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2D naked singularity in general relativity
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In the physical sense it is very helpful to understand in simple terms what naked singularities are and the properties they may have. We present
a novel example of a 2-dimensional space-time naked singularity. The solution has a gravity singularity and no-horizon. This example is
only a toy model and as such its motivation must be considered as mathematical only.
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1. Introduction The following paper is divided as follows: In Sec. 2 we
introduce the space-time naked singularity. In Sec. 3 we study
This paper deals with an original example of a 2-dimensionaits properties. In Sec. 4 we change coordinates to Kruskal
naked singularity. It is only a toy model and as such it is onlylike ones and construct its Penrose Diagram in order to un-
a mathematical stofy derstand a bit deeper this naked singularity. In Sec. 5 we

A naked singularity or gravitational singularity can be ob- conclude with a brief discussion on the similarities and dif-
served from infinity. It has been stated as the Cosmic Censoferences to Reissner-Nordstn geometry and to+3 general
ship Conjecture [1] that the collapse of a generic and physitelativity in general.
cally realistic star in general relativity would never lead to a
space-time singularity which is visible to faraway observerspy  Naked Singularity
All singularities formed from the collapse are always behind
a curtain known as the event horizon and hence invisible t@he example we consider is not a real physical naked singu-
outside observers. Many mathematical attempts have bedarity since it is &2-dimensional casé It is only a toy model,
made to prove the Cosmic Censorship Conjecture. On thand even if it is a simple example or a starting point if the
other hand, there is a rigorous mathematical proof of the forreader will, it is a very helpful solution which helps a lot in
mation of black hole singularities in general relativity [2].  order to understand naked singularitied i 3-dimensions.

Naked singularities, for example, appear in four dimen-  Consider Einsten’s equations of general relativity
sions in the Reissner-Nordstm metric [4]. They have cer- 1
tain properties and have been studied extensively. For exam- R, — §Rg;w =8n1GT,, Q)
ple, an ingoing particle in the Reissner-Nordstr metric is
repelled in the vicinity of the naked singularity at a minimum It is known that in two dimensions equatidi) is satisfied
r = Tmin, @n accelerates back as an outgoing particle [5]identically® [3]. That means that the energy-momentum ten-
Besides Reissner-Nordsm, naked singularities have been sor always vanishes. Because of this the metric is not con-
studied in the literature quite a lot, from the classical point ofstrained.
view to the quantum one [6]. Consider the following metri¢

The example we present here has the peculiarity that it is
surprisingly simple, completely new to our knowledge, and
with similar properties to Reissner-Nord&tn but also with The metric has the property that it is defined foso < ¢ <
important differences. For instance, in our toy model thereOo and for0 < r < oo as well as for—oo < r < 0. As we
is only gravity (or curvature) and no charge, that is, ”Oth'shall see there is a curvature singularity at 0.
ing which gives place to another field. We will also have the Let0 < r < oo
property that ingoing particles are repelled in the vicinity of The metric approaches tiedimensional Minkowskian
the naked singularity at a minimum= r,;,,, an accelerate one whemr — oo
back as o_utgomg gnes. ) ) ) It has Christoffel symbols, curvature coefficients, Ricci
The aim of this paper is not necessarily physical butiensors and scalar curvature given by

purely mathematical. We do not deal with the problem of
cosmic censorship, we only deal with a toy mathematical ex-p¢ _ 1 r 1 r 1 cothr

ample, and the mathematics work perfectly. " sinh2r’ T sinh2r T "2 ginh?y

ds? = — cothr dt? + tanhr dr? (2)
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F PE R s 20 " Let us mention the reason behind considering metric (2).
0 yd A particular 2-dimensional Lorentzian metric is given by
- ds* = —f(r) dt® + BLI

f(r)

60
o This metric has scalar curvature given by
100 f R=— f"(r)
T g Therefore in order to have a 2-dimensional naked singularity

we must choose a decreasing functjpn (0, c0) — (1, 00)
such thatf has no zeros at any € (0,00), such that
f has the property thafim, .., f(r) = 1 and such that
lim,_o- f(r) = oo. This will make the scalar curvature

FIGURE 1. Scalar curvature functioR.

R R ™ 1400

1200 ‘ R flat at infinity, and ill-defined(infinity) at the singularity

1000 ‘ r=0.

a0 1 In (2) we chosef(r) = cothr. This makes things nice
and simple.

GO0

400

20 _ 3. Particles at the naked singularity geometry

Consider first the motion of photons in this geometry:
FIGURE 2. Kretschmann scalaRy,.., R*™"

—cothr dt? + tanhr dr? =0 (5)
t 1 ) coth? r from which it is obtained
Ry, =——% Riypy= —5—
sinh” r ‘ sinh® r dr
— =t cothr (6)
_coth2r R 1 R__9 cothr dt
R sinh? r sinh? r We have the outgoing and ingoing null curves given by
The scalar curvature is completely negative and it satisfies,
R — —cowhenr — 0andR — 0 whenr — oo. See t:i/tanhrdr:ilog[coshr]—ka @)
Fig. 1.

Observe that the scalar curvature is almost flat-for 2,
but changes drastically when the radial coordinate is small
than 2. The scalar curvature is undefined only at 0 and
there is no horizon in this geometry.

The Kretschmann scald,,,..,R**?? can be calculated Consid _ iicles. Th " f a stati
easily. It is known that the curvature tensomirdimensions onsider massive partices. The proper ime ot a station-

hasn2(n? — 1)/12 independent components Therefore it has2’y particle at a fixed and of a far away patrticle are related
only one component in two dimensions which in the presenpy

from which we can compute the titié a photon takes to go
Srom a coordinate radius to another oneis a constant. It
can be seen that ingoing null curves have no problem to reach
the singularityr = 0 in finite timet. See Fig. 3.

case it is given by A7 = (cothr)'/? At (8)
cothr
Riptr = ——— 3
T sinh? ) :
and the Kretschmann scalar by M
th? ] m—
Ry R = 200 @ -
sinh™ r P .
The Kretschmann scalar is positive and it satisfies, ] ’ ’ !
Rypr R — oo whenr — 0 and Ry, R — 0 when _
r — 0. See Fig. 2. -
Because of the behaviour of the scalar curvature and the
Kretschmann scalar we have a naked singularity. FicURE 3. Null curves at the naked singularity geometry.
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ArcCoth(1 + coth R)

It can be seen that the proper times coincide whenr oco.
The proper time of a massive particle approaching the sin-
gularity runs faster, and tends to infinity, in opposition to  o:ss90
Schwarzschild space-time for example. However, as a mas-
sive particle will not be able to reach the singularity, it will
take a finite proper time for the particle to reach the minimum
radial coordinate allowed, as we will see. Because of this be-
haviour there is a gravitational blueshift, since if a photonis ...,
sent fromr g to a receptor r, whererg < rg, it can be seen
thatuR > VE.

If we consider the motion of massive particles, we have . cca , — coth1(1 + coth R).

0.5485

5 10 15 20

2 2
—cothr (dt> +tanhr (dr> -1 (9) If a massive particle has initial velocityr/dr = v,
dr dr wherev < 1 at an initial positionr = R, it will be able
to move close to the singularity. Because of the initial condi-

and the geodesic equation corresponding tottbeordinate . . 5 5 X
tion, Eg. (11) implies thaf{* = v< + coth R. This means

is given by

dt that

cothr () — K (10) N\
dr ) =0 + coth R — cothr (14)
T

K is naturally interpreted as the energy measured by the ob- . _ o
server at rest located at infinity. We substitute Eip) into As this squared velocity can be positive it means that the
Eq. (9) and get massive particle can move downwards to the singularity. It

can be seen that if a massive particle at radial coordinate
dr\ 2 ) r = R has an initial velocity close to that of light ~ 1,
<d7_> +cothr = K (1) we will have from Eg. (14) that the particle will inevitably go
to rest atr ~ coth™*(1 4 coth R).
From this equation we can observe that for a massive particle This can be seen from the graph of the function

with initial conditionsdr/dr = 0 atr = R, we will have , — coth‘l(l + coth R) plotted in Fig. 4. A massive par-

K? = coth R and it will imply ticle which starts moving fronR with initial velocity very
9 close to that of light, will at most reach the value- 0.5493
(dr) — coth R — cothr (12)  regardless of the_valu_e at. _ o
dr Once the patrticle is at this latter position, it will be at rest

and then it will go upwards really fast, and will approach the
velocity of light without surpassing it.

A massive particle will be able to approach the naked sin-
Ig%;ularity but will not be able to fade away from this universe
by hitting the singularity.

where the right side is negative for decreasing < R) and
positive for increasing (r > R). This means that a mas-
sive particle at rest at a fixed radial coordin&ewill move
upwards, away from the singularity. However, it can be see
from formula(12), that it will remain almost at rest and will
barely move, unlesg is really small.

Equation(12) implies that if the massive particle were 4, Kruskal coordinates and Penrose Diagram
able to put itself very close to the singulari®/~ 0 the parti-
cle will move upwards and will be able to reach larger valuedn this section we change the naked singularity metric to

of r at a speed measured by a fixed observergiven by Kruskal like coordinates and construct its Penrose diagram.
The purpose of this is to understand deeper how this naked
o = dR' _ Vtanhrdr singularity behaves.
at’ Vcothr dt The construction is just straightforward since the proce-
dure is analogous to the Schwarzschild one for example.
_ L dr_ [ _cothr (13) The ingoing null curves are given by Eq. (7)
cothr dt K2

wheret’ is the proper time of the observer at fixed radial co- t = —loglcoshr] +p (15)

ordinate R’. It is easily seen that for an observer fixed at
infinity and when energy goes to infinity — 1, which is
the speed of light.

As discussed before, massive particles at rest away from
the singularity will barely move, and in order to approach theand in terms of this coordinate the metric (2) takes the form

singularity they will have to move with initial velocity differ-
ent to zero. ds* = — cothr dp? + 2dp dr (17)

wherep is a constant. Using this constant as a new coordinate
we have
p =t + log[cosh 7] (16)
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m" ; Let us now consider the Kruskal like change of variables
given for convenience by

— 7 P =exp (g) q=—exp (?) (25)

[ ] " - r In (p, ¢) coordinates the naked singularity metric is given by
4
ds? = —— dp dg (26)
s- sinh r

FIGURE 5. Null curves in the(p, ) coordinates. If we now take a time-like variableand a space-like variable

7 defined by
P i=36+d  F=s6-0 @)
- 2 2
— ; : - ot the naked singularity metric is given in Kruskal like coordi-
. nates by
ds® = (— dt? + di®) (28)

sinhr
where it is easily seen thatand7 are expressed in terms of
-10 the originalt andr by the transformations

- t t
_ 1/2 ooy 2 g 1/2 _
FIGURE 6. Null curves in the(q, r) coordinates. t = (coshr)™/“sinh 2 7= (coshr)™/" cosh 2 (29)

In terms of these coordinates the ingoing and outgoing nulf"nd therefore

curvesds? = 0, are given respectively by P 47— coshr i ~ tenh % (30)
7
p=ca In Fig. 7 we can observe the Kruskal like coordinates
p = 2log[cosh(r)] + 5 (18) of the naked singularity. They have analogous properties to
the Schwarzschild case, but they also have important differ-
whereo andg are constants. See Fig. 5. ences. From the domain of the original set of coordinates
Likewise if we had chosen the outgoing null curves from —o0 < ¢ < oo and0 < r < oo we notice that the Kruskal
Eq. (7) like coordinategt, 7) must take values-oco < t < oo and

(19) 1 <7 < oo. Moreover we have that£? + 72 > 1.

This means for instance that the line singularity= 0
whereg is a constant. Using this constant as a new coordinatg given by the hyperbola-#2 + 72 = 1 in the Kruskal like
we have coordinates. The set of hyperbolag? + 72 = coshr for

q =t —log[coshr] (20) 0 < r < oo represent lines of constant that is, fixed ob-

dint f thi dinate th tric (2) takes the f servers. Likewise lines of constahtre given by the lines
and in terms of this coordinate the metric (2) takes the form (t/7) = tanh(t/2). In Fig. 7 lines of constant and of con-

t = +log[coshr] + ¢

stantt are drawn.
Past infinity and future infinity are given by the asymp-
otes of the whole set of hyperbolas.

ds? = — cothr dg® — 2dq dr (21)

In terms of these coordinates the outgoing and intgoing nuif
curvesds? = 0, are given respectively by

g=«
q = —2log[cosh(r)] + B (22)

wherea and g are constants. See Fig. 6. In terms(pfq) , ] / 4 -
coordinates the metri) becomes ' i : : ' '

~

ds? = —cothr dp dq (23)

wherer is given in terms op andq by »
1 FIGURE 7. Kruskal like coordinate$t, 7) of the naked singularity.
§(p — q) = log[cosh ] (24)
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the contrary, they almost remain motionless and will move
upwards really slowly. This is due to the fact that the solu-
tion is almost Minkowskian at almost any radial coordingte
and only when the radial coordinate is small there are impor-
tant issues. These issues are that massive particles are really
affected by the geometry of space-time but in an antigravity
way, as particles are repelled by the singularity and start to
move really fast to larger values of This resembles what
happens in the Reissner-Nordstr solution and particularly
in the naked singularity case whéii? < Q2 studied in [5].
The difference is that in the Reissner-Nordstrcase parti-
cles fall to the singularity whereas in the present example par-
ticles will have to move on their own towards the singularity
and then they will be repelled.

We also have that ith + 3 general relativity, for example

r=0

i

FIGURE 8. Penrose diagram of the naked singularity. in Schwarzschild geometry, there is a gravitational redshift
o _ when photons are emitted af; and received atr, where
By considering the transformations re < rr; Whereas here we have a blueshift.

In addition, we considered the Kruskal like coordinates
and the Penrose diagram of the naked singularity. The change
. N to that kind of coordinates is straightforward and it is interest-
the Penrose_d!agram can be dr_awn asin Fig. 8. ing to notice that in the naked singularity case, the singularity

By examining the Kruskal like coordinates and the Pen-r — 0 is surprisingly given by the hyperbolaf2 + 72 — 1
rose diagra}m some o_f the properties of the naked Sirlgl’l""ritgomething which does not happen in the Schwarzschild case.
discussed in the previous section can be observed. In the latter case the singularity — 0 is on a very differ-

We mention at the beginning of Sec. 2, that the nakedent zone known as zonkl. Moreover, the event horizon

singularity solution is also valid for negative values 1f r — 2GM is given by the asymptotes of the fixed radial ob-
—oo < r < 0. In this latter case space and time are inter'serves

changed and the signature of the metric changes as well. This In the present case of the naked singularity the asymp-
is equivalent to considering the negative of metric (2) and otes are at infinite past and infinity future but do not repre-
positive definite. Therefore it can be seen that the correspon(i—ent any allowed value for coordinate

ing Kruskal and Penrose diagram for this case is equivalent

: : ; N For instance(t, 7) represents 2 dimensional Minkowski
to rotating Fig. 7 and Fig. 8 by 90 degrees leaving axiad space-time. But in the naked singularity case instead of be-

p' = tanhp ¢ =tanhg (3D

7 fixed in Fig. 7. ing divided in four zones as in the Schwarzschild case, it is
divided only in two parts, one for the original metric and one

5. Conclusion for the change of signature of the metric. This is due to the
fact that there is no event horizon in a naked singularity.

We have introduced a very simple example df-a 1 naked The naked singularity we have presented here is an in-

singularity geometry and described its properties. There iseresting toy model in order to see how naked singularities
an important difference to general solutionslin- 3 general  behave. And we have observed that the 2D naked singularity
relativity. For instance, we have seen, in the present exampleas its own properties which are different to the four dimen-

that gravity is not attractive, particles at rest will not fall. On sional case.

1. It should not be considered as a physical treatment of nakedv. hroughout this paper we are using units where the speed of light
singularities, since we are not dealing with the 4-dimensional  is equal to one.

case. v. bserve that for this latter case the metric changes signature. The

ii. n relativity notation it is a 1+1 solution. time coordinate turns into a space coordinate and vice versa.
iii. his means that any arbitrary 2-dimensional metric satisfies th¢’’: he metric is undefined at= 0.

2-dimensional Einstein’s equations. However, this does notii. oordinate time which is the time a faraway observer measures.
mean that any metric is interesting for relativity. 1. R. PenroseRiv. Nuovo Cimenta (1969) 252.

2. S.W. Hawking, R. Penros@roc. Roy. Soc. Lond. 314(1970)
520-548.

The one we present here is really an interesting one for relativ-
ity since it has a naked singularity.
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