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Study of plasma displacement andβp + li/2 by the simplest Grad-Shafranov
equation solution for circular cross section tokamak
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In this work we present the plasma displacement andβp + li/2 by the Simplest Grad-Shafranov Equation (GSE) solution using Solov’ev
assumption for circular cross section HT-7 tokamak. Using diamagnetic and compensation loop, combining with poloidal magnetic probe
array signals, plasma displacement andβp + li/2 are measured. In this paper, theoretical and experimental results in determining plasma
displacement andβp + li/2 are presented. We have seen that the calculated plasma displacement and the calculatedβp + li/2 depend on the
kind of discharge or plasma current.
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1. Introduction

In a Tokamak, external magnetic measurements have been
applied to determine the important information on plasma
shapes, the safety factor, the sum of the average poloidal
betaβp and internal inductanceli [1]. There are methods
for extraction of plasma parameters from external magnetic
measurements. Swain and Neilson [2] presented an efficient
method to reconstruct the plasma shapes and line integrals
of the boundary poloidal magnetic field from external mag-
netic measurements. In their method, the plasma current dis-
tribution is approximated by using a few filament currents.
In Luxon and Brown’s approach [3], the plasma current is
modeled using distributed sources. The non-linear Grad–
Shafranov equation (GSE) is solved repeatedly to search the
best-fit current density profile. As we know, analytical so-
lutions of the Grad–Shafranov [4,5] equation are very useful
for theoretical studies of plasma equilibrium, transport, and
magnetohydrodynamic (MHD) stability. The well-known
Solov’ev quilibrium [6] has been extensively used for such
studies, and also as a benchmark of numerical codes that at-
tempt to find more general solutions.

However, the Solov’ev equilibrium solutions typically
studied [6-7] are over constrained, either in shape (elliptical)
or in plasma current (which is commonly determined by the
choice of poloidal beta,βp).

The existing exact solutions have arisen from a variety
of allowed current density profiles or a variety functional of
source functions. A simple analytical solution to the inho-
mogeneous GSE is presented by Zhenget al. [8] ,which cor-
responds to source functions linear inψ. For this case, six
parameters must be determined. The shape of the plasma can
be described by four parameters for which rectangular fixed
boundary conditions are selected. The shape of the current
profile is essentially flat, and the two existing free parameters

can be chosen by the plasma currentIp and the poloidal beta
βp. But Rahimirad [9] presented the simplest solution of GSE
which is the well-known Solov’ev equilibrium [6], which has
five parameters. In this paper we have selected the simplest
solution of Grad-Shafranov equation [9], which is the well-
known Solov’ev equilibrium [6], so we have six parameters,
which can be determined by circular fixed boundary condi-
tions and by the plasma current of the Tokamak.

In this paper, we analyze the possibility of using a
specific choice of current distribution for interpretation
of magnetic measurements and we directly calculate the
poloidal betaβp and internal inductanceli form solution of
GSE [10-12] and discrete magnetic coils [13]. We solve
GSE by considering linear source functions and circular fixed
boundary conditions for circular cross section HT-7 toka-
mak [13] with a plasma minor radius that it is variable. This
solution has three quantities (plasma currentIp, plasma mi-
nor radiusa andβp + li/2 as input data. The quantities are
measured by a Rogowski coil, a Saddle coil and an array of
discrete magnetic coils [13], respectively. Then, according to
the definition of the poloidal betaβp and internal inductance
li [11,14] we substituted the poloidal flux function that ob-
tained by our solution into it. Finally, we calculate the time
evolution of the plasma parameters for a typical discharges of
circular cross section HT-7 tokamak (see Table I).

We present the plasma displacement andβp + li/2 by
the Simplest Grad–Shafranov Equation (GSE) solution us-
ing Solov’ev assumption for circular cross section HT-7 toka-
mak. Using diamagnetic and compensation loop, combining
with poloidal magnetic probe array signals, plasma displace-
ment andβp + li/2 are measured. In this paper, theoretical
and experimental results in determining plasma displacement
andβp + li/2 are presented. We have seen that the calculated
plasma displacement and the calculatedβp + li/2 depend on
the kind of discharge or plasma current.
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TABLE I. Parameter of the HT-7 tokamak.

Parameter Value

Major Radius 1.22 m

Minor Radius 0.27 m

Toroidal Field 1- 2.5 T

Plasma Current 100-250 kA

Discharge Time ∼ 300 s

Electron Density 1− 6× 1019 m−3

FIGURE 1. The diamagnetic and compensating loops.

FIGURE 2. The structure of the magnetic arrays.

2. Extended Grad-Shafranov equation

Maxwell’s equations together with the force balance equa-
tion from MHD equations, in the cylindrical coordinates
(R,Z) reduce to the two-dimensional, nonlinear, elliptic Grad-
Shafranov equation [7]: As in the linear case, the procedure
to derive the Grad-Shafranov equation can be followed ob-
taining an extended Grad-Shafranov equation [10]

∆∗ψ = µ0RJφ

= −µ0(γ − 1)R2 du(ψ)
dψ

− F (ψ)
dF (ψ)

dψ
, (1)

where∆∗ is

∆∗ = R
∂

∂R

(
1
R

∂

∂R

)
+

∂2

∂z2
(2)

The internal energy in this extended Grad-Shafranov
equation is a function ofψ. The u(ψ) and F (ψ) are two
free functions, whileµ0 andJ are the vacuum permeability
and plasma current density respectively.

3. Grad-Shafranov equation solution

In an axisymmetric system a convenient representation of the
magnetic field is:

B = F∇φ +∇ψ ×∇φ, (3)

whereφ is the ignorable angle in the cylindrical coordinate
system(R, φ, Z), andFandψ are axisymmetric scalar func-
tions. The functionF is a flux function, associated with the
poloidal current in the system, whileψ is the poloidal flux
divided by2π. The internal energy in this Grad-Shafranov
Eq. (1) is a function ofψ. HereJφ is the toroidal plasma cur-
rent density;u is the internal energy, which is a function of
ψ. Note that the toroidal field is not determined by the Grad-
Shafranov equation. Its choice will only rescale the values
of the safety factorq. It will not change the shape of the
flux surfaces, or that of the profiles of internal energy, current
density,q, etc.

The simplest solution to Eq. (1) can be found by assum-
ing that

µ0 (γ − 1)
∂u

∂ψ
= −A1, F

∂F

∂ψ
= A2, (4)

where A1 and A2 are constant. This obviously reduces
the set of possible current density profile shapes to
Jφ ∝ RA1 −A2/R.

With the restrictions given by (4), the GSE is reduced to
the form:

∆∗ψ = R2A1 −A2, (5)

whose solution is [8]

ψ = ψ0 − A1

8
R4 − A2

2
Z2, (6)

where,ψ0 is a solution of the homogeneous equation

∆∗ψ = 0. (7)

If the plasma is assumed to be up–down symmetric, its
shape can be described by four parameters. The equatorial
innermost and outermost points,Ri andR0, and the coordi-
nates of the highest point,(Rt, Zt) or equivalently, the major
radiusRm = (Ri + R0)/2, Rm 6= R0, the minor radius
a = (R0 −Ri)/2, the elongationκ0 = Zt/a, and triangular-
ity δ = (R0−Rt)/2. From (5), the simplest solution is given
by [8,10]

ψ = c1 + c2R
2 + c3(R4 − 4R2Z2)

+ c4(R2 ln(R)− Z2)− A1

8
R4 − A2

2
Z2. (8)
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For the determination these six coefficients, it is neces-
sary to have six equations. We assume that the internal en-
ergy vanishes at the boundary, henceψ(R, Z)|b = 0 [8,9].

With Eq. (8 ), the boundary conditionsR = R0 ± a,
Z = 0 andR = Rt, Z = Zt gives the following equations:

ψ(Ri, 0) = c1 + c2R
2
i + c3R

4
i

+ c4R
2
i ln(Ri)− A1

8
R4

i = ψ180, (9)

ψ(R0, 0) = c1 + c2R
2
0 + c3R

4
0

+ c4R
2
0 ln(R0)− A1

8
R4

0 = ψ0, (10)

ψ(Rt, Zt) = c1 + c2R
2
t + c3(R4

t − 4R2
t Z

2
t )

+ c4(R2
t ln(Rt)− Z2

t )

− A1

8
R4

t −
A2

2
Z2

t = ψ90, (11)

We also assume that the plasma is enclosed in a per-
fectly conducting toroidal boundary with circular cross sec-
tion, with radius a, so the normal component of the magnetic
field.

1
R

dψ(Rt, zt)
dR

= 2c2 + 4c3(R2
t − 2Z2

t )

+ c4(2 ln(Rt) + 1)− A1

2
R2

t = BZ(Rt, Zt), (12)

The plasma current can be clearly measured by Rogowski
coil [13], so the plasma current can be written.

2πµ0Ip =
∫ ∫ (

RA1 +
A2

2

)
dRdZ, (13)

It is simpler to first solve for a plasma with unit current
and unit major radius and use the scaling relations described
above to find the final desired equilibrium. However, even
in this simplest case only numerical solutions to Eqs. (9-14)
have been found. The coefficients can be computed numeri-
cally, given a desired plasma description.

We also selected the constraintβp + li/2 [11], because
the parameter can be experimentally deduced using discrete
magnetic probes [13], for circular cross section HT-7 toka-
mak [13,15-19],

βp + li/2 =

(∮
dl

)2

(2πµ0Ip)
2 ∫ ∫

RdRdZ

×
(

2.5A1

∫ ∫
ψ(R, Z)RdRdZ

+ 0.5A2

∫∫
ψ(R, Z)

R
dRdZ

)
(14)

4. Plasma displacement andβP + li/2 by the
GSE solution

We have obtained the six coefficient by solving six algebraic
equation for circular cross section HT-7 tokamak [20] (see
Table I). It has triangularityδ = 0, elongationκ = 0, a
major radius ofRm = 1.22 m, minor radius ofa= 0.27 m,
Ri = R0 − a, Ro = R0 + a, Rt = R0, Zt = a, defined
by one poloidal water-cooling limiter, one toroidal water-
cooling belt limiter at the high field side and a new set of
actively cooled toroidal double-ring graphite limiters at the
bottom and the top of the vacuum vessel, and pulses up to
240 s of long plasma have been achieved with new graphite
limiters in the HT-7 in 2004 [20].

c1 = −0.004A1 − 0.034A2 + 0.23BZ − 0.359ψ0

+ 2.359ψ180 − 1.51ψ90, (15)

c2 = 0.034A1 − 0.084A2 + 3.823BZ − 8.359ψ0

+ 12.309ψ180 − 6.351ψ90, (16)

c3 = 0.024A1 + 0.024A2 − 3.553BZ

+ 20.359ψ0 − 30.212ψ180 + 3.351ψ90, (17)

A1 = 165.345µ0IP − 3.10A2, (18)

A2 = 4105.245{0.0034BZ + 0.0061µ0IP + 0.1049ψ0

+ 0.0646ψ180 + 0.151ψ90 ± ((−0.0034BZ

− 0.0061µ0IP + 0.1049ψ0 + 0.0646ψ180 + 0.151ψ90)2

+ 0.0001µ0IP (0.003BZ + 0.0361µ0IP

− 1.304
(

βp +
li
2

)
µ0IP + 0.534ψ0

+ 0.446ψ180 + 1.151ψ90))0.5}, (19)

The parameter A2 has two values, but one value that can
be obtained by experimental data is acceptable. The accept-
able sign is minus. By using the coefficient in Eq. (8), we
can acquire the magnetic flux surface [10,21]. The plasma
position and the theoretical HD∆Htheo can be obtained as

∆Htheo = Raxis−Ro (20)

Where theRaxisis determined bydψ(Raxis, 0)/dR = 0
andR0 is the geometrical centre of the plasma column. We
imposed that∆Hexp = ∆Htheo and try to find with the sup-
position that in the region of equilibrium state the a can be
assumed constant, the value ofR0, leaving as free parameter.
So we determinedR0 = 1.22 m. The∆Hexp is the plasma
HD, which can be obtained experimentally using four mag-
netic probes as described by [13,21].
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5. Plasma displacement andβP + li/2 by the
magnetic probes

Because of dependence of the plasma position and plasma
current distribution to magnetic field distribution around the
plasma, therefore magnetic pickup coils give us information
about the plasma position. Therefore, the second relation for
the plasma position [22] is

∆R =
a2

4R0
×

{(
b2

a2
−1

)
−2 ln

a

b

}

+
πb2

2µ0Ip

{
∆Bθ

(
1−a2

b2

)
−∆Br

(
1+

a2

b2

)}
(21)

Where we use the quasi-cylindrical coordinate(r, θ, φ).
Equations (20) and (21) are accurate for HT-7 Toka-
mak [10,13,20], (see Table I). The magnetic probe array is
used to measure the poloidal magnetic field on HT-7 Toka-
mak [13,20]. There are 12 magnetic probes distributed
equally in the circle-cross poloidal direction. Each probe can
measure magnetic field in two directions, the poloidal direc-
tion and the radial direction. The plasma current is measured
by the Rogowski coil [13,20].

The sum of the poloidal beta and half the plasma internal
inductance,βp + li/2, can be measured as follow [13,16-19]
(Fig. 1-2, Ref. 13)

βp +
li
2

= 1 + ln
a

b
+

πR0

µ0I0
(〈Bθ〉+ 〈Bn〉) , (22)

where

〈Bθ〉 = Bθ(θ = 0)−Bθ(θ = π), (23)

〈Bn〉 = Bn

(
θ =

π

2

)
−Bn

(
θ =

3π

2

)
, (24)

We measured these local magnetic fields with magnetic
probes [13] at above angles.

FIGURE 3. The calculated time evolution of the plasma displace-
ment andβp + li/2 for circular cross section HT-7 tokamak (green
measured by discrete coils and blue calculated).

For circular cross section HT-7 tokamak (green measured
by discrete coils and blue calculated).

We presented a method for the determination of the
plasma displacement andβp + li/2 for circular cross section
HT-7 tokamak. The calculated time evolution of the poloidal
beta and internal inductance is shown in Fig. 3.

From the Fig. 3, it can be seen that the calculated plasma
displacement andβp + li/2 inductance depend on the kind of
the discharge or plasma current.

6. Conclusions

We present the plasma displacement andβp + li/2 by the
Simplest Grad–Shafranov Equation (GSE) solution using
Solov’ev assumption for circular cross section HT-7 toka-
mak. Using diamagnetic and compensation loop, combining
with poloidal magnetic probe array signals, plasma displace-
ment andβp + li/2 are measured. In this paper, theoretical
and experimental results in determining plasma displacement
andβp + li/2 are presented. We have seen that the calculated
plasma displacement and the calculatedβp + li/2 depend on
the kind of discharge or plasma current.
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