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Coordinate systems adapted to constants of motion
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We present some examples of mechanical systems such thatgis@mstants of motion in involution (whereis the number of degrees
of freedom), we can identify a coordinate system in which the Hamilton—-Jacobi equation is separabiefmrable), with the separation
constants being the values of the given constants of motion. Analogous results for theiSgrequation are also given.
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Presentamos algunos ejemplos de sistema&nieas tales que dadasconstantes de movimiento en involaoi(donden es el rumero de
grados de libertad), podemos identificar un sistema de coordenadas en el cual larede&tamilton—Jacobi es separablé{separable),
con las constantes de sepaoacsiendo los valores de las constantes de movimiento dadas. Se dan resubiafpesgrara la ecudm de
Schiddinger.

Descriptores: Ecuacon de Hamilton—-Jacobi; constantes de movimiento; segarale variablesR-separabilidad; ecuami de Schivdinger
PACS: 45.20.Jj; 02.30.Jr; 03.65.-w

1. Introduction In Sec. 2, following Ref. 5, we give a summary of the Li-
ouville theorem and in Sec. 3 we present various examples

As is well known, in the framework of classical mechan- where we start witlh constants of motion for a given Hamil-

ics, given a Hamiltonian function for a system withde-  tonian and we find a coordinate system where the HJ equation

grees of freedom, a complete solution of the correspondingdmits separable dR-separable solutions; we also analyze

Hamilton—Jacobi (HJ) equation yields constants of mo- the separability of the corresponding Sathinger equation.

tion or, equivalently, the solution of the equations of motion

(see,g.g, Refs. 1 and 2). _The complete solutions _of the HJ2. The Liouville theorem

equation are usually obtained by means of separation of vari-

ables [1], but the successful application of this method degjyen a Hamiltonian functiot (¢*, p;, t) for a system with

pends on an appropriate choice of the coordinates. When the gegrees of freedom, we assume knawfunctionally in-
HJ equation can be solved by separation of variablespthe gependent constants of motion

separation constants arising in the solution are the values of

constants of motion, which need not be related to “obvious” Q' = Q' (¢,pj,1), i=1,2,...,n, (1)
symmetries of the Hamiltonian. For instance, it turns out that

the HJ equation for the Kepler problem in two dimensionsWhich may depend explicitly on the time. (It may be re-
can be solved by separation of variables in parabolic coorditarked that in the few modern books dealing with the Liou-
nates, and the separation constants are the (conserved) valyde theorem, the attention is usually restricted to constants

of the Hamiltonian and of one component of the Laplace-0f motion that do not depend explicitly on the time, seg,
Runge—-Lenz vector (see,g, Ref. 2, p. 169). Refs. 8 and 9.) Furthermore, we shall assume that Egs. (1)

Making use of the Liouville theorem, in aarbitrary co- can be inverted so that the can be expressed in terms of

ordinate system, we can find a complete solution of the H§ @ andt: ) )

equation, which need not be separable, if we haveon- pi = Fi(d’,t, Q). @
stants of motion in involution [3-5]. In this paper we give Substituting these expressions into the Hamiltonian we ob-
some examples where the complete solution of the HJ equaain a function

tion obtained in this manner allows us to identify the coordi- o , _ _ _

nate system in the configuration space in which the HJ equa- H(q¢",t,Q") = H(q¢", Fi(¢’,t,Q%),t) (3)
tion is separable oR-separable, and the separation constants . . .

are the values of the constants of motion we started with. A and, treating th&)* as parameters, there exists a functton
solution of the HJ equation i&-separable if it is the sum of (that depends parametrically on ) such that

functions of one variable and some function that may d_epen_d Fidq — Hdt = ds, 4)
on all the coordinates but not on the parameters contained in

the solution. The concept dt-separability is more common it and only if theQ' are in involution, that is

(though not widely known) in the case of second-order linear

partial differential equations (see.g, Refs. 6 and 7). {Q4,Q7} =0, (5)



COORDINATE SYSTEMS ADAPTED TO CONSTANTS OF MOTION 479

where{ , } denotes the Poisson bracket. (In the languag@dmits separable solutions in the coordingtess) defined
of differentiable manifoldsf; and H are the pullbacks af; by

and H under the inclusion map of the submanifold defined u=x+vy, V=T — Y, (10)
by Q' = const. into the extended phase space.) The func
tion S defined by Eq. (4) is a complete solution of the HJ
equation, which need not be separableReseparable in the
coordinates;® (see Ref. 5 and the examples given below).

‘and the separation constants are the valuesHofand

(1/m)pypy + mgx.
Indeed, in the coordinates (10), the Hamiltonian (6) takes

the form
Once we have the explicit expressiongfproceeding in 1o 2 U—v
the usual manner, we can obtain thadditional constants of H= m (pu”+p07) +mg 2 (11)
motion, Py, P, ..., P,, by means of and the HJ equation is
P_:ic")S 1 6£2+ 8£2+m1L—v+3£_0
Q! m |\ Ou ov 979 ot
3. Coordinate systems associated with solu- which admits separable solutions of the form
tions of the HJ equation S = f(u) + h(v) — Et, (12)

In this section, we give several explicit examples where, withwhereE is a separation constant (the valuefdf. The func-
the aid of the Liouville theorem, we find coordinate systemstions f andh must obey
in which the HJ equation can be solved by separation of vari-

ables. 1 ﬂermgU_E:é
m \ du 2 2 2’
3.1. Particle in a uniform field 1 <dh>2 Cmgy B A 13
A simple but illustrative example is given by the Hamiltonian m \ dv 2 2 2’
1 where A is a second separation constant (the fadtt is
H = %(pf +py°) + mgy, (6)  introduced for later convenience).

The meaning of the parametdris obtained by subtract-
for which all constants of motion are readily obtained (hereing the two equations (13) (in order to elimindf®,
m andg are constants). In fact, the HJ equation is separable

. . . . 2 2
in the coordinates$z, y) of the configuration space, and the A— 1 frdf\" _ (dh n mgu +v
separation constants are the valuesdofindp,, which are m |\ du dw 2
constants of motion as a consequence of the fact thatlz 1
do not appear in the Hamiltonian. = = (pu? — po2) + mg2 ; v
Another constant of motion (which is not related to “ob- m
. ” . . . . 1
vious” symmetries of the Hamiltonian) is = —p.p, + mge.
1 .
prpy + mgz, @) Thus, the two separation constanksand A, are the values

of the constants of motioH and(1/m)p.p, + mgx, which
therefore,H and (1/m)p,p, + mgz are in involution and led in the first place to the coordinates v).
can be taken a@' andQ?, respectively. A straightforward From Egs. (12) and (13) we get
computation leads to the expressions

S = 1/\/Qm(E—l—A) —2m2gudu
Pz +py = £V2m(Q1 + Q) — 2m3g(z +y), 2

1
P — Py = £/2m(Q! — Q2) + 2m2g(x —y).  (8) + 3 / V2m(E — A) + 2m2gv dv — Et,

Hence, by writing Eq. (4) in the form (here, by abuse of no-which coincides with the principal functio$i obtained from
tation, we writep,, andp, in place ofF; and Fy) Egs. (8) and (_9). The second half of constants of motion,

. . P, = -05/0Q", is given by

— _ —_— _— —_— 1 = ' r

5 (Patpy) d(z+y)+5 (pa—py) d(z—y)-Q dt = dS, (9) PPy p P (14)

mg mg

and taking into account that, £p, is a function ofr £y only,

we see that the functiof is the sum of three one-variable
functions that depend on+ vy, = — y, andt (with Q! andQ? 2 (0% 0% U — v O
being treated as parameters). In other words, the HJ equation ~ ; <3u2 + 302) + D) v = lhﬁ

The Schédinger equation

(15)
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[cf. Eq. (11)] also admits separable solutions of the form[cf. Eq. (18)] whereQ! andQ? are separation constants. The
v = U(u)V(v) exp(—iEt/h), whereE is a separation con- wavefunction (21) is a common eigenfunction of the opera-
stant, and the one-variable functiaisandV’ obey the equa- torsp, andp, + mgt with eigenvalue€)! and@Q?, respec-

tions tively. As in the case of the HJ equation, the Sxlinger
R d2U  mgu E A equation (19) also admits separable solutions (which involve
T m du? 2 U- §U - §Uv Airy functions). It may be noticed that, among other things,
B2A2V mgo > A the wavefunctions (21) do not involve special functions.
- - V—-=—V=-2V, (16)
m dv? 2 2 2

where A is another separation constant. The solutions of3'3' Particle in a central field

these last equations can be expressed in terms of Airy funrpe ysyal Hamiltonian for a particle in a central field, in two
tions or Bessel functions of order/3. One can readily §imensions. can be written in the form
verify that, as a consequence of Eqgs. (16), the wavefunc- ’

tionsy = U(u)V(v)exp(—iEt/h) are eigenfunctions of L 2 5T 5
the Hamiltonian (with eigenvalué’) and of the operator H= 2m(pg” tpy) F VIV 4y, (22)
(1/m)(p® — po®) + mg*3* = (1/m)papy + mga (with

whereV is a function of one variable ar{d, y) are Cartesian
coordinates. In addition to the Hamiltonian itself, the angular
3.2. An R-separable solution momentum about the origitl;. = xp, — yp., is conserved.

ChoosingH and L, as the two constants of motion in invo-
Another pair of constants of motion in involution for the lution, Q' and@?, respectively, we find

Hamiltonian (6) is given by the functions )
—Q%y £ x\/2m(2? +y%)(Q = V) — (Q?)?

[see Egs. (14)] (note th&}? depends explicitly on the time).
The left-hand side of Eq. (4) is now given by

eigenvalueA).

)

Dy = Q% £yy/2m(2? + ) (Q' - V) — (@Q*)?

' v 2+ 32
Q'dz + (Q* — mgt)dy — m (@) +(Q° —mgt)*]at and, therefore, the left-hand side of Eq. (4) is
— mgydt = d [ —mgyt +Q'x + Q% QQW +/2m(a? +2)(Q' - V) — (Q2)?
o 62y 2 +y €

a (Va4 ) - Qat,

thus showing that is the sum of the functior-mgyt (that L (Q2)2
does not depend on the paramet@isand three one-variable £4/2m(@ =V) — 22 + 12
functions that depend ar, y, andt. That is, the HJ equation

in the coordinate$z, y) admits R-separable solutions of the which is the total differential of the sum of functions of
form S = —mgyt + f(x) + h(y) + ¢(t), and the separation arctan(y/x), /22 + y2, andt, thus showing that the HJ
constants are the valuesf andp, + mgt. As pointed out  equation is separable in polar coordinates and the separation
above, the HJ equation in the coordinatesy) also admits  constants are the values Hfand L.

separablesolutions.

Correspondingly, the Scbdinger equation 3.4. Charged particle in a uniform magnetic field
B (0% 0% L OY
~9 <8x2 + e ) +mgyp =iho- (19)  Another example where the HJ equation (and the &tihger

equation) admitsRk-separable solutions corresponds to a

admits (multiplicative)iz-separable solutions of the form charged particle in a uniform magnetic field, with the vector

b = exp (_;ngyt) X (@)Y (5)T(), (20) Potential chosen as
1
[cf. Eq. (18)]. Substituting Eq. (20) into Eq. (19) we find A= 5B X T.

Y = exp 1 [— mgyt + Q' In Cartesian coordinates, with theaxis pointing along the

h magnetic field, the Hamiltonian is
2, (@)% (@2 —mgt)® 2 2
- 21 1 eB eB
Q% 2m 6m2g (21) H:T <px+y> + (Py—ﬂU) +p2|,  (23)
m 2c 2c
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eB

Q' =H, Q2=px—§y7 Q* =p..

Hence

eB
-2 Y,
c

px:Q2+ 9

eB \/2mQ1—<Q2+6By
2c c

2
po= Do ) - @
Pz = an

and Eq. (4) takes the form

eB

d
2c y> v
eBy

ﬁx:t \/2le — <Q2 +
2c c

+Q3dz — Q'dt = dS.
Thus,

(@

2
+ ) — (@)% ) dy

eB
2c

2
+ / \/2le — <Q2 + e]‘jy) —(@3)%dy

+ Q32 — Q't,

S = zy + Q%x

(24)

The Schédinger equation

L (hd  eB
2m 10z ZCy

481

wheree is the charge of the particle. Three constants of mo-admitsR-separable solutions of the form
tion in involution are given by

ieB
v =ow (3500 ) X@Y 2O,
In fact,
P = expih (Zfa;y + Q%+ Q3 — Qlt) Y (y),

whereQ', Q?, Q? are constants, arid satisfies the separated
equation

a2y 1

d7y2+ﬁ Y =0

b y)2 (@Y

Cc

2mQt — <Q2 +

[cf. Eq. (24)].

In this case, the method not only yields a solution of the
HJ equation in an arbitrary coordinate system, but also in
an arbitrary gauge, since the constants of motion are gauge-
independent.

4. Concluding remarks

Apart from the fact that we do not know under what con-
ditions the method followed here leads to separablé?or

is an R-separable solution of the HJ equation; the first termseparable solutions in some coordinate system, it should be
mixes the coordinates andy but the remaining four are
functions of one variable.

clear that the identification of the coordinates may be very
difficult in some cases.

It may be noticed that in the examples presented in this
paper the coordinate systems found with the aid of Liouville’'s
theorem are all orthogonal, but there is no reason to believe
that this will happen in all cases. An unexpected result is that
the HJ equation (as well as the Sgtinger equation), written
in a specific coordinate system, admits simultaneously sepa-
rable andR-separable solutions (Sec. 3.2).
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