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Study of plasma displacement andb, + /;/2 by the simplest Grad-Shafranov
equation solution for circular cross section tokamak
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In this work we present the plasma displacement @ne- I; /2 by the Simplest Grad-Shafranov Equation (GSE) solution using Solov'ev
assumption for circular cross section HT-7 tokamak. Using diamagnetic and compensation loop, combining with poloidal magnetic probe
array signals, plasma displacement ghd4+ /; /2 are measured. In this paper, theoretical and experimental results in determining plasma
displacement an@, + [; /2 are presented. We have seen that the calculated plasma displacement and the célcelatéeldepend on the

kind of discharge or plasma current.
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1. Introduction can be chosen by the plasma currgnéind the poloidal beta
Bp. But Rahimirad [9] presented the simplest solution of GSE

which is the well-known Solov’ev equilibrium [6], which has

In a Tokamak, external magnetic measurements have be?n . .
ive parameters. In this paper we have selected the simplest

applied to determine the important information on plasmaSPIution of Grad-Shafranov equation [9], which is the well-

shapes, the safety factor, the sum of the average pOIOId%nown Solov’ev equilibrium [6], so we have six parameters,

beta 3, an_d internal inductancé [1]. There are methods .which can be determined by circular fixed boundary condi-
for extraction of plasma parameters from external magnetl%Ons and by the plasma current of the Tokamak

measurements. Swain and Neilson [2] presented an efficient
method to reconstruct the plasma shapes and line integrals In this paper, we analyze the possibility of using a
of the boundary poloidal magnetic field from external mag-specific choice of current distribution for interpretation
netic measurements. In their method, the plasma current digf magnetic measurements and we directly calculate the
tribution is approximated by using a few filament currents.poloidal betas3, and internal inductanck form solution of
In Luxon and Brown’s approach [3], the plasma current isSGSE [10-12] and discrete magnetic coils [13]. We solve
modeled using distributed sources. The non-linear GradGSE by considering linear source functions and circular fixed
Shafranov equation (GSE) is solved repeatedly to search tHeoundary conditions for circular cross section HT-7 toka-
best-fit current density profile. As we know, analytical so-mak [13] with a plasma minor radius that it is variable. This
lutions of the Grad—Shafranov [4,5] equation are very usefubolution has three quantities (plasma currgptplasma mi-
for theoretical studies of plasma equilibrium, transport, andhor radiuse and /3, + [;/2 as input data. The quantities are
magnetohydrodynamic (MHD) stability. The well-known measured by a Rogowski coil, a Saddle coil and an array of
Solov'ev quilibrium [6] has been extensively used for suchdiscrete magnetic coils [13], respectively. Then, according to
studies, and also as a benchmark of numerical codes that dbe definition of the poloidal betd, and internal inductance
tempt to find more general solutions. {; [11,14] we substituted the poloidal flux function that ob-
However, the Solov’ev equilibrium solutions typically tained' by our solution into it. Finally, we callculat'e the time
studied [6-7] are over constrained, either in shape (ellipticalfvelution of the plasma parameters for a typical discharges of
or in plasma current (which is commonly determined by theCircular cross section HT-7 tokamak (see Table I).

choice of poloidal beta3, ). We present the plasma displacement @hd+ 1;/2 by

The existing exact solutions have arisen from a varietythe Simplest Grad—Shafranov Equation (GSE) solution us-
of allowed current density profiles or a variety functional of ing Solov’ev assumption for circular cross section HT-7 toka-
source functions. A simple analytical solution to the inho-mak. Using diamagnetic and compensation loop, combining
mogeneous GSE is presented by Zhehgl. [8] ,which cor-  with poloidal magnetic probe array signals, plasma displace-
responds to source functions linearyn For this case, six ment ands, + [,/2 are measured. In this paper, theoretical
parameters must be determined. The shape of the plasma cand experimental results in determining plasma displacement
be described by four parameters for which rectangular fixeéndg, +1; /2 are presented. We have seen that the calculated
boundary conditions are selected. The shape of the curreplasma displacement and the calculafigd- /; /2 depend on
profile is essentially flat, and the two existing free parametershe kind of discharge or plasma current.
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The internal energy in this extended Grad-Shafranov
TABLE |. Parameter of the HT-7 tokamak. equation is a function ofy. The u(y) and F(y)) are two
free functions, whileuy andJ are the vacuum permeability

Parameter Value . .
and plasma current density respectively.
Major Radius 1.22m
Minor Radius 0.27m . .
o 3. Grad-Shafranov equation solution
Toroidal Field 1-25T
Plasma Current 100-250 kA In an axisymmetric system a convenient representation of the
Discharge Time ~ 300 s magnetic field is:
; _ 19 =3
Electron Density 1-6x10"m B=FVé+ Vi x Vo, 3)
PLASMA where¢ is the ignorable angle in the cylindrical coordinate

system(R, ¢, Z), and Fandy are axisymmetric scalar func-
tions. The functionF'is a flux function, associated with the
‘ COMPENSATION COIL poloidal current in the system, whikg is the poloidal flux
divided by27. The internal energy in this Grad-Shafranov
Eq. (1) is a function of). HereJ, is the toroidal plasma cur-
rent density;u is the internal energy, which is a function of
1. Note that the toroidal field is not determined by the Grad-
Shafranov equation. Its choice will only rescale the values
of the safety factog. It will not change the shape of the
flux surfaces, or that of the profiles of internal energy, current

DIAMAGNETIC LOOP

FIGURE 1. The diamagnetic and compensating loops. density,q,_ etc. )
The simplest solution to Eq. (1) can be found by assum-
ing that
ou oF
-1)—=-4 F—=A 4
fo (7 ) Em 1) B, 2, (4)

where A; and A, are constant. This obviously reduces
the set of possible current density profile shapes to
J¢ X RAl — AQ/R.

With the restrictions given by (4), the GSE is reduced to

< ez ‘ B the form:
- 2
\ ' DIAMAGNETIC LOOP 2 - A%y = R°Ay — Ay, %)
- DIAMAGNETIC LOOP 1 .
COMPENSATION LOOP whose solution is [8]
FIGURE 2. The structure of the magnetic arrays. W = by — éR“ _ Ay 72 (6)
b)

2
where i is a solution of the homogeneous equation
2. Extended Grad-Shafranov equation
A% = 0. @)
Maxwell's equations together with the force balance equa-
tion from MHD equations, in the cylindrical coordinates If the plasma is assumed to be up—down symmetric, its
(R,Z) reduce to the two-dimensional, nonlinear, elliptic Grad-shape can be described by four parameters. The equatorial
Shafranov equation [7]: As in the linear case, the procedurénnermost and outermost point8; and Ry, and the coordi-
to derive the Grad-Shafranov equation can be followed obnates of the highest pointR;, Z,) or equivalently, the major
taining an extended Grad-Shafranov equation [10] radiusR,, = (R; + Ry)/2, Rm # Ro, the minor radius
a = (Ro — R;)/2, the elongation, = Z;/a, and triangular-

B = polidy ity 6 = (Ro— R¢)/2. From (5), the simplest solution is given
du dr by [8,10
= —ho(y = 1)R2d(f) - F () dff), @ Pyl
whereA* is Y =c1 4 R* + c3(R* — 4R*Z?)
o (10 0? 2 oy A1y Az
- R = —- +cy(R°In(R) - 2°) - —R" — —Z~. (8)
AT =Fagp (R 6R> t o2 2) 1(RIn(R) ) -3 )
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For the determination these six coefficients, it is neces4. Plasma displacement andsp+ 1;/2 by the
sary to have six equations. We assume that the internal en- GSE solution
ergy vanishes at the boundary, heng@R, Z)|, = 0[8,9].
With Eq. (8 ), the boundary condition® = Ry & a, We have obtained the six coefficient by solving six algebraic
Z =0andR = Ry, Z = Z, gives the following equations:  equation for circular cross section HT-7 tokamak [20] (see
Table ). It has triangularity = 0, elongationx = 0, a

V(R;,0) = ¢; + cQRf + Cst major radius ofR,,, = 1.22 m, minor radius ofi= 0.27 m,
A R, = Ry—a, R, = Ry +a, R = Ry, Z; = a, defined
+ 4 R?In(R;) — —lRf = Y180, (9) by one poloidal water-cooling limiter, one toroidal water-
8 cooling belt limiter at the high field side and a new set of
¥(Ro,0) = ¢1 + coR% + 3R, actively cooled toroidal double-ring graphite limiters at the
A bottom and the top of the vacuum vessel, and pulses up to
+ s REIn(Ry) — ?Rf; = 1o, (10) 240 s of long plasma have been achieved with new graphite

limiters in the HT-7 in 2004 [20].
W(Ry, Zi) = ¢1 + o R} + cs(R} — AR} Z7)

4 (R In(Ry) — 72) c¢1 = —0.0044; —0.034A45 + 0.23Bz — 0.359¢

Mg A . ) + 2.359%180 — 1.514000, (15)
gt 2Tt T o = 0.034A4; — 0.08445 + 3.823B, — 8.359
We also assume that the plasma is enclosed in a per- + 12.309¢180 — 6.351%)90, (16)

fectly conducting toroidal boundary with circular cross sec-

. . . . =0.0244 .024A,5 — 3. B
tion, with radius a, so the normal component of the magnetic 0-0244; +0.0244; = 3.553B8

field. + 20.359%0 — 30.212¢150 + 3351190, (17)
1 do(Ry, = Ay = 165.345p01p — 3.10As, (18)
E(di}tzt) = 2¢y + 4e3(R2 — 227)

A
+ e (2In(Ry) + 1) — 7133 = Bz (R, Z), (12)

As = 4105.245{0.0034Bz + 0.0061 101 p + 0.1049%¢

The plasma current can be clearly measured by Rogowski 0.0646 0.151 4 ((—0.0034B
coil [13], so the plasma current can be written. +0 Yrso +0-151490 & ((=0. Z
—0.0061p0Ip + 0.10491) + 0.06469)150 + 0.1511)90)*

A
2 pol, = / / (RAl + ;) dRdZ, (13) + 0.00014401p(0.003B 7 + 0.0361 01 p
l;
It is simpler to first solve for a plasma with unit current 1.304 (ﬁp + 2) Holp 405344
and unit major radius and use the scaling relations described 05
above to find the final desired equilibrium. However, even + 04464150 + 1.151¢090)) ™"}, (19)

in this simplest case only numerical solutions to Egs. (9-14)

have been found. The coefficients can be computed numeri- The parameter Ahas two values, but one value that can

cally, given a desired plasma description. be obtained by experimental data is acceptable. The accept-
We also selected the constraiif + I;/2 [11], because able sign_is minus. By gsing the coefficient in Eq. (8), we

the parameter can be experimentally deduced using discref@" acquire the magnetic flux surface [10,21]. The plasma

magnetic probes [13], for circular cross section HT-7 toka-POSition and the theoretical HD Hineo can be obtained as

mak [13,15-19],
[ ] AI{theo = Raxis - Ro (20)

(f d1)”

(2mpol,)’ [ [ RARAZ

Bp +1;/2 = Where theRaidis determined byiy(Rayis, 0)/dR = 0

and Ry is the geometrical centre of the plasma column. We
imposed that\ Hex, = A Hieo @and try to find with the sup-

X <2~5A1 //MR, Z)RdRdZ position that in the region of equilibrium state the a can be
assumed constant, the valueRy, leaving as free parameter.

W(R, Z) So we determined?y, = 1.22 m. TheAH,,, is the plasma
+ 0.5A4; // ]__é deZ) (14)  HD, which can be obtained experimentally using four mag-

netic probes as described by [13,21].
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5. Plasma displacement andsr + [;/2 by the o’ ‘ : g ‘ : :
magnetic probes

Be+ Li/2

S N O

Because of dependence of the plasma position and plasmi
current distribution to magnetic field distribution around the
plasma, therefore magnetic pickup coils give us information

HD (cm)

about the plasma position. Therefore, the second relation forg B

the plasma position [22] is

a? b2 a
b2 a? a?

2p0l,
Where we use the quasi-cylindrical coordinéted, ¢).

+

=0 [ ! 1 I 1 1

20 30
Time (ms)

60

FIGURE 3. The calculated time evolution of the plasma displace-
ment and3, + I; /2 for circular cross section HT-7 tokamak (green
measured by discrete coils and blue calculated).

For circular cross section HT-7 tokamak (green measured

Equations (20) and (21) are accurate for HT-7 Toka-by discrete coils and blue calculated).
mak [10,13,20], (see Table 1). The magnetic probe array is We presented a method for the determination of the
used to measure the poloidal magnetic field on HT-7 Tokaplasma displacement armt} + {; /2 for circular cross section

mak [13,20].

There are 12 magnetic probes distributedHT-7 tokamak. The calculated time evolution of the poloidal

equally in the circle-cross poloidal direction. Each probe carbeta and internal inductance is shown in Fig. 3.

measure magnetic field in two directions, the poloidal direc-

From the Fig. 3, it can be seen that the calculated plasma

tion and the radial direction. The plasma current is measuredisplacement and, +; /2 inductance depend on the kind of

by the Rogowski coil [13,20].

the discharge or plasma current.

The sum of the poloidal beta and half the plasma internal

inductancef, + [;/2, can be measured as follow [13,16-19]
(Fig. 1-2, Ref. 13)

li a 7TRO
ﬁp+§:1+hlg+m(<30>+<3n>)v (22)
where
(Bo) = Bg(6 = 0) — By(0 = m), (23)

(B,) = By, (9 -

™ 37
3) —Ba <9 = 2) . (28)

6. Conclusions

We present the plasma displacement @hd+ I;/2 by the
Simplest Grad-Shafranov Equation (GSE) solution using
Solov’ev assumption for circular cross section HT-7 toka-
mak. Using diamagnetic and compensation loop, combining
with poloidal magnetic probe array signals, plasma displace-
ment ands, + [;/2 are measured. In this paper, theoretical
and experimental results in determining plasma displacement
andg, +1;/2 are presented. We have seen that the calculated

We measured these local magnetic fields with magnetiplasma displacement and the calculated- [, /2 depend on

probes [13] at above angles.

the kind of discharge or plasma current.
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