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Coordinate systems adapted to constants of motion
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We present some examples of mechanical systems such that givenn constants of motion in involution (wheren is the number of degrees
of freedom), we can identify a coordinate system in which the Hamilton–Jacobi equation is separable (orR-separable), with the separation
constants being the values of the given constants of motion. Analogous results for the Schrödinger equation are also given.
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Presentamos algunos ejemplos de sistemas mecánicos tales que dadasn constantes de movimiento en involución (donden es el ńumero de
grados de libertad), podemos identificar un sistema de coordenadas en el cual la ecuación de Hamilton–Jacobi es separable (oR-separable),
con las constantes de separación siendo los valores de las constantes de movimiento dadas. Se dan resultados análogos para la ecuación de
Schr̈odinger.
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1. Introduction

As is well known, in the framework of classical mechan-
ics, given a Hamiltonian function for a system withn de-
grees of freedom, a complete solution of the corresponding
Hamilton–Jacobi (HJ) equation yields2n constants of mo-
tion or, equivalently, the solution of the equations of motion
(see,e.g., Refs. 1 and 2). The complete solutions of the HJ
equation are usually obtained by means of separation of vari-
ables [1], but the successful application of this method de-
pends on an appropriate choice of the coordinates. When the
HJ equation can be solved by separation of variables, then
separation constants arising in the solution are the values ofn
constants of motion, which need not be related to “obvious”
symmetries of the Hamiltonian. For instance, it turns out that
the HJ equation for the Kepler problem in two dimensions
can be solved by separation of variables in parabolic coordi-
nates, and the separation constants are the (conserved) values
of the Hamiltonian and of one component of the Laplace–
Runge–Lenz vector (see,e.g., Ref. 2, p. 169).

Making use of the Liouville theorem, in anarbitrary co-
ordinate system, we can find a complete solution of the HJ
equation, which need not be separable, if we haven con-
stants of motion in involution [3–5]. In this paper we give
some examples where the complete solution of the HJ equa-
tion obtained in this manner allows us to identify the coordi-
nate system in the configuration space in which the HJ equa-
tion is separable orR-separable, and the separation constants
are the values of then constants of motion we started with. A
solution of the HJ equation isR-separable if it is the sum of
functions of one variable and some function that may depend
on all the coordinates but not on the parameters contained in
the solution. The concept ofR-separability is more common
(though not widely known) in the case of second-order linear
partial differential equations (see,e.g., Refs. 6 and 7).

In Sec. 2, following Ref. 5, we give a summary of the Li-
ouville theorem and in Sec. 3 we present various examples
where we start withn constants of motion for a given Hamil-
tonian and we find a coordinate system where the HJ equation
admits separable orR-separable solutions; we also analyze
the separability of the corresponding Schrödinger equation.

2. The Liouville theorem

Given a Hamiltonian functionH(qi, pi, t) for a system with
n degrees of freedom, we assume knownn functionally in-
dependent constants of motion

Qi = Qi(qj , pj , t), i = 1, 2, . . . , n, (1)

which may depend explicitly on the time. (It may be re-
marked that in the few modern books dealing with the Liou-
ville theorem, the attention is usually restricted to constants
of motion that do not depend explicitly on the time, see,e.g.,
Refs. 8 and 9.) Furthermore, we shall assume that Eqs. (1)
can be inverted so that thepi can be expressed in terms of
Qj , qj , andt:

pi = Fi(qj , t, Qj). (2)

Substituting these expressions into the Hamiltonian we ob-
tain a function

H̃(qi, t, Qi) ≡ H(qi, Fi(qj , t, Qj), t) (3)

and, treating theQi as parameters, there exists a functionS
(that depends parametrically on theQi) such that

Fidqi − H̃dt = dS, (4)

if and only if theQi are in involution, that is

{Qi, Qj} = 0, (5)
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where{ , } denotes the Poisson bracket. (In the language
of differentiable manifolds,Fi andH̃ are the pullbacks ofpi

andH under the inclusion map of the submanifold defined
by Qi = const. into the extended phase space.) The func-
tion S defined by Eq. (4) is a complete solution of the HJ
equation, which need not be separable orR-separable in the
coordinatesqi (see Ref. 5 and the examples given below).

Once we have the explicit expression ofS, proceeding in
the usual manner, we can obtain then additional constants of
motion,P1, P2, . . . , Pn, by means of

Pi = − ∂S

∂Qi
.

3. Coordinate systems associated with solu-
tions of the HJ equation

In this section, we give several explicit examples where, with
the aid of the Liouville theorem, we find coordinate systems
in which the HJ equation can be solved by separation of vari-
ables.

3.1. Particle in a uniform field

A simple but illustrative example is given by the Hamiltonian

H =
1

2m
(px

2 + py
2) + mgy, (6)

for which all constants of motion are readily obtained (here
m andg are constants). In fact, the HJ equation is separable
in the coordinates(x, y) of the configuration space, and the
separation constants are the values ofH andpx, which are
constants of motion as a consequence of the fact thatt andx
do not appear in the Hamiltonian.

Another constant of motion (which is not related to “ob-
vious” symmetries of the Hamiltonian) is

1
m

pxpy + mgx, (7)

therefore,H and (1/m)pxpy + mgx are in involution and
can be taken asQ1 andQ2, respectively. A straightforward
computation leads to the expressions

px + py = ±
√

2m(Q1 + Q2)− 2m2g(x + y),

px − py = ±
√

2m(Q1 −Q2) + 2m2g(x− y). (8)

Hence, by writing Eq. (4) in the form (here, by abuse of no-
tation, we writepx andpy in place ofF1 andF2)

1
2
(px+py) d(x+y)+

1
2
(px−py) d(x−y)−Q1dt = dS, (9)

and taking into account thatpx±py is a function ofx±y only,
we see that the functionS is the sum of three one-variable
functions that depend onx+y, x−y, andt (with Q1 andQ2

being treated as parameters). In other words, the HJ equation

admits separable solutions in the coordinates(u, v) defined
by

u ≡ x + y, v ≡ x− y, (10)

and the separation constants are the values ofH and
(1/m)pxpy + mgx.

Indeed, in the coordinates (10), the Hamiltonian (6) takes
the form

H =
1
m

(pu
2 + pv

2) + mg
u− v

2
(11)

and the HJ equation is

1
m

[(
∂S

∂u

)2

+
(

∂S

∂v

)2
]

+ mg
u− v

2
+

∂S

∂t
= 0,

which admits separable solutions of the form

S = f(u) + h(v)− Et, (12)

whereE is a separation constant (the value ofH). The func-
tionsf andh must obey

1
m

(
df

du

)2

+
mgu

2
− E

2
=

A

2
,

1
m

(
dh

dv

)2

− mgv

2
− E

2
= −A

2
, (13)

whereA is a second separation constant (the factor1/2 is
introduced for later convenience).

The meaning of the parameterA is obtained by subtract-
ing the two equations (13) (in order to eliminateE),

A =
1
m

[(
df

du

)2

−
(

dh

dv

)2
]

+ mg
u + v

2

=
1
m

(pu
2 − pv

2) + mg
u + v

2

=
1
m

pxpy + mgx.

Thus, the two separation constants,E andA, are the values
of the constants of motionH and(1/m)pxpy + mgx, which
led in the first place to the coordinates(u, v).

From Eqs. (12) and (13) we get

S =
1
2

∫ √
2m(E + A)− 2m2gu du

+
1
2

∫ √
2m(E −A) + 2m2gv dv − Et,

which coincides with the principal functionS obtained from
Eqs. (8) and (9). The second half of constants of motion,
Pi = −∂S/∂Qi, is given by

P1 =
py

mg
+ t, P2 =

px

mg
. (14)

The Schr̈odinger equation

−~
2

m

(
∂2ψ

∂u2
+

∂2ψ

∂v2

)
+ mg

u− v

2
ψ = i~

∂ψ

∂t
(15)
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[cf. Eq. (11)] also admits separable solutions of the form
ψ = U(u)V (v) exp(−iEt/~), whereE is a separation con-
stant, and the one-variable functionsU andV obey the equa-
tions

− ~
2

m

d2U

du2
+

mgu

2
U − E

2
U =

A

2
U,

− ~
2

m

d2V

dv2
− mgv

2
V − E

2
V = −A

2
V, (16)

whereA is another separation constant. The solutions of
these last equations can be expressed in terms of Airy func-
tions or Bessel functions of order1/3. One can readily
verify that, as a consequence of Eqs. (16), the wavefunc-
tions ψ = U(u)V (v) exp(−iEt/~) are eigenfunctions of
the Hamiltonian (with eigenvalueE) and of the operator
(1/m)(pu

2 − pv
2) + mg u+v

2 = (1/m)pxpy + mgx (with
eigenvalueA).

3.2. AnR-separable solution

Another pair of constants of motion in involution for the
Hamiltonian (6) is given by the functions

Q1 ≡ px, Q2 ≡ py + mgt (17)

[see Eqs. (14)] (note thatQ2 depends explicitly on the time).
The left-hand side of Eq. (4) is now given by

Q1dx + (Q2 −mgt)dy − 1
2m

[
(Q1)2 + (Q2 −mgt)2

]
dt

−mgydt = d

[
−mgyt + Q1x + Q2y

− (Q1)2t
2m

+
(Q2 −mgt)3

6m2g

]
(18)

thus showing thatS is the sum of the function−mgyt (that
does not depend on the parametersQi) and three one-variable
functions that depend onx, y, andt. That is, the HJ equation
in the coordinates(x, y) admitsR-separable solutions of the
form S = −mgyt + f(x) + h(y) + φ(t), and the separation
constants are the values ofpx andpy + mgt. As pointed out
above, the HJ equation in the coordinates(x, y) also admits
separablesolutions.

Correspondingly, the Schrödinger equation

− ~
2

2m

(
∂2ψ

∂x2
+

∂2ψ

∂y2

)
+ mgyψ = i~

∂ψ

∂t
(19)

admits (multiplicative)R-separable solutions of the form

ψ = exp
(
− i
~
mgyt

)
X(x)Y (y)T (t), (20)

[cf. Eq. (18)]. Substituting Eq. (20) into Eq. (19) we find

ψ = exp
i
~

[
−mgyt + Q1x

+ Q2y − (Q1)2t
2m

+
(Q2 −mgt)3

6m2g

]
(21)

[cf. Eq. (18)] whereQ1 andQ2 are separation constants. The
wavefunction (21) is a common eigenfunction of the opera-
torspx andpy + mgt with eigenvaluesQ1 andQ2, respec-
tively. As in the case of the HJ equation, the Schrödinger
equation (19) also admits separable solutions (which involve
Airy functions). It may be noticed that, among other things,
the wavefunctions (21) do not involve special functions.

3.3. Particle in a central field

The usual Hamiltonian for a particle in a central field, in two
dimensions, can be written in the form

H =
1

2m
(px

2 + py
2) + V (

√
x2 + y2), (22)

whereV is a function of one variable and(x, y) are Cartesian
coordinates. In addition to the Hamiltonian itself, the angular
momentum about the origin,Lz = xpy − ypx, is conserved.
ChoosingH andLz as the two constants of motion in invo-
lution, Q1 andQ2, respectively, we find

px =
−Q2y ± x

√
2m(x2 + y2)(Q1 − V )− (Q2)2

x2 + y2
,

py =
Q2x± y

√
2m(x2 + y2)(Q1 − V )− (Q2)2

x2 + y2

and, therefore, the left-hand side of Eq. (4) is

Q2 (−ydx + xdy)
x2 + y2

±
√

2m(x2 + y2)(Q1 − V )− (Q2)2

(xdx + ydy)
x2 + y2

−Q1dt = Q2 d arctan
y

x

±
√

2m(Q1 − V )− (Q2)2

x2 + y2
d

(√
x2 + y2

)
−Q1dt,

which is the total differential of the sum of functions of
arctan(y/x),

√
x2 + y2, and t, thus showing that the HJ

equation is separable in polar coordinates and the separation
constants are the values ofH andLz.

3.4. Charged particle in a uniform magnetic field

Another example where the HJ equation (and the Schrödinger
equation) admitsR-separable solutions corresponds to a
charged particle in a uniform magnetic field, with the vector
potential chosen as

A =
1
2
B× r.

In Cartesian coordinates, with thez-axis pointing along the
magnetic field, the Hamiltonian is

H=
1

2m

[(
px+

eB

2c
y

)2

+
(

py−eB

2c
x

)2

+p2
z

]
, (23)
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wheree is the charge of the particle. Three constants of mo-
tion in involution are given by

Q1 = H, Q2 = px − eB

2c
y, Q3 = pz.

Hence

px = Q2 +
eB

2c
y,

py =
eB

2c
x±

√
2mQ1 −

(
Q2 +

eBy

c

)2

− (Q3)2,

pz = Q3,

and Eq. (4) takes the form(
Q2 +

eB

2c
y

)
dx

+


eB

2c
x±

√
2mQ1 −

(
Q2 +

eBy

c

)2

− (Q3)2


 dy

+ Q3dz −Q1dt = dS.

Thus,

S =
eB

2c
xy + Q2x

±
∫ √

2mQ1 −
(

Q2 +
eBy

c

)2

− (Q3)2 dy

+ Q3z −Q1t, (24)

is anR-separable solution of the HJ equation; the first term
mixes the coordinatesx and y but the remaining four are
functions of one variable.

The Schr̈odinger equation

1
2m

[ (
~
i

∂

∂x
+

eB

2c
y

)2

+
(
~
i

∂

∂y
− eB

2c
x

)2

+
(
~
i

∂

∂z

)2
]
ψ = i~

∂ψ

∂t

admitsR-separable solutions of the form

ψ = exp
(

i
~

eB

2c
xy

)
X(x)Y (y)Z(z)T (t).

In fact,

ψ = exp
i
~

(
eB

2c
xy + Q2x + Q3z −Q1t

)
Y (y),

whereQ1, Q2, Q3 are constants, andY satisfies the separated
equation

d2Y

dy2
+

1
~2

[
2mQ1 −

(
Q2 +

eBy

c

)2

− (Q3)2
]

Y = 0

[cf. Eq. (24)].

In this case, the method not only yields a solution of the
HJ equation in an arbitrary coordinate system, but also in
an arbitrary gauge, since the constants of motion are gauge-
independent.

4. Concluding remarks

Apart from the fact that we do not know under what con-
ditions the method followed here leads to separable orR-
separable solutions in some coordinate system, it should be
clear that the identification of the coordinates may be very
difficult in some cases.

It may be noticed that in the examples presented in this
paper the coordinate systems found with the aid of Liouville’s
theorem are all orthogonal, but there is no reason to believe
that this will happen in all cases. An unexpected result is that
the HJ equation (as well as the Schrödinger equation), written
in a specific coordinate system, admits simultaneously sepa-
rable andR-separable solutions (Sec. 3.2).
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