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2D naked singularity in general relativity
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In the physical sense it is very helpful to understand in simple terms what naked singularities are and the properties they may have. We present
a novel example of a 2-dimensional space-time naked singularity. The solution has a gravity singularity and no-horizon. This example is
only a toy model and as such its motivation must be considered as mathematical only.
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1. Introduction

This paper deals with an original example of a 2-dimensional
naked singularity. It is only a toy model and as such it is only
a mathematical storyi.

A naked singularity or gravitational singularity can be ob-
served from infinity. It has been stated as the Cosmic Censor-
ship Conjecture [1] that the collapse of a generic and physi-
cally realistic star in general relativity would never lead to a
space-time singularity which is visible to faraway observers.
All singularities formed from the collapse are always behind
a curtain known as the event horizon and hence invisible to
outside observers. Many mathematical attempts have been
made to prove the Cosmic Censorship Conjecture. On the
other hand, there is a rigorous mathematical proof of the for-
mation of black hole singularities in general relativity [2].

Naked singularities, for example, appear in four dimen-
sions in the Reissner-Nordström metric [4]. They have cer-
tain properties and have been studied extensively. For exam-
ple, an ingoing particle in the Reissner-Nordström metric is
repelled in the vicinity of the naked singularity at a minimum
r = rmin, an accelerates back as an outgoing particle [5].
Besides Reissner-Nordström, naked singularities have been
studied in the literature quite a lot, from the classical point of
view to the quantum one [6].

The example we present here has the peculiarity that it is
surprisingly simple, completely new to our knowledge, and
with similar properties to Reissner-Nordström but also with
important differences. For instance, in our toy model there
is only gravity (or curvature) and no charge, that is, noth-
ing which gives place to another field. We will also have the
property that ingoing particles are repelled in the vicinity of
the naked singularity at a minimumr = rmin, an accelerate
back as outgoing ones.

The aim of this paper is not necessarily physical but
purely mathematical. We do not deal with the problem of
cosmic censorship, we only deal with a toy mathematical ex-
ample, and the mathematics work perfectly.

The following paper is divided as follows: In Sec. 2 we
introduce the space-time naked singularity. In Sec. 3 we study
its properties. In Sec. 4 we change coordinates to Kruskal
like ones and construct its Penrose Diagram in order to un-
derstand a bit deeper this naked singularity. In Sec. 5 we
conclude with a brief discussion on the similarities and dif-
ferences to Reissner-Nordström geometry and to1+3 general
relativity in general.

2. Naked Singularity

The example we consider is not a real physical naked singu-
larity since it is a2-dimensional caseii. It is only a toy model,
and even if it is a simple example or a starting point if the
reader will, it is a very helpful solution which helps a lot in
order to understand naked singularities in1 + 3-dimensions.

Consider Einsten’s equations of general relativity

Rµν − 1
2
Rgµν = 8πGTµν (1)

It is known that in two dimensions equation(1) is satisfied
identicallyiii [3]. That means that the energy-momentum ten-
sor always vanishes. Because of this the metric is not con-
strained.

Consider the following metriciv

ds2 = − coth r dt2 + tanh r dr2 (2)

The metric has the property that it is defined for−∞ < t <
∞ and for0 < r < ∞ as well as for−∞ < r < 0v. As we
shall see there is a curvature singularity atr = 0vi.

Let 0 < r < ∞.
The metric approaches the2-dimensional Minkowskian

one whenr →∞.
It has Christoffel symbols, curvature coefficients, Ricci

tensors and scalar curvature given by

Γt
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sinh 2r
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rr =
1

sinh 2r
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FIGURE 1. Scalar curvature functionR.

FIGURE 2. Kretschmann scalarRtrtrR
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The scalar curvature is completely negative and it satisfies,
R → −∞ whenr → 0 andR → 0 whenr → ∞. See
Fig. 1.

Observe that the scalar curvature is almost flat forr > 2,
but changes drastically when the radial coordinate is smaller
than 2. The scalar curvature is undefined only atr = 0 and
there is no horizon in this geometry.

The Kretschmann scalarRµνσρR
µνσρ can be calculated

easily. It is known that the curvature tensor inn-dimensions
hasn2(n2 − 1)/12 independent components Therefore it has
only one component in two dimensions which in the present
case it is given by

Rtrtr =
coth r

sinh2 r
(3)

and the Kretschmann scalar by

RtrtrR
trtr =

coth2 r

sinh4 r
(4)

The Kretschmann scalar is positive and it satisfies,
RtrtrR

trtr → ∞ whenr → 0 andRtrtrR
trtr → 0 when

r →∞. See Fig. 2.
Because of the behaviour of the scalar curvature and the

Kretschmann scalar we have a naked singularity.

Let us mention the reason behind considering metric (2).
A particular 2-dimensional Lorentzian metric is given by

ds2 = −f(r) dt2 +
1

f(r)
dr2

This metric has scalar curvature given by

R = − f ′′(r)

Therefore in order to have a 2-dimensional naked singularity
we must choose a decreasing functionf : (0,∞) → (1,∞)
such thatf has no zeros at anyr ∈ (0,∞), such that
f has the property thatlimr→∞ f(r) = 1 and such that
limr→0− f(r) = ∞. This will make the scalar curvature
R flat at infinity, and ill-defined(infinity) at the singularity
r = 0.

In (2) we chosef(r) = coth r. This makes things nice
and simple.

3. Particles at the naked singularity geometry

Consider first the motion of photons in this geometry:

− coth r dt2 + tanh r dr2 = 0 (5)

from which it is obtained

dr

dt
= ± coth r (6)

We have the outgoing and ingoing null curves given by

t = ±
∫

tanh r dr = ± log[cosh r] + a (7)

from which we can compute the timevii a photon takes to go
from a coordinate radius to another one.a is a constant. It
can be seen that ingoing null curves have no problem to reach
the singularityr = 0 in finite timet. See Fig. 3.

Consider massive particles. The proper time of a station-
ary particle at a fixedr and of a far away particle are related
by

∆τ = (coth r)1/2 ∆t (8)

FIGURE 3. Null curves at the naked singularity geometry.
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It can be seen that the proper times coincide whenr → ∞.
The proper time of a massive particle approaching the sin-
gularity runs faster, and tends to infinity, in opposition to
Schwarzschild space-time for example. However, as a mas-
sive particle will not be able to reach the singularity, it will
take a finite proper time for the particle to reach the minimum
radial coordinate allowed, as we will see. Because of this be-
haviour there is a gravitational blueshift, since if a photon is
sent fromrE to a receptorrR, whererE < rR, it can be seen
thatνR > νE .

If we consider the motion of massive particles, we have

− coth r

(
dt

dτ

)2

+ tanh r

(
dr

dτ

)2

= −1 (9)

and the geodesic equation corresponding to thet coordinate
is given by

coth r

(
dt

dτ

)
= K (10)

K is naturally interpreted as the energy measured by the ob-
server at rest located at infinity. We substitute Eq.(10) into
Eq. (9) and get

(
dr

dτ

)2

+ coth r = K2 (11)

From this equation we can observe that for a massive particle
with initial conditionsdr/dτ = 0 at r = R, we will have
K2 = coth R and it will imply

(
dr

dτ

)2

= coth R− coth r (12)

where the right side is negative for decreasingr (r < R) and
positive for increasingr (r > R). This means that a mas-
sive particle at rest at a fixed radial coordinateR, will move
upwards, away from the singularity. However, it can be seen
from formula(12), that it will remain almost at rest and will
barely move, unlessR is really small.

Equation(12) implies that if the massive particle were
able to put itself very close to the singularityR ∼ 0 the parti-
cle will move upwards and will be able to reach larger values
of r at a speed measured by a fixed observer atr given by

v′ =
dR′

dt′
=

√
tanh r√
coth r

dr

dt

=
1

coth r

dr

dt
=

√
1− coth r

K2
(13)

wheret′ is the proper time of the observer at fixed radial co-
ordinateR′. It is easily seen that for an observer fixed at
infinity and when energy goes to infinityv′ → 1, which is
the speed of light.

As discussed before, massive particles at rest away from
the singularity will barely move, and in order to approach the
singularity they will have to move with initial velocity differ-
ent to zero.

FIGURE 4. r = coth−1(1 + coth R).

If a massive particle has initial velocitydr/dτ = v,
wherev < 1 at an initial positionr = R, it will be able
to move close to the singularity. Because of the initial condi-
tion, Eq. (11) implies thatK2 = v2 + coth R. This means
that (

dr

dτ

)2

= v2 + coth R− coth r (14)

As this squared velocity can be positive it means that the
massive particle can move downwards to the singularity. It
can be seen that if a massive particle at radial coordinate
r = R has an initial velocity close to that of lightv ∼ 1,
we will have from Eq. (14) that the particle will inevitably go
to rest atr ∼ coth−1(1 + coth R).

This can be seen from the graph of the function
r = coth−1(1 + cothR) plotted in Fig. 4. A massive par-
ticle which starts moving fromR with initial velocity very
close to that of light, will at most reach the valuer ∼ 0.5493
regardless of the value ofR.

Once the particle is at this latter position, it will be at rest
and then it will go upwards really fast, and will approach the
velocity of light without surpassing it.

A massive particle will be able to approach the naked sin-
gularity but will not be able to fade away from this universe
by hitting the singularity.

4. Kruskal coordinates and Penrose Diagram

In this section we change the naked singularity metric to
Kruskal like coordinates and construct its Penrose diagram.
The purpose of this is to understand deeper how this naked
singularity behaves.

The construction is just straightforward since the proce-
dure is analogous to the Schwarzschild one for example.

The ingoing null curves are given by Eq. (7)

t = − log[cosh r] + p (15)

wherep is a constant. Using this constant as a new coordinate
we have

p = t + log[cosh r] (16)

and in terms of this coordinate the metric (2) takes the form

ds2 = − coth r dp2 + 2dp dr (17)
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FIGURE 5. Null curves in the(p, r) coordinates.

FIGURE 6. Null curves in the(q, r) coordinates.

In terms of these coordinates the ingoing and outgoing null
curvesds2 = 0, are given respectively by

p = α

p = 2 log[cosh(r)] + β (18)

whereα andβ are constants. See Fig. 5.
Likewise if we had chosen the outgoing null curves from

Eq. (7)
t = + log[cosh r] + q (19)

whereq is a constant. Using this constant as a new coordinate
we have

q = t− log[cosh r] (20)

and in terms of this coordinate the metric (2) takes the form

ds2 = − coth r dq2 − 2dq dr (21)

In terms of these coordinates the outgoing and intgoing null
curvesds2 = 0, are given respectively by

q = α

q = −2 log[cosh(r)] + β (22)

whereα andβ are constants. See Fig. 6. In terms of(p, q)
coordinates the metric(2) becomes

ds2 = − coth r dp dq (23)

wherer is given in terms ofp andq by

1
2
(p− q) = log[cosh r] (24)

Let us now consider the Kruskal like change of variables
given for convenience by

p̃ = exp
(

p

2

)
q̃ = − exp

(−q

2

)
(25)

In (p̃, q̃) coordinates the naked singularity metric is given by

ds2 = − 4
sinh r

dp̃ dq̃ (26)

If we now take a time-like variablẽt and a space-like variable
r̃ defined by

t̃ =
1
2
(p̃ + q̃) r̃ =

1
2
(p̃− q̃) (27)

the naked singularity metric is given in Kruskal like coordi-
nates by

ds2 =
4

sinh r
(− dt̃2 + dr̃2) (28)

where it is easily seen thatt̃ andr̃ are expressed in terms of
the originalt andr by the transformations

t̃ = (cosh r)1/2 sinh
t

2
r̃ = (cosh r)1/2 cosh

t

2
(29)

and therefore

−t̃2 + r̃2 = cosh r
t̃

r̃
= tanh

t

2
(30)

In Fig. 7 we can observe the Kruskal like coordinates
of the naked singularity. They have analogous properties to
the Schwarzschild case, but they also have important differ-
ences. From the domain of the original set of coordinates
−∞ < t < ∞ and0 < r < ∞ we notice that the Kruskal
like coordinates(t̃, r̃) must take values−∞ < t̃ < ∞ and
1 < r̃ < ∞. Moreover we have that−t̃2 + r̃2 > 1.

This means for instance that the line singularityr = 0
is given by the hyperbola−t̃2 + r̃2 = 1 in the Kruskal like
coordinates. The set of hyperbolas−t̃2 + r̃2 = cosh r for
0 < r < ∞ represent lines of constantr, that is, fixed ob-
servers. Likewise lines of constantt are given by the lines
(t̃/r̃) = tanh(t/2). In Fig. 7 lines of constantr and of con-
stantt are drawn.

Past infinity and future infinity are given by the asymp-
totes of the whole set of hyperbolas.

FIGURE 7. Kruskal like coordinates(t̃, r̃) of the naked singularity.
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FIGURE 8. Penrose diagram of the naked singularity.

By considering the transformations

p′ = tanh p̃ q′ = tanh q̃ (31)

the Penrose diagram can be drawn as in Fig. 8.
By examining the Kruskal like coordinates and the Pen-

rose diagram some of the properties of the naked singularity
discussed in the previous section can be observed.

We mention at the beginning of Sec. 2, that the naked
singularity solution is also valid for negative values ofr,
−∞ < r < 0. In this latter case space and time are inter-
changed and the signature of the metric changes as well. This
is equivalent to considering the negative of metric (2) andr
positive definite. Therefore it can be seen that the correspond-
ing Kruskal and Penrose diagram for this case is equivalent
to rotating Fig. 7 and Fig. 8 by 90 degrees leaving axist̃ and
r̃ fixed in Fig. 7.

5. Conclusion

We have introduced a very simple example of a1 + 1 naked
singularity geometry and described its properties. There is
an important difference to general solutions in1 + 3 general
relativity. For instance, we have seen, in the present example
that gravity is not attractive, particles at rest will not fall. On

the contrary, they almost remain motionless and will move
upwards really slowly. This is due to the fact that the solu-
tion is almost Minkowskian at almost any radial coordinater,
and only when the radial coordinate is small there are impor-
tant issues. These issues are that massive particles are really
affected by the geometry of space-time but in an antigravity
way, as particles are repelled by the singularity and start to
move really fast to larger values ofr. This resembles what
happens in the Reissner-Nordström solution and particularly
in the naked singularity case whenM2 < Q2 studied in [5].
The difference is that in the Reissner-Nordström case parti-
cles fall to the singularity whereas in the present example par-
ticles will have to move on their own towards the singularity
and then they will be repelled.

We also have that in1 + 3 general relativity, for example
in Schwarzschild geometry, there is a gravitational redshift
when photons are emitted atrE and received atrR, where
rE < rR; whereas here we have a blueshift.

In addition, we considered the Kruskal like coordinates
and the Penrose diagram of the naked singularity. The change
to that kind of coordinates is straightforward and it is interest-
ing to notice that in the naked singularity case, the singularity
r = 0 is surprisingly given by the hyperbola−t̃2 + r̃2 = 1
something which does not happen in the Schwarzschild case.
In the latter case the singularityr = 0 is on a very differ-
ent zone known as zoneII. Moreover, the event horizon
r = 2GM is given by the asymptotes of the fixed radial ob-
serves.

In the present case of the naked singularity the asymp-
totes are at infinite past and infinity future but do not repre-
sent any allowed value for coordinater.

For instance(t̃, r̃) represents 2 dimensional Minkowski
space-time. But in the naked singularity case instead of be-
ing divided in four zones as in the Schwarzschild case, it is
divided only in two parts, one for the original metric and one
for the change of signature of the metric. This is due to the
fact that there is no event horizon in a naked singularity.

The naked singularity we have presented here is an in-
teresting toy model in order to see how naked singularities
behave. And we have observed that the 2D naked singularity
has its own properties which are different to the four dimen-
sional case.

i. It should not be considered as a physical treatment of naked
singularities, since we are not dealing with the 4-dimensional
case.

ii. n relativity notation it is a 1+1 solution.

iii. his means that any arbitrary 2-dimensional metric satisfies the
2-dimensional Einstein’s equations. However, this does not
mean that any metric is interesting for relativity.

The one we present here is really an interesting one for relativ-
ity since it has a naked singularity.

iv. hroughout this paper we are using units where the speed of light
is equal to one.

v. bserve that for this latter case the metric changes signature. The
time coordinate turns into a space coordinate and vice versa.

vi. he metric is undefined atr = 0.

vii. oordinate time which is the time a faraway observer measures.
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