since the early

FIGURE 1. Chaotic Dynamical Systems.
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1980’s. Main approaches include, for example, the use of In this work we considek = 1, and now, from (2) we
differential geometry theory [8]. Recently, the passivity ap-havewper = = — z, Where:z;,= x+ wper
proach has generated increasing interest for synthesizing con- The unknown plant can be modeled as:
trol laws [9]. An important problem for these approaches is
how to achieve robust nonlinear control in the presence of
unmodelled dynamics and external disturbances. In this diW* are the fixed weights but unknown from the neural net-
rection, there exists the so-calléfl,, nonlinear control ap- work. They minimize the modeling error.
proach [10]. One major difficulty with this approach, along-
side its possible system structural instability, seems to bey Trajectory Tracking
the requirement of solving some resulting partial differential
equations. In order to alleviate this computational problem;Theorem 1 The unknown nonlinear system (1) modeled by
the so-called inverse optimal control technique was recently4), the on-line learning law
developed, based on the input-to-state stability concept [11]. 7
On the basis of thg inverse pptimal control approach, a i ﬁ/ ﬁ/ _ _eTﬁ/U(x)
control law for generating chaos in a recurrent neural network
was designed in Ref. 12. In Ref. 13 and 14, this methodol-
ogy was modified for stabilization and trajectory tracking of 2nd the control law
an unknown chaotic dynamical system, where the former is w=Of { . I;/T(z(x) — 2(x)) — (A+ D)z — )
used to build an on-line model for the unknown plant and the

Tp =T + Wper = A(z) + W TL(2) + Wper + Qu (4)

latter, to ensure that the unknown plant tracks the reference " ,
trajectory. In this paper, we further improve the design by 1 175 2
adequating it to systems with less inputs than states. The ap- +Kpe + K / e(r)dr =1 <2 *3 HWH Ld’) c
proach is based on the methodology developed in Ref. 13 0
and 14, in which the control law is optimal with respect to a
well-defined Lyapunov function.

Robot manipulators present a practical challenge for congogether ensure the trajectory tracking between the Plant and
trol purposes dpe to the .nonllnea'lr and multlyarla}ble nature, o Nonlinear Reference Signgl = f, (., uy).
of their dynamical behavior. Motion control in joint space ) ) )
is the most fundamental task in robot control; it has moti-Remark 2 QT is the pseudo inverse in the sense of Moore—
vated extensive research work in synthesizing different conP€nrose
trol methods such as fuzzy computed torque control [15]Proof. We proceed now to analyze the modeling error be-
PI+PD fuzzy control [16] and static neural network control tween the unknown plant modeled by (4) and the reference
[17]. An important problem for developing control algo- signal defined by:
rithms is that most robots models neglect practical aspects : n
such as actuator dynamics, sensor noise, and friction, which, oy = fr(@r,ur),ur € R ®)
if are not considered in the design, may cause performance For this purpose we define the modeling error between
deterioration. the plant and the reference signal by:

+ fr(xrvur) - Axr - ‘E/Fz(xr) — Ty + xp:|

€=, — Ty (6)

2. Modeling of the Plant whose derivative with respect to time is

The unknown nonlinear plant is given as: e = zp—2,=A(x)+W*T, (z)+wpert Qu— fr(x,, u,) (7)

1) Adging and subtragting to the right hand side of (7) the

termsWT,(x.), a,(t, W), Ae and taking into account that
Wherez,, f, € R*, u € R™, g, € R™™. Both f,, and Wper = T — T, We have
gp are unknown, and we propose to model (1) by the neural

network state space representatienA (z)+W*T, (z)+Qu,

fp = Fy(zp,u) 2 fo(@p) + gp(@p)u

e=A(x) + WT,(2) + 2 — 2p + Qu — fr(zr,u,) (7)

plus one more term modeling error. - o -
We define the modeling error between the neural network + W (ar) = WL (@) + Qar(t, W) ®)
and the plant by: — Qa(t, W) + Ae — Ae
Wper = T — Tp 2
We assume the following hypothesis. e=Ae+ W'T.(2) + Qu— fr(zr, ur)

Hypothesis 1. (Objective of Modeling): Modeling error

is exponentially stable, that is: + WL (zr) + Qo (8, W) — W (ar)

—~

Wer = —kWper ) —Qa,(t, W) —e—x, — Ae + . + A(x) (8)
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In this part, we consider the next supposition:

473

Now, the problem is to find the control la®u. that sta-

The neural network will follow the reference signal, evenbilizes the system (16). We will obtain the control law by

with the presence of disturbances, if:

—~

Ay + W (2,) + 20 — 2y + Qay (b, W) = fr(@r, uy).
Then
Qa, (6. W) = fo(x,,u,) — Az, — WT.(2,) — 2, + 2, (9)
and we get
= Ae+ WT,(z) — W, (2,) — Ae + (A + Dz — )

FQu— ap(t, W) (10)
wherelV is the estimate of/*. _

Now, adding and subtracting in (10) the tefin T, (z)
we have:

= Ae+ (W* = W) (x) + W(2(2) — 2(x,))

—

+A+D(x—2a,)— Ae+Qu— o (t,W)) (11)
We define,
W =W*—W andi = u— a,(t, W) (12)

and replacing (12) in (11), we obtain
= Ae+ WT,(2) + WD(z(z) — 2(z,))
+ (A4 1)(x —z,) — Ae + Qu

e= Ae+ VNVFZ(QJ) + VT/F(z(x) — z(xp) + 2(zp) — 2(xr))

+(A+D)(x—xp +2p — 7,) — Ae + Qu (13)
Now, we set:
a = Uz —+ (5 (14)
So, we define:
Quy = ~WI(2(x) - 2(z,)) — (A+ D)z —x,)  (15)

and (13) it is reduced to:

¢ = Ae + WL, (2) + ﬁ/F(z(xp) — z(zr))

+(A+I)(xp — ) — Ae + Qug

Considering that = z, — z,, the last equation can be
written as:
e =(A+ e+ WT,(z)+ WD(z(e + ) — 2(2,)) + Qus

—~

e =(A+ e+ Wo(z) + W(o(e +z,) — o(z,)) + Qus

If p(e) =o(e+ z,) — o(x,), we get

~ —~

e=(A+1De+Wo(x) +We(e) + Qus (16)

using the Lyapunov methodology. In the next section we find
the control law and continue the proof of Theorem (1).

4 Stability of the Tracking Error

Once (16) is obtained, we consider its stabilization
in feedforward. We notee(1W)=0, is an asymptotically
stable equilibrium point of the undisturbed autonomous
system@d = —AI and\ > 0). For its stability, we propose
the next PI control law:

t
11y~
QUQZKp6+Ki/€(T)deT <2+2 HWH Li)e (17)
0

The parameter&’,, and K; will be determined later, and
L7, is the Lipschitz constant af.., with T > 0, [20].

We will show the feedback system is asymptotically sta-
ble. Replacing (17) in (16), then

¢ = (A+De+Wolz) + Wele)

1

t
11~ 2
+er+Ki/e(7)dT—T(2+2HWH Lg)e (18)
0

e=—(A—1-K,)e+ Wo(z) + Wole)

t
+ Ki/e(T)dT - <;
0

and if

+;HIX/H2L§> e (19)

¢
w = Ki/e(r)dT,
0

thenw = K; e(r)dr, we can rewrite (19) as:

e=—(A—1-K,)e+ Wo(z)
—~ 1 110~ 2 9
+Wole) +w—r7(5+3 HWH 2)e  (20)
We will show the new state:(w)” is asymptotically sta-
ble and the equilibrium point ise(w)? = (0,0)T, when
Wo(z,) = 0,which is taken as an external disturbance.

LetV be the candidate Lyapunov function [24,25] given
by:

2
The time derivative of (21) along the trajectories of (20)

1 1 ~T _
V=—(T, wh)(e,w)” + itr {W W} (21)
is:

T
V= (T, wT) (e, w)T + tr {VT/ W}

. T
eTe'+wT&;+tr{vNV W} (22)
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This control law gives asymptotic stability of error dy-
namics and thus ensures the tracking between the plant and
v=el| A—1-K,)e+ ﬁ;a(x) the reference signalm _ _ .
The results obtained can be confirmed by simulations and
we show this in the next section.

FWole) +w— 7( = HWH L2>> From (28) we have
7 V<-A-1-Kyele—(T-1)
T 11 —~ 2 —
4+ w Ki€+tT w W (23) X <1+2HWH L(QZ))GT6<O, VG#O, v W

In this part, we select the next learning law of the neurawhereV is decreasing and bounded from belowib), and
network weights as in Ref. 6: since

1 1 ~T _
T ~ V= (eT,wT)(e,w)T+tr{W W}
trdW Wy =—e"Wo(z) (24) 2 2

then we conclude that I;/ € Lq; this means that the weights
Then (23) is reduced to remain bounded.
oy 1 T T1r7 ] ]
V=—-Q-1-Ky)eete Wole) 4. Simulations
+ (14 Ki)eTw -~ ( B HWH L2> ee (25) The neural network is modeled by the differential equation:

= Az + Wo(z) + Qu, with A = —\I, I € R** and
We apply the next inequality to the second term in the)\ = 20, W is estimated by using the Iearnmg law given in

right hand side of (25) (24),0(z) = (tanh(x1), tanh(xs), ..., tanh(x,))T,
1 1
T < Z T =T 26 _ 0 01 0 T
TYsgretayy (26) Q<0001
to get:

andw is calculated by using (29).
. eTe 2 The plant is stated in Refs. 20, 21, and it is given by:
Vg—()\—l—K)ee+( ku L2) T ) ..

) (m1 + WLQ)llel + m2l292 COS(91 — 02)
(14 K)eTw— 7( HWH Lj,) Te (27) 2
+ molabs sin(01 — 92) + (m1 + m2)g sinf; =0
The parameters in (27) are reduced to: mzlléi cos(0 — 02) + m2l29~2
Vg—()\—l—K)eTe 2 .
—mgl101 sin(0; — 63) + magsinfs =0

2
—(T-1) < HWH L > e'e (28) In Fig. 2 the trajectory of the Plane Phase for the Plant

(Chaotic Pendulum) is shown in blue. The trajectory of the
In this part, if we ChOOSQ 1-K,>0,andT—1>0, Plane Phase for the Reference (Duffing Equation) is shown

thenV < 0,V e,w, W # 0, the error tracking is asymptot- in black.

ically stable and it converges to zero for every: 0. This The time evolution for the angles and applied torque are
means that the plant follows the reference asymptotically. FishowninFigs. 3-8. As can be seen, trajectory tracking is suc-
nally, the control law, which affects the plant and the neuratcessfully obtained. We try to force this manipulator to track
network, is given by: a reference signal given by the Duffing equation:

u= Q=W (e(e) = 2(ay)) ~ (A+ Dl — ) i —x+ 2% =0.114cos(1.1¢) with

t
I 1y0° z(0) =1, (0) =0.114 30
+er+Ki/e(T)dT—T(2+2HWH L;)e (0) (©) (30)
0

In Figs. 3-6 the states trajectories are shown in blue for
the Chaotic Pendulum and in black for the Duffing Equation

+ fr(er,ur) = Azp = WL () —2r + 2] (29)  gynamics.
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Note: In the previous figures we showed the Chaotic Pen-
dulum trajectories as well as the reference signal they should
follow.

In Figs. 7-8 we show the torque applied to the links in the
caothic pendulum.

We can see that the Recurrent Neural Controller ensures
rapid convergence of the system outputs to the reference tra-
jectory. The controller is robust [22] in presence of distur-
bances applied to the system. Another important issue of this
approach related to other neural controllers, is that most neu-
ral controllers are based on indirect control, first the neural
network identifies the unknown system and when the identi-
fication error is small enough, the control is applied. In our
approach, direct control is considered, the learning laws for
the neural networks depend explicitly of the tracking error
instead of the identification error. This approach results in
faster response of the system.
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FIGURE 7. Torque (Nm) applied to link1.
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FIGURE 8. Torque (Nm) applied to link2.
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5. Conclusions

We have extended the adaptive recurrent neural control previ-
ously developed in Refs. 13, 14 and 18 for trajectory tracking
control problem in order to consider less inputs than states.
Stability of the tracking error is analized via Lyapunov con-
trol functions and the control law is obtained based on the
Pl approach. A Chaotic pendulum model with friction terms
and unknown external disturbances is used to verify the de-
sign for trajectory tracking, with satisfactory performance.
Research along this line will continue to implement the con-
trol algorithm in real time and to further test it in a laboratory
environment (see [19,23]).
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