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Gas-solid phase equilibrium of biosubstances by two biological algorithms
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Particle swarm optimization (PSO) and genetic algorithm (GA) are applied to the gas-solid phase equilibrium of biosubstances and to estimate
their sublimation pressures (P s). Four binary systems of supercritical carbon dioxide + biosubstances are considered in this study. The Peng–
Robinson equation-of-state with the Wong–Sandler mixing rules, are used as a thermodynamic model to evaluate the fugacity coefficients in
the classical solubility equation, and the van Laar model was incorporated to evaluate the excess Gibbs free energy included in the mixing
rules. Then, theP s is calculated from regression analysis of solubility data (y). P s is usually small for most solid biosubstances and in many
cases available experimental techniques cannot be used to obtain accurate values. Therefore, estimation methods must be used to obtain
these data. PSO and GA are used for minimize the difference between calculated and experimental solubility. Comparing PSO with GA, it
is shown that the results of PSO are better than that of GA, and provide a preferable method to estimatey andP s of any biosubstances with
high accuracy.
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1. Introduction

In many cases of industrial fluid-solid separation process de-
sign, a thermodynamic key parameter may be the sublimation
pressuresP s of pure components. The estimation ofP s may
be a difficult problem in several chemical processes involving
diverse substances, since nearly no experimental determina-
tions are available under 0.1 Pa. A new trend in chemical
applications is the use of supercritical solvents either in pu-
rifying operations on mixtures of complex biosubstances or
in stripping on polluted stuff [1]. The optimization of this
process can be performed only if the dependence of the sol-
ubility both on pressure and temperature can be accurately
described and for this purpose, theP s is considered as a key
and relevant property [2].

Measurements of very lowP s of heavy components are
very difficult to perform although their values are of most im-
portance in the process evaluation [3].P s is relatively small
as compared to vapor pressures of liquids at room tempera-
ture. In addition to that, experimental techniques cannot in
many cases be used to accurately obtainP s [2].

One of the common approaches used in the literature to
correlate and predict phase equilibrium requires an equation
of state that well relates the variables temperature, pressure
and volume and appropriate mixing rules to express the de-
pendence of the equation of state parameters on concentra-
tion [1] proposed to estimateP s using the Peng–Robinson
equation [4] and fusion properties.

Some researchers have estimatedP s from solubility data
using an equation of state (EoS) and mixing rules to evaluate
the fugacity [5,3]. For some substances, generalized corre-
lations based on the molecular mass and the melting tem-
perature have been proposed [6]. Also, to directly estimate
the sublimation pressure, extrapolation of Antoine type equa-

tions have been used by Iwai et al. [7] and by Trabelsiet
al. [8], while the Lee–Kesler equation have been employed
by Nanpinget al. [9]. Group contribution methods were ap-
plied by Coutsikoset al. [10] for predicting the vapor pres-
sures of a variety of organic solids. Goodmanet al. [11]
obtained solid vapor enthalpy from functional groups and
molecular parameters.

Phase equilibrium calculations of a solid dissolved in a
compressed gas, at a pressureP and a temperatureT can be
performed using the fundamental equation of phase equilib-
ria which leads to a simple equation that relates the solubility
y, the pressure and the temperature. The equation also con-
tains other properties such asP s, the molar volume of the
solid V s and the fugacity coefficient of the solid component
in the high pressure gasϕs [2]. Of all these properties in-
volved in the calculation of the solubility of the solid in the
high pressure gas,P s has received low attention in the lit-
erature, although it is directly related to the solubility. The
molar volume does not have a strong influence on the calcu-
lations and the fugacity coefficient can be estimated from an
appropriate equation of state and mixing rules [3].

In this study, four binary gas-solid phase systems of su-
percritical carbon dioxide + biosubstance were evaluated.
The Peng–Robinson (PR) equation of state [4] was incor-
porated into the classical solubility equation. The Wong–
Sandler (WS) mixing rules were used, and the van Laar
model was included to evaluate the excess Gibbs free en-
ergy that appears in this mixing rule. Genetic algorithm [12],
and particle swarm optimization [13,14] were programmed in
C++, and used to minimize the difference between calculated
and experimental solubility. Then,P s of solid biosubstances
were calculated from solubility data. This article considered
the accuracy of two optimization algorithms in determining
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the sublimation pressure. In theory, the optimum sublimation
pressures should be obtained by algorithm with the best per-
formance in the minimization of the objective function, but
this statement must be proved. Considering the valuable in-
formation which may be derived either directly or indirectly
from sublimation data, it is rather surprising that there is so
little quantitative information available in the literature on the
sublimation process.

2. Gas-solid phase calculations

The experimental data for the supercritical carbon dioxide
+ biosubstances systems were correlated with the Peng–
Robinson (PR) EoS [4], and the Wong–Sandler (WS) mixing
rules [15].

The PR EoS was expressed as follows [4]:
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whereP , T andV are the pressure, temperature and molar
volume respectively,Tr = T/TC is the reduced temperature.
In this form, the PR EoS is completely predictive once the
constants (critical temperatureTC , critical pressurePC , and
acentric factorω) are given. Consequently, this equation is
a two-parameter EoS (a andb) that depends upon the three
constants (TC , PC , andω).

And for mixtures:
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The WS mixing rules for the PR EoS that are used in this
study can be summarized as follows [16]:
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In these equationsam and bm are the equation of state
constants withk12 as adjustable parameter,Ω = 0.34657
for the PR EoS, andAE

∞(y) is calculated assuming that
AE
∞(y) ≈ AE

0 (y) ≈ GE
0 (y). For the excess Gibbs free en-

ergyGE
0 (y), is calculated using an appropriate liquid phase

model. In this study,GE
0 (y) has been calculated using the

van Laar model that has been shown to perform well in high
pressure phase equilibrium calculations [3,17]. The van Laar
model (VL) ofGE

0 (y) for a binary mixture is reduces to:
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The modeling of the solubility of a solid solutey2 at equi-
librium in a supercritical phase requires solving the following
equilibrium condition [2],

y2 =
P s

2 ϕsat
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whereP s
2 is the sublimation pressure of the pure substance,

V s
2 is the solid molar volume, andϕ2 is the fugacity coeffi-

cient of solid at the pressureP [2]. The fugacity coefficient
is calculated from standard thermodynamic relations as [16]:
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The PR EoS [4] with the mixing rules proposed by
Wong–Sandler [15] are used as the thermodynamic model to
evaluateϕ2. The problem is then reduced to determining the
parametersA12 andA21 in the van Laar model, thek12 pa-
rameter included in the combining rule for(b − a/RT )12,
andP s

2 that appears in the solubility equation, using avail-
able high pressureT − P − y data for gas-solid systems as:
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whereND is the number of points in the experimental data
set andy2 is the solid solute concentration in the gas phase,
the superscript denotes the experimental (exp) data point and
calculated (calc) values.

3. Particle swarm optimization (PSO)

In a PSO system, each particle is “flown” through the mul-
tidimensional search space, adjusting its position in search
space according to its own experience and that of neighbor-
ing particles [3]. The particle therefore makes use of the best
position encountered by itself and that of its neighbors to po-
sition itself toward an optimal solution [17]. Then the best
positionpi is determined by [3,17]:

pi(t+1)=

{
pi(t) if f(xi(t + 1)) ≥ f(pi(t))

xi(t + 1) if f(xi(t + 1)) < f(pi(t))
(14)

In each iteration, every particle calculates its velocity ac-
cording to the following formula [3]:

vi(t + 1) = wvi(t) + c1r1 (pi(t)− xi(t))

+ c2r2 (pg(t)− xi(t)) (15)
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wheret is the current step number,w is the inertia weight,c1

andc2 are the acceleration constants, andr1, r2 are element
from two random sequences in the range (0,1). The current
position of the particle is determined byxi(t); pi is the best
one of the solutions this particle has reached,pg is the best
one of the solutions all the particles have reached [3,17].

The following weighting functionw is used in Eq. (15):

w = wmax − wmax − wmin

tmax
t (16)

Generally, the value of each component inv can be
clamped to the range [−vmax, vmax] control excessive roam-
ing of particles outside the search space [14]. After calculat-
ing the velocity, the new position of every particle is [3]:

xi(t + 1) = xi(t) + vi(t + 1) (17)

The PSO algorithm performs repeated applications of the
update equations above until a specified number of iteration
has been exceeded, or until the velocity updates are close to
zero [14].

The step-by-step to calculate the sublimation pressure us-
ing the particle swarm algorithm are described in details.
To start the PSO the algorithm parameters must be defined,
as: number of iterationt = 100, number of particles in
the swarmNI = 50, cognitive componentc1 = 1.49, so-
cial componentc2 = 1.49, maximum velocityvmax = 12,
minimum inertia weightwmin = 0.4, and maximum inertia
weight wmax = 0.41. The search space of the PR-WS-VL
model are defined, asSS1 for k12 (0.02, 0.20),SS2 for A12

(1, 8),SS3 for A21 (1, 2), andSS4 for− log P s (1, 5). 1) The
initial population is created. This consists ofNI = 50 parti-
cles (individuals), associated to one positionxi. Let XVect
andVVect denote a particle position and its corresponding
velocity in a seach space, respectively. Each block repre-
sents the possible values of the parametersk12, A12, A21, and
P s. 2) The vector containing the current position of particle
PVect , is created. 3) The objective function is evaluated
for each of theNI = 50 sets of values [k12, A12, A21, P s]
and the values of the objective function are called the fitness.
The evaluation of the objective function is done by calculat-
ing the solubility by the PR-WS-VL model for each value of
the set of parameters. Calculated and experimental solubil-
ity values are introduced into the objective function resulting
a vector of 50 elements, calledFunObj . The elements are
in this case the deviations between experimental and calcu-
lated values of the solubility, defined by Eq. (13). 4) The
elements of the vectorFunObj are arranged according to
their decreasing fitness. Then, a new vector namedPBest is
formed. The new particle position is computed by adding the
velocity vector to the current position Eq. (17). The velocity
update equation is given by Eq. (16). 5) After calculating
the velocity, the particle swarm algorithm performs repeated
applications of the update equations above until a specified
number of iteration has been exceededtmax = 100, or until
the velocity updates are close to zero. 6) The matrixVSol is

formed after evaluation process, and contains the individuals
representing the optimum value of the parametersk12, A12,
A21, andP s. The elements of the matrix are converted so
that all numbers are in the search space for each of the vari-
ables (SS1, SS2, SS3 andSS4). The set of parameters that
gives the minimum value of the objective function represent
the solution to the problem.

4. Genetic algorithm (GA)

Among the global stochastic optimization techniques, the
evolutionary algorithms known as genetic algorithms have
found many applications in several fields in science and en-
gineering [18]. GA was first developed by Holland [12], and
based on the mechanics of natural selection in biological sys-
tems. It uses a structure to utilize genetic information in find-
ing new directions of search. The major genetic operators
that reflect the nature of evolutionary process are reproduc-
tion, crossover and mutation [19].

GA maintains a population of individuals, whose char-
acteristics are encoded in a fixed-length bit string, modeling
the biological genotype [17]. It is at the discretion of the
programmer the way in which these bits represent the pheno-
type (ontogeny). As a parallel to nature, genetic material is
swapped between the individuals and mutated to produce off-
spring, with corresponding changes in their phenotypic per-
formance. The crossover operator is an analogue of the re-
combination of genetic material as observed in reproduction.
Crossover involves splitting the genomic bit-strings of two
parents at a given number of locations and then splicing to-
gether complementary sections of each parent’s bit-string to
form the genotype of the new individual. Crossover occurs
with a random probability. The mutation operator simulates
natural mutation of DNA. This simply involves flipping bits
in the string in a stochastic manner. Mutation should be fairly
infrequent and should be applied following crossover [18].

The most significant differences between genetic algo-
rithms and more traditional search and optimization meth-
ods, are: i) genetic algorithms search a population of points
in parallel, not a single point: ii) genetic algorithms do not
require derivative information or other auxiliary knowledge;
only the objective function and the corresponding fitness lev-
els influence the directions of search; iii) genetic algorithms
use probabilistic transition rules, not deterministic ones; and
iv) genetic algorithms work on an encoding environment of
the parameter set rather than the parameter set itself [3].

The step-by-step to calculate the sublimation pressure
using the genetic algorithm are described in details. To
start the GA the algorithm parameters must be defined,
as: number of iterationit = 100, number of individuals
NI=50, crossover operatormultipoint, crossover probabil-
ity Pcros = 0.8, mutation operatorbinary, and mutation
probability Pmut=0.035. The search space of the PR-WS-
VL model are defined, asSS1 for k12 (0.02, 0.20),SS2 for
A12 (1,8),SS3 for A21 (1,2), andSS4 for − log P s (1,5). 1)
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The initial population is created. This consists ofNI = 50 in-
dividuals, represented byNC = 4 chromosomes ofNG = 20
genes. Each block represents the possible values of the pa-
rametersk12, A12, A21, andP s. There are then 80 binary
digits (0 or 1) randomly determined, so the total length is
NCG = 80. This forms the chromosome matrixMatChrom
containing [NI × NCG] elements. 2) The elements of the
matrixMatChrom are converted into real numbers in the es-
tablished range (search space) fork12, A12, A21, andP s.
This is done using a new Phenotype matrixMatPhen , con-
taining [NI × NC ]. 3) The objective function is evaluated
for each of theNI = 50 sets of values [k12, A12, A21, P s]
and the values of the objective function are called the fitness.
The evaluation of the objective function is done by calculat-
ing the solubility by the PR-WS-VL model for each value of
the set of parameters. Calculated and experimental solubil-
ity values are introduced into the objective function resulting
a vector of 50 elements, calledFunObj . The elements are
in this case the deviations between experimental and calcu-
lated values of the solubility, defined by Eq. (13). 4) The
elements of the vectorFunObj are arranged according to
their decreasing fitness. The element whose value is the clos-
est to cero is assigned an arbitrary value of 2.0. The ele-
ment whose value is the highest in of the vectorFunObj is
assigned an arbitrary value of 0.0. The otherNI − 2 ele-
ments are linearly distributed between 0 and 2 according to
their values (fitness). Thus, a new vector namedFunRank
is formed. 5) The vectorFunRank and theMatChrom ma-
trix determine the selection of the individuals for crossover.
This consists of a random sampling in which the individual
in the MatChrom matrix whose corresponding value in the
FunRank vector are higher have more probability of being
selected to be parents and reproduce offspring. It could hap-
pen that some individuals are selected more than once for re-
production. The new arrangement of the individuals, form a
new matrix namedMatSel . 6) Reproduction of the elements

of theMatSel matrix is performed by multipoint Crossover.
Crossover is done by interchanging some of the genes of one
parent with some of the other parent. Crossover points are
randomly defined and genes are interchanged. After this is
done a new population of offsprings is created, population
represented by the matrixMatRecomb. 7) Mutation is per-
formed on the new populationMatRecomb, according to the
defined mutation probability (Pmut = 0.035). To do this, each
gene is assigned a random number that represents the prob-
ability of being mutated. If the random number is less than
Pmut the gene is selected for mutation. Mutation is done by
changing the binary number (if it is 0 it is changed to 1 and
if it is 1 it is changed to 0). The elements of the new ma-
trix formed after mutations are randomly introduced into the
chromosome matrix (MatChrom ). 8) The newMatChrom
represents a new generation of chromosomes, so steps 2 to 7
are repeated until all defined generations, have been created.
9) The matrixMatPhen is formed after evaluation process,
and contains the individuals representing the optimum value
of the parametersk12, A12, A21, andP s. The elements of
the matrixMatPhen are converted so that all numbers are in
the search space for each of the variables (SS1, SS2, SS3
and SS4). The objective function is evaluated for each of
the 50 sets [k12, A12, A21, P s]. The set of parameters that
gives the minimum value of the objective function represent
the solution to the problem.

5. Binary systems used

Four binary gas-solid phase systems of supercritical carbon
dioxide + biosubstances containing: benzoic acid, caffeine,
cholesterol, andβ-carotene were considered in this study.
These systems are of interest for the food, pharmaceutical
and agrochemical industries, among others.

Table I shows the thermodynamic properties (V s, TC ,
PC , andω) of the substances used, and taken from Refs. 20

TABLE I. Thermodynamic properties of the substances involved in this study.

Substance Formula TC (K) PC (MPa) ω V s(cm3/mol) Ref.

Benzoic Acid C7H6O2 751.0 4.47 0.603 92.76 [20]

Caffeine C8H10N4O2 855.6 4.15 0.555 145.68 [21]

Cholesterol C27H46O 959.0 1.25 0.948 362.40 [20]

β-Carotene C40H56 1177.0 1.24 1.040 536.50 [22]

Carbon dioxide CO2 304.2 7.38 0.224 — [20]

TABLE II. Details on the phase equilibrium data of the four systems used in this study.

CO2 + ∆T (K) ND ∆P (MPa) ∆y2 Ref.

Benzoic Acid 308–328 33 10–36 (1.4–71.7)×10−4 [23]

Caffeine 313–353 24 20–35 (2.8–11.3)×10−4 [24]

Cholesterol 313–333 26 10–25 (0.02–1.5)×10−4 [25]

β-Carotene 313–343 16 27.5–41.5 (0.9–25.4)×10−8 [26]
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to 22. The experimental phase equilibrium data taken from
the literature: benzoic acid [23], caffeine [24], choles-
terol [25], andβ-carotene [26], are presented in Table II. As
seen in the Table, the temperature and pressure ranges are
narrow and go from 308 to 353 K and from 10 to 42 MPa,
respectively.

For obtaining the optimum values ofP s using the sol-
ubility data in supercritical carbon dioxide, were calculated
the binary interaction parameterk12, A12 andA21 included
in the PR-WS-VL model. These parameters are not directly
related toP s [3], but their values determine the acceptance
of the model used as a good correlating tool for the solubility
of the solid in the compressed gas phase [27,28].

6. Results and discussion

In this study, PSO and GA were programmed in C++, and
used to minimize the difference between calculated and ex-
perimental solubility in Eq. (13). An exhaustive trial-and-
error procedure has been applied for tuning the PSO and GA
parameters.

The PR-WS-VL model and the biologically-deriver algo-
rithms (PSO and GA) used to calculateP s were evaluated by
considering the deviations between experimental and calcu-
lated values of the solubility of the solid in the high pressure
gas. The accurate modeling of the solubility is essential to
obtain accurate values ofP s [3,17]. These deviations were
expressed in relative form and absolute form, as follows:

|%∆y2| = 100
ND

ND∑

i=1

∣∣∣∣
ycalc
2 − yexp

2

yexp
2

∣∣∣∣
i

(18)

%∆P s =
100
ND

ND∑
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(
P s

calc − P s
exp

P s
exp

)

i

(19)

|%∆P s| = 100
ND

ND∑

i=1

∣∣∣∣
P s

calc − P s
exp

P s
exp
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i

(20)

Table III shows the calculated binary interaction param-
eter A12 and A21 using PR-WS-VL model with the two
biologically-deriver algorithms for the systems considered in
this study. This Table shows the deviations ofy and P s

for the four biosubstances using Eqs. (18-20). A compari-
son was made between of the results obtained with the PSO
and GA algorithms and the results obtained with Levenberg–
Marquart algorithm (LM) [29]. Note that, LM is commonly
used in these problems. Table IV shows the mean values of
the above variables of interest for these three algorithms. In
this table, the best variables were calculated as an average of
the best solution found by the three algorithms for all prob-
lems (four complex mixtures), and to evaluate the quality of
the entire set of solutions that each algorithm provides. In
general PSO performs better than GA and LM, with accuracy
of 95 % and average deviation below than 5 %. The effect of
number of individuals for PSO and GA on CPU time is show
in Fig. 1. This figure illustrates the advantage of PSO in
convergence time. The higher GA convergence time is due
to the fact that GA needs decoding at each iteration. Fig-
ure 2 shows a comparison of the calculated binary interaction
parameters for all mixtures, determined with PSO, GA and
LM algorithms and based on the minimization of the objec-
tive function (Eq. (13)). The results found using PR-WS-VL
model with biologically-deriver algorithms show that the gas
solubility, and the sublimation pressures were correlated with
low deviations between experimental and calculated values:
the|%∆y| deviations were below than 15 %.

TABLE III. Interaction parameters, solubility, and sublimation pressure calculated with PSO and GA.

CO2 T (K) y2 P s
exp(Pa) PSO estimation GA estimation

A12 A21 |%∆y| |%∆P s| A12 A21 |%∆y| |%∆P s|
Benzoic Acid 308 (8.0–31.5)×10−4 0.2117[20] 1.4545 0.6520 6.88 4.85 1.4956 0.8398 6.79 6.13

318 (2.6–48.7)×10−4 0.7725[20] 1.2987 0.6555 8.07 1.2987 0.6554 8.31

328 (1.4–71.7)×10−4 2.4730[20] 1.4272 0.3299 4.83 1.5852 0.1814 5.30

Caffeine 313 (2.9–5.4)×10−4 0.0496[21] 5.2444 9.6491 3.98 3.21 5.2884 8.4560 3.57 3.68

333 (3.0–7.2)×10−4 0.6359[21] 6.1332 7.1497 3.30 6.1527 8.8879 3.37

353 (2.8–11.3)×10−4 4.9004[21] 6.8976 7.6983 9.50 6.8896 8.5069 14.53

Cholesterol 313 (0.1–1.0)×10−4 2.63×10−4[22] 6.9635 2.0779 2.02 2.24 6.7735 2.9879 3.22 3.32

323 (0.02–1.2)×10−4 9.49×10−4[22] 6.3920 1.9664 3.39 6.9940 1.9454 3.41

333 (0.1–1.5)×10−4 3.17×10−3[22] 6.0294 0.4953 3.70 4.1016 0.7769 4.44

β-Carotene 313 (0.9–10.2)×10−8 1.50×10−15[23] 8.3909 7.4303 5.22 6.65 8.4845 8.4983 4.68 9.21

333 (4.3–27.2)×10−8 9.81×10−14[23] 10.330 8.2917 9.94 10.319 8.2339 10.95

343 (19.5–25.4)×10−8 6.52×10−13[23] 7.1022 7.6303 9.05 7.1686 6.8413 11.08

Average 4.24 Average 5.59
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TABLE IV. Mean values of the variables of interest for PSO, GA
and LM.

Parameter PSO GA LM

CPU time (s) –PC i3; RAM 4GB– 188 242 1079

Unique solutions in

the final population (%) 90 72 —

Accuracy of solutions (%) 95.24 89.23 80.01

Minimun deviation (%) 0.72 1.55 5.99

Maximun deviation (%) 9.94 14.53 16.98

Average deviation (%) 4.24 5.59 10.33

FIGURE 1. Effect of variation of the number of individuals on CPU
time: (©) PSO, and (¤) GA.

FIGURE 2. Deviations of the binary interaction parameters esti-
mated by minimization with: (©) PSO, (¤) GA, and (4) LM.

For the Ps calculations, the%∆P s deviations were below
than±15%, and the|%∆P s| deviations were below than 10
%. Comparing the results obtained with PSO and GA, the
best predictions of theP s were calculated with the PSO algo-

FIGURE 3. Sublimation pressures calculated with the PR-WS-VL
model + PSO algorithm. In these figures:solid lines are the ex-
perimental points andfilled diamonds are the calculated values.
(a) benzoic acid, (b) caffeine, (c) cholesterol, and (d)β-carotene.

rithm (see, Table III). Figure 3 shows a visual general picture
of the accuracy of the proposed PSO algorithm to calculate
the P s. The figures ratify the discussion presented above.
These results indicate that the proposed method (PR-WS-VL
+ PSO) is reliable enough to estimate theP s of any biosub-
stances using solubility data of the gas-solid systems contain-
ing supercritical fluids.

7. Conclusion

Based on the results and discussion presented in this study,
the following main conclusions are obtained: i) the PR-WS-
VL model is appropriate to modeling solid-gas phase equi-
librium of supercritical carbon dioxide + biosubstance sys-
tems; ii) the PSO or GA are good tools for the calculation of
the optimum value for the interaction parametersk12, A12

and A21 using PR-WS-VL model; iii) in GA the follow-
ing parameters are recommended for this type of calcula-
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tions: number of iterationit = 100, number of individuals
NI = 50, crossover probabilityPcros = 0.8, and mutation
probabilityPmut = 0.035; iv) in PSO the following param-
eters are recommended for this type of calculations: num-
ber of iterationt = 100, number of particles in the swarm
NI = 50, cognitive componentc1 = 1.49, social compo-
nentc2 = 1.49, maximum velocityvmax = 12, minimum
inertia weightwmin = 0.4, and maximum inertia weight
wmax = 0.41; and v) the PSO showed to be a best algorithm
to solve the optimization problem studied here.
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