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Frequency behavior of saturated nonlinear function series based on opamps
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In multiscroll chaotic circuit design based on active devices, piece-wise linear (PWL) approaches are often used to model the behavior of
nonlinear functions, thereby that the behavior of a chaotic system can be forecasted through numerical simulations. However, although PWL
models are relatively easy to build, they do not include any information related on the performance parameters of the active devices to be
used. This a serious shortcoming, since PWL-models introduces a level of inaccuracy into a numerical analysis which is more evident when
numerical simulations and experimental results are compared. These differences are more pronounced when the chaotic waveforms to be
generated are pushed to operate at high-frequency. This paper introduces experimental results on the frequency behavior of a nonlinear
function called saturated nonlinear function series based on operational amplifiers. These new results are key not only on the automatic
synthesis of chaotic attractors and on the synchronization schemes used in secure communication systems based on chaos, but also on the
metrics used to evaluate the complexity of a chaotic system. A mathematical model to characterize the behavior of the nonlinear function is
also derived, showing a better accuracy compared with the PWL approach. The theoretical derivations and related results are experimentally
validated through implementations from commercially available devices.
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En el disẽno de circuitos cáoticos con ḿultiples enrollamientos basado en dispositivos activos, el comportamiento de las funciones no lineales
es representado por aproximaciones lineales a trozos (PWL). Sin embargo, aunque modelos PWL son fáciles de construir, estos no incluyen
ninguna informacíon relacionada con los parámetros de desempeño de los dispositivos activos a ser usados. Este es un serio inconveniente,
ya que modelos PWL introducen un nivel de inexactitud en un análisis nuḿerico el cual llega a ser ḿas evidente cuando las simulaciones
numéricas son comparadas con resultados experimentales. Estas diferencias son más pronunciadas cuando las formas de onda caóticas a
ser generadas son empujadas a operar en alta frecuencia. Este artı́culo introduce resultados experimentales sobre el comportamiento en
frecuencia de la función no lineal llamada serie de funciones saturadas las cuales son diseñadas con amplificadores operacionales. Los
nuevos resultados son clave no solamente en la sı́ntesis autoḿatica de atractores caóticos y en los esquemas de sincronización usados en
los sistemas de comunicación basados en caos, pero también en las ḿetricas usadas para evaluar la complejidad de un sistema caótico. Un
modelo analı́tico para caracterizar el comportamiento de la función no lineal es derivado y este es más exacto que el modelo PWL. Los
resultados téoricos son validados con resultados experimentales a través del uso de dispositivos comerciales.

Descriptores: Sistemas cáoticos; ańalisis asistido por computadora; serie de funciones saturadas; modelado; caos.

PACS: 05.45.Pq; 05.45.Pq; 84.30.Ng; 07.50.Ek; 84.30.-r; 01.50.Pa

1. Introduction

A piece-wise linear (PWL) approach is often used to model
the behavior of nonlinear functions [2-5,11,14-19,22,30,33-
39,41]. In this sense, the saturated nonlinear function se-
ries (SNFS) has been used as the nonlinear part into a
chaotic system [14-16,25,26,37,39], so that this can numer-
ically be analyzed and common metrics used to measure
the complexity of a nonlinear system can also be applied
[2-5,8,11,14-19,22,30,33-39,41]. Moreover, synchronization
schemes of chaotic oscillators to be used into a secure com-
munication system have been proposed [3,4,13,23], where
a PWL approach is used to model the behavior of the non-
linear function. Therefore, the performance of the syn-
chronization scheme is forecasted through numerical sim-
ulations [4,10,23,31]. In practice, however, the SNFS is
often designed by stacking several very high-gain voltage

operational amplifiers (Opamps) as depicted in Fig. 1 [14-
16,25,26,37,39], showing that the real behavior of the SNFS

FIGURE 1. SNFS designed with Opamps to generaten-plateaus.
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FIGURE 2.Frequency behavior of the SNFS based on Opamps. Vertical axes:Vs(x) (20 mV/div); Horizontal axes:x(t) (2V/div). Operating
frequency ofx(t) to (a) 450 Hz and (b) 3.45 kHz.

is far different from the PWL model. These differences are
more pronounced when the functionality of the SNFS de-
signed with amplifiers is pushed to operate at high frequency,
as shown in Fig. 2. This is because PWL models do not
reflect the real behavior of a SNFS designed with Opamps,
since they are only limited to characterize a static behavior
instead of a dynamic behavior. According to Fig. 2(a), the
behavior of the SNFS can be well approximated by using a
PWL model, since the operating frequency of the chaotic sig-
nalx(t), is relatively low (450 Hz). However, if the operating
frequency of the chaotic signal is monotonically increased, as
shown in Fig. 2(b), the behavior of the SNFS cannot be ap-
proximated by using a PWL function, by the reasons above
mentioned. It is worth remarking that the operating frequen-
cies ofx(t) to 450 Hz and 3.45 kHz were selected in order to
show the real behavior of the SNFS, but these values do not
have to be the same. Furthermore, from Fig. 1, three Opamps
along with their resistors,Rs and the breakpoints (Bp), one
by each amplifier given by:+Bp1, 0, −Bp1, were used to
obtain Fig. 2, and all they are embedded into a chaotic sys-
tem, as will be shown in Sec. 5. As a consequence, inaccu-
racies are introduced not only in the numerical generation of
chaotic waveforms [5,11,14-18,25,26,34,37,39,41], but also
on the metrics used to evaluate the complexity of nonlinear
systems [1,8,9,12,20,27,30,32]. Besides, in chaos synchro-
nization schemes a relatively high level of inaccuracy is also
introduced in the numerical simulations and as a result, in
practice, a communication system based on chaos might be
infeasible [4,10,13,23,31].

This paper introduces the effects that present the SNFS
designed with Opamps when the operating frequency of the
chaotic signal increases. Note that waveforms of a chaotic
oscillator are nearly periodic when the output power is con-
centrated in a single-frequency component which is centered
near the operating frequency of the chaotic oscillator cir-

cuit [6,7,21,22,24,28]. Furthermore, the waveforms become
chaotic whether the circuit is tuned at its chaotic region of
operation. Thus, the power is extended to more frequency
components into a bandwidth small, with lower and higher
frequencies than the center operating frequency. Moreover,
a behavioral model that characterize the real behavior of the
SNFS designed with Opamps is also derived, where the most
influential performance parameters of an Opamp, like the dy-
namic range (DR), gain bandwidth product (GB), DC gain
(ADC ) and slew-rate (SR) are taken into account. In order
to validate the proposed nonlinear model of the SNFS, we
also compare the behavior of the nonlinear function at high-
frequency when a linear model and the proposed nonlinear
model of the Opamp are used. As a result, the nonlinear
model allows modeling of the SNFS with better accuracy. In
this way, the new behavioral model can be used to improve
all the disadvantages before mentioned on the use of PWL
models. The theoretical derivations are validated through
practical implementations by using commercially available
devices.

2. Frequency behavior of SNFS
A real Opamp exhibits finite performance parameters that im-
pact directly on the performance of analog circuits,e.g., the
SNFS based on Opamps. To demonstrate the real behavior of
the SNFS, the chaotic circuit introduced in Ref. 26 has been
built and experimentally tested by using the UA741 Opamp,
in order to generate chaotic waveforms at 1-D. Therefore,
without loss of generality, here simply we consider the cir-
cuit shown in Fig. 1 [26], but kept in mind the chaotic circuit
in general. Analyzing Fig. 1 and assuming that the positive
node ofRs is of low impedance, the output current is given
by

i(x) ≈ V1(t)
R1

+
V2(t)
R2

+ · · · Vn(t)
Rn

(1)
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FIGURE 3. Macromodel to characterize the nonlinear behavior of
Opamps.

whereV1,2,···n(t) = f(DR, GB, ADC , SR, x(t)) and±Bpj

are computed as in Refs. 25 and 26. Applying a chaotic sig-
nal on thex-terminal one can obtain the real behavior of the
SNFS, wherei(x) has been indirectly measured across the ter-
minals ofRs = 100Ω. Basically, the voltage drop across the
terminals ofRs is firstly measured and lateri(x) is obtained.
As above mentioned, three Opamps together with their re-
sistors are used to experimentally generate Fig. 2. Thus,
Fig. 2 shows the real behavior of the SNFS with four plateaus
at two operating frequencies [6,7,21,28], and the maximum
voltage drop acrossRs is measured asVs(x) ≈ 124 mV
and as a consequence, the maximum current is measured
as i(x) ≈1.24 mA. As one see, a PWL approach can be
used to model the behavior of the SNFS at low frequency,
as shown in Fig. 2(a) [14-16,25,26,37,39]. However, when
the center frequency of the chaotic signal increases, the PWL
model becomes infeasible, as shown in Fig. 2(b). At this
stage, it is clear that to palliate all the disadvantages that
present the use of PWL models on the application areas be-
fore mentioned, a simple and accurate behavioral model that
captures these effects is widely demanded. In this context,
chaotic system performance characteristics can be evaluated
by using a more complex model but with better accuracy for
Opamps (e.g., at the transistor level of abstraction), however,
it is well-known that complex models are slower. Other-
wise, simple models may, however, compromise the accu-
racy. This trade-off between accuracy and simulation speed
is not addressed herein [29], but however, the deduced pre-
viously nonlinear models, firstly for Opamps and later on for
the SNFS, have a better accuracy than PWL approaches as
will be seen throughout the paper. It is worth mentioning
that the real effects on the behavior at frequency of the SNFS
depicted in Fig. 2(b) is a fundamental problem that has not
been examined in the literature, until today. Perhaps the rea-
son of that previous works have not considered the frequency
behavior of the nonlinear function of a chaotic system is due
to that they have principally been focused to generate numer-
ically chaotic waveforms instead of experimental tests. But
even, some experimental results have only been measured at
low-frequency where a PWL-model can be used to exactly
model the nonlinear function, and therefore, a good accuracy
is obtained when experimental results are compared with nu-
merical simulations.

3. Behavioral model of Opamps

In order to build a behavioral model for the SFNS, a behav-
ioral model that mimics the nonlinear behavior of Opamps
must be first derived [2]. In this way, Fig. 3 shows the
nonlinear macromodel of an Opamp, where the most influ-
ential performance parameters are included [2]. Note that the
macromodel for Opamps introduced in Ref. 2 uses a non-
linear resistor at the output port contrary to Fig. 3. Simple
analysis of Fig. 3 allows obtaining a set of equations of the
amplifier model that will be very useful to build the behav-
ioral model of the SNFS. On one hand, when the Opamp op-
erates linearly, its output voltage is governed by the following
differential equation

dV0(t)
dt

= Vin(t)GB − V0(t)GB

ADC
,

− SR

GB
≤ Vin(t) ≤ SR

GB
(2)

where

gm =
ADC

Rp
, ISR = CpSR,

1
RpCp

=
GB

ADC
,

Cp andRp model the dominant-pole corner frequency. On
the other hand, when the input differential voltage exceeds
this limit, the Opamp slews and the output voltage evolves
according to

dV0(t)
dt

= +SR− V0(t)GB

ADC
, +

SR

GB
< Vin(t)

dV0(t)
dt

= −SR− V0(t)GB

ADC
, − SR

GB
> Vin(t) (3)

Note, however, that the output voltage is limited by the
saturation voltages as shown in Fig. 3 and given by

Vns≤ V0(t) ≤ Vps (4)

whereVps is the positive saturation voltage,Vns is the negative
saturation voltage and the difference of them is well-know as
theDR of the amplifier.

Relying on the nonlinear model described by (2), (3)
and (4), a simple linear model for the Opamp can be de-
duced [2]. Here, two performance parameters are only in-
cluded into the linear model, which is given by

dV0(t)
dt

= Vin(t)GB − V0(t)GB

ADC
(5)

This linear model along with the nonlinear model of the
Opamp will be used to numerically predict the behavior of the
SNFS. Both numerical simulations are compared with exper-
imental results, showing that the behavior of the SNFS based
on the nonlinear model of the Opamp is more accurate than
the linear model, as will be illustrated in Sec. 5.
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TABLE I. Performance parameters measurement of the UA741
Opamp.

Parameter Value Parameter Value

ADC 106.82 dB Vps 9 V

SR 2.2 V/µs Vns -9 V

GB 2.72 MHz Vdd ±11 V

4. Behavioral model of SNFS

Once that the behavioral model of the Opamp has been de-
duced, the behavioral model of the SFNS can be built. Ac-
cording to Fig. 1, each Opamp must be replaced by (2) and
(3) with respect to the operation region, limiting each out-
put voltage by (4) and by including the±Bpj associated to
each amplifier. The number ofBp, denoted byj, depends
of the number of scrolls to be generated, and the magnitude
of the positive and negative breakpoints must be nearly the
same in order to obtain symmetry in the generation of the
chaotic attractors, for more details see [25,26]. Therefore, at
the general case the nonlinear behavior of the SNFS is given
by (6). For the linear case, each Opamp must be replaced by
(5) and taking into account the±Bpj , respectively. Note that
Vin(t) = Bpj − x(t) or Vin(t) = −Bpj − x(t) is the input
signal for each Opamp shown in Fig. 1 and according to each
Bp, respectively, whereBp is a DC voltage source which is
used to compare ifx(t) is larger or smaller thanBp. Thus, (7)
is the system of equations for the linear case. Therefore, once
that each output voltage is numerically computed, the output
current of each system of equations is obtained by using (1).
It is important mentioning that (6) and (7) can be used to

generate any number of plateaus of a SFNS contrary to the
methodologies previously reported, where two PWL func-
tions are required to generate an even or odd number of
plateaus and whose negative impact has been above dis-
cussed [6,7,14-16,21,25,26,28,37,39]. For instance, in order
to achieve a SNFS with four plateaus, the system of equations
given by (6) and (7) are governed by three differential equa-
tions. Otherwise, a system of equations integrated by four
differential equations is required to generate five plateaus.
Because (7) and principally (6) have been deduced by consid-
ering the performance parameters of the Opamp, they can be
obtained either from manufacturer data sheet or experimental
measurements. Table I shows the performance parameters of
the UA741 Opamp that are used in the experimental tests.

5. Experimental results

To validate the results derived in the previous section, a
chaotic waveform with center frequency of 3.45 kHz has
been experimentally generated and stored into a file in or-
der to be used as excitation signal in the behavior models of
the SNFS previously derived. A SNFS with four plateaus is
herein considered withR1,2,3=40 kΩ and±Bp1 = ±4.5 V
[7,14-16,21,25,26,37,39]. Thus to validate the proposed be-
havior models, the output waveform obtained from (7) along
with (1) is compared with experimental data, as shown in
Fig. 4(a). Later on, the output waveform obtained from (6)
along with (1) is also compared with experimental data, as
shown in Fig. 4(b). We would like to note that the values of
the±Bp1 are not only responsible of that symmetric chaotic
attractors can be generated, but depending of the magnitude
of x(t), they also contribute to that the chaotic signal jump
from one plateaus to another, as shown in Fig. 2 and Fig. 4.

dV1(t)
dt = p1 − V1(t)GB

ADC

dV2(t)
dt = p2 − V2(t)GB

ADC

... , pn =





+SR ±Bpj − x(t) > + SR
GB

(±Bpj − x(t))GB − SR
GB ≤ ±Bpj − x(t) ≤ + SR

GB

−SR ±Bpj − x(t) < − SR
GB

(Nonlinear Model)

dVn(t)
dt = pn − Vn(t)GB

ADC

(6)

dV1(t)
dt = (±Bpj − x(t))GB − V1(t)GB

ADC

dV2(t)
dt = (±Bpj − x(t))GB − V2(t)GB

ADC

(Linear Model)...

dVn(t)
dt = (±Bpj − x(t))GB − Vn(t)GB

ADC

(7)
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FIGURE 4. Comparison between (Blue line) experimental data and (Red line) behavior models: (a) Linear model, (b) Nonlinear model.

FIGURE 5. Chaotic circuit with the SNFS shown in Fig. 1.

By inspection of Fig. 4(a), the linear model introduces a level
of inaccuracy higher than the nonlinear model. According to
Fig. 4(b), the response of the proposed nonlinear behavior
model is almost equal for the experimental data and hence,
this new model can be used not only to improve the automatic
synthesis of chaotic attractors [26,28,40] and the synchro-

nization schemes used in communication systems based on
chaos [4,10,23,31], but also to realize a better forecast on the
common metrics used to evaluate the complexity of nonlinear
systems [1,9,12,20,27,32]. In this context and as one can see
throughout the paper, the real behavior of the SNFS based on
active devices must unavoidably be taken into account in all
the topics before mentioned, since whether PWL models are
used, a linearization technique is indirectly involved, causing
a level of inaccuracy between numerical and experimental re-
sults, which become more evident when they are compared
at higher frequencies, as shown in Fig. 2 and Fig. 4. These
last topics will be addressed in future work. Moreover, the
simple block circuit diagram introduced in Ref. 26 is also
constructed for generation of multiscroll chaotic attractors at
1-D, as shown in Fig. 5. The SNFS shown in Fig. 1 is used
as nonlinear function. Analyzing Fig. 5, the new nonlinear
system to be solved is given by

dx(t)
dt

=
y(t)

Rx2Cx
;

dy(t)
dt

=
z(t)

Ry2Cy
;

dz(t)
dt

= − x(t)
RxCz

− y(t)
RyCz

− z(t)
RzCz

+
1

Cz

(
V1(t)
R1

+
V2(t)
R2

+
V3(t)
R3

)

dV1(t)
dt

= p1 − V1(t)GB

ADC
;

dV2(t)
dt

= p2 − V2(t)GB

ADC
;

dV3(t)
dt

= p3 − V3(t)GB

ADC

p1 =





+SR + Bp1 − x(t) > + SR
GB

(+Bp1 − x(t))GB − SR
GB ≤ +Bp1 − x(t) ≤ + SR

GB

−SR + Bp1 − x(t) < − SR
GB

(8)

p2 =





+SR − x(t) > + SR
GB

−x(t)GB − SR
GB ≤ −x(t) ≤ + SR

GB

−SR − x(t) < − SR
GB

p3 =





+SR −Bp1 − x(t) > + SR
GB

(−Bp1 − x(t))GB − SR
GB ≤ −Bp1 − x(t) ≤ + SR

GB

−SR −Bp1 − x(t) < − SR
GB
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FIGURE 6. Experimental verification of 4-scroll attractor. Vertical axes: 20 mV/div; Horizontal axes: 2 V/div (a)x(t)-z(t) plane,
(b) x(t)− Vs(x) plane, whereVs(x) ≈ i(x)Rs.

TABLE II. Component list from Fig. 5.

Element Value Tolerance

Opamps UA741AN

R 10 kΩ ±5%

Rs 500Ω Potentiometer

R1,2,3 40 kΩ ±5%

Rx,y,z 10 kΩ ±5%

Rx2,y2 7 kΩ ±5%

Cx,y,z 5.84 nF (for 3.45 kHz) ±5%

±Bp ± 4.5 V

According to Fig. 5 and (8), chaotic waveforms can nu-
merically be obtained with a better accuracy compared with
PWL models. Table II gives the numerical values of the
passive elements used in the experimental tests. In this
way, Fig. 6(a) shows experimental results corresponding to
x(t) − z(t) plane. It is worth noting thatRs was introduced
to indirectly measurei(x) in relation to the chaotic excitation
signal, and its value is slightly increased in order to obtain
the chaotic attractors shown in Fig. 6(b). From Fig. 6 one
can see that the introduction ofRs does not modify drasti-
cally the behavior of the chaotic circuit, because its value is
small. Note that the representation of the chaotic attractors on
thex(t) − Vs(x) plane, whereVs(x) ≈ i(x)Rs, is reported
herein for the first time in the literature.

In short, the use of simple and accurate models that take
into account performance parameters of Opamps are very
useful to enhance the behavior of continuous nonlinear func-
tions, e.g. the SNFS based on Opamps. But even, other
continuous nonlinear functions can also be modeled by sim-
ply identifying the manner of interconnecting the behavioral

models of the Opamps [5,11,17,18,33,34,38,41]. Therefore,
the numeric generation of multi-scrolls chaotic attractors, not
only at 1-D, but also at 2-D, 3-D and 4-D can be better
predicted. Finally, we also remark that to the best knowl-
edge of the authors, the real behavior of the SNFS based on
Opamps has not been reported in the literature, until today.
In Ref. 29, numeric simulations are only shown, hence, com-
parisons with similar proposals cannot be done. We would
like to note that this work is a great contribution to study and
generate chaotic waveforms faster and accurate. As a con-
sequence, topics on the automatic synthesis of chaotic attrac-
tors [26,28,40], the synchronization schemes used in commu-
nication systems based on chaos [4,10,23,31] and the com-
mon metrics used to evaluate the complexity of nonlinear sys-
tems [1,8,9,12,20,27,30,32] can be inevitably improved by
using the proposed behavior models for Opamps and partic-
ularly the SNFS.

6. Conclusions

Real effects on the frequency behavior of the SNFS designed
with Opamps have been presented. These effects are more
evident when the center frequency of the chaotic excitation
signal is increased. By reducing the value of the discrete ca-
pacitors in Fig. 5, the center frequency of the chaotic signal
is pushed to high-frequency. Therefore, it is clear that the use
of PWL models are only feasible at low frequency. A nonlin-
ear behavior model for the SNFS designed with Opamps has
been built, where the most influential performance parame-
ters associated to amplifiers have been taken into account. In
this context and for comparison purposes, a linear model for
the Opamp has been used to obtain the behavior of the SNFS.
However, as has been shown throughout the paper, the linear
model introduces a high level of inaccuracy compared with
the nonlinear model. Furthermore, the availability of a behav-

Rev. Mex. Fis.59 (2013) 504–510
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ioral model, simple and accurate, can impact the computa-
tional cost during the generation of multiscroll chaotic attrac-
tors, issue that has been not addressed in this paper. Experi-
mental data using commercial available Opamps for genera-
tion of the SNFS and 4-scroll attractors were gathered show-
ing good agreement with numerical approximations. Further-
more, voltage comparators with better performance parame-
ters than the UA741 can be used to build the SNFS, however,
they are also limited by theDR, GB, ADC andSR, and the
behavior of the SNFS shown in Fig. 2(b) will be again ob-
served, but now at higher frequencies. Finally, we remark
that the proposed SNFS model can not only be used in the

automatic synthesis of chaotic attractors, but also to improve
the synchronization schemes widely used in communication
systems based on chaos and to achieve a better forecast on the
metrics used to evaluate the complexity of a chaotic system.
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12. J.A. Herńandez, R.M. Benito, and J.C. Losada,Int. J. Bifurc.
Chaos21 (2011) 11.

13. A. Khan and P. Singh,Int. J. Bifurc. Chaos18 (2008) 7.
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28. C. Śanchez-Ĺopez,Rev. Mex. Fis.58 (2012) 8.
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