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Gas-solid phase equilibrium of biosubstances by two biological algorithms
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Particle swarm optimization (PSO) and genetic algorithm (GA) are applied to the gas-solid phase equilibrium of biosubstances and to estimate
their sublimation pressure®(). Four binary systems of supercritical carbon dioxide + biosubstances are considered in this study. The Peng—
Robinson equation-of-state with the Wong—Sandler mixing rules, are used as a thermodynamic model to evaluate the fugacity coefficients ir
the classical solubility equation, and the van Laar model was incorporated to evaluate the excess Gibbs free energy included in the mixing
rules. Then, thé®? is calculated from regression analysis of solubility dgba P° is usually small for most solid biosubstances and in many

cases available experimental techniques cannot be used to obtain accurate values. Therefore, estimation methods must be used to obt:
these data. PSO and GA are used for minimize the difference between calculated and experimental solubility. Comparing PSO with GA, it
is shown that the results of PSO are better than that of GA, and provide a preferable method to gstmddté of any biosubstances with

high accuracy.
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1. Introduction tions have been used by Iwai et al. [7] and by Trabetsi
al. [8], while the Lee—Kesler equation have been employed
In many cases of industrial fluid-solid separation process depy Nanpinget al. [9]. Group contribution methods were ap-
sign, a thermodynamic key parameter may be the sublimatioplied by Coutsikost al. [10] for predicting the vapor pres-
pressures’ of pure components. The estimationof may  sures of a variety of organic solids. Goodmeinal. [11]

be a difficult problem in several chemical processes inVO'Ving)btained solid vapor entha|py from functional groups and
diverse substances, since nearly no experimental determingyolecular parameters.

tions are available under 0.1 Pa. A new trend in chemical _ . o .
applications is the use of supercritical solvents either in pu- Phase equilibrium calculations of a solid dissolved in a
rifying operations on mixtures of complex biosubstances offOMPressed gas, at a presstrand a temperaturé can be
in stripping on polluted stuff [1]. The optimization of this performed using the _fundamente_ll equation of phase equ_ll_lb-
process can be performed only if the dependence of the soiia which leads to a simple equation that relates the solubility
ubility both on pressure and temperature can be accuratefjy (€ Pressure and the temperature. The equation also con-
described and for this purpose, tRé is considered as a key @NS other properties such &%, the molar volume of the
and relevant property [2]. _solld Vs_and the fugacity coefficient of the solid compo_nent
Measurements of very lo?® of heavy components are in the h|gh pressure _ga,ss [2]. Of all_t_hese properjuefs n-
very difficult to perform although their values are of mostim- vplved in the calculation of thg solubility of the S(.)“d n the
portance in the process evaluation [B]¢ is relatively small high pressure gas?® has received low attention in the it

as compared to vapor pressures of liquids at room temperg_rature, although it is directly related to the solubility. The

ture. In addition to that, experimental techniques cannot irf‘c?lar volume does npt have 'a'strong mfluenge on the calcu-
many cases be used to accurately obfair[2]. ations a_md the fugacny coefficient can be estimated from an
One of the common approaches used in the literature tgpproprlate equation of state and mixing rules [3].
correlate and predict phase equilibrium requires an equation In this study, four binary gas-solid phase systems of su-
of state that well relates the variables temperature, pressugercritical carbon dioxide + biosubstance were evaluated.
and volume and appropriate mixing rules to express the deFhe Peng—Robinson (PR) equation of state [4] was incor-
pendence of the equation of state parameters on concentrperated into the classical solubility equation. The Wong-
tion [1] proposed to estimat®® using the Peng—Robinson Sandler (WS) mixing rules were used, and the van Laar
equation [4] and fusion properties. model was included to evaluate the excess Gibbs free en-
Some researchers have estimakdrom solubility data  ergy that appears in this mixing rule. Genetic algorithm [12],
using an equation of state (EoS) and mixing rules to evaluatand particle swarm optimization [13,14] were programmed in
the fugacity [5,3]. For some substances, generalized corrée++, and used to minimize the difference between calculated
lations based on the molecular mass and the melting temand experimental solubility. Thei®® of solid biosubstances
perature have been proposed [6]. Also, to directly estimatevere calculated from solubility data. This article considered
the sublimation pressure, extrapolation of Antoine type equathe accuracy of two optimization algorithms in determining
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the sublimation pressure. In theory, the optimum sublimatiommodel. In this studyG ¥ (y) has been calculated using the
pressures should be obtained by algorithm with the best peran Laar model that has been shown to perform well in high
formance in the minimization of the objective function, but pressure phase equilibrium calculations [3,17]. The van Laar
this statement must be proved. Considering the valuable immodel (VL) of G¥ (y) for a binary mixture is reduces to:
formation which may be derived either directly or indirectly

. . - - . GE (71412) Y12
from sublimation data, it is rather surprising that there is so 0 _ _\RT (10)
little quantitative information available in the literature on the RT (%) + o
21

sublimation process.
The modeling of the solubility of a solid solugg at equi-
librium in a supercritical phase requires solving the following

2. Gas-solid phase calculations equilibrium condition [2],

The experimental data for the supercritical carbon dioxide Pyt Vs(P — Py)
+ biosubstances systems were correlated with the Peng— Y2 = P eXp[ RT } (11)
Robinson (PR) EoS [4], and the Wong—Sandler (WS) mixing ) o
rules [15]. where Ps is the sublimation pressure of the pure substance,
The PR EoS was expressed as follows [4]: vy is the splid molar volume, ang, is the fugacity cpgffi—
cient of solid at the pressui [2]. The fugacity coefficient
p— RT T a 1) is calculated from standard thermodynamic relations as [16]:
V—-b VV+b+bV -0 ~
oP RT
2T2 J— _ —
a= 0.4572351‘2 C (T, @) RT Iny; / (87% % )T , dV —RTInZ (12)
PC v » VT
b — 0.077796 LT 3) The PR EoS [4] with the mixing rules proposed by
Pc Wong-Sandler [15] are used as the thermodynamic model to
2 evaluatep,. The problem is then reduced to determining the
oT) = {1 +r (1 -V T,‘)} (4)  parametersi;, and A,; in the van Laar model, the,» pa-

rameter included in the combining rule f66 — a/RT )12,
and P; that appears in the solubility equation, using avail-
where P, T andV are the pressure, temperature and mola/P!€ high pressuré — P —y data for gas-solid systems as:
volume respectively],. = T'/T¢ is the reduced temperature. 100 Mo
In this form, the PR E0S is completely predictive once the f=— Z
constants (critical temperatufe;, critical pressure’s, and Np i=1
acentric factow) are given. Consequently, this equation is where N, is the number of points in the experimental data
a two-parameter EoS:(andb) that depends upon the three get andy, is the solid solute concentration in the gas phase,
constants{c, Pc, andw). the superscript denotes the experimentapj data point and

And for mixtures: calculated ¢alc) values.

p=tL_, . ©) | o

Vi=by  V(V+bn)+bn(V—bn) 3. Particle swarm optimization (PSO)

The WS mixing rules for the PR EoS that are used in thi
study can be summarized as follows [16]:

k= 0.37646 + 1.54226w — 0.26992w> (5)

alc exTp
R

eTp

(13)

%

3n a PSO system, each patrticle is “flown” through the mul-
tidimensional search space, adjusting its position in search

Y2 (b_%)l +2y1 92 (b_%)u +y2 (b—%)Q space according to its own experience and that of neighbor-
b= s aan | AE () (7)  ing particles [3]. The particle therefore makes use of the best
V=4 "RT — %, rr T GRT position encountered by itself and that of its neighbors to po-
sition itself toward an optimal solution [17]. Then the best
JVaias positionp; is determined by [3,17]:

a 1
b— — = — bl bg - 1-— k12 8
( RT)12 2( +02) RT ( ) ®) pi(t) if flx;(t+1)) > f(pi(t))

AE pi(t+1)={
o=t (e ot A=) ) wit+1) i S+ 1) < f0u(0)

In each iteration, every particle calculates its velocity ac-

In these equations,,, andb,, are the equation of state cording to the following formula [3];

constants withk,, as adjustable parametdr, = 0.34657

for the PR Eo0S, anddZ (y) is calculated assuming that vi(t+ 1) = woi(t) + erry (pi(t) — x4(t))
AE (y) =~ AF(y) =~ GF(y). For the excess Gibbs free en-
ergy G¥(y), is calculated using an appropriate liquid phase + cara (pg(t) — i(t)) (15)
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wheret is the current step numbeu,is the inertia weightg;  formed after evaluation process, and contains the individuals
andc, are the acceleration constants, andr, are element representing the optimum value of the parametggs Ao,
from two random sequences in the range (0,1). The currer,;, and P. The elements of the matrix are converted so
position of the particle is determined hy(t); p; is the best that all numbers are in the search space for each of the vari-
one of the solutions this particle has reachggis the best ables §S1, SS2, SS3andSS4). The set of parameters that
one of the solutions all the particles have reached [3,17].  gives the minimum value of the objective function represent
The following weighting functionw is used in Eq. (15):  the solution to the problem.
W= Winax — Wmax — wmint (16) . .
tmax 4. Genetic algorithm (GA)

Generally, the value of each component:incan be . L .
Among the global stochastic optimization techniques, the

clamped to the range{vmax, vmax] CONtrol excessive roam- > . . :
ing of particles outside the search space [14]. After calculatfavomtIonary algorithms known as genetic algorithms have

: ; . i ) found many applications in several fields in science and en-
ing the velocity, the new position of every particle is [3]: gineering [18]. GA was first developed by Holland [12], and

zi(t+1) = 25(t) + vt + 1) (17) based on the mechanics of natural selection in biological sys-
tems. It uses a structure to utilize genetic information in find-

The PSO algorithm performs repeated applications of thég new directions of search. The major genetic operators
update equations above until a specified number of iteratiofat reflect the nature of evolutionary process are reproduc-
has been exceeded, or until the velocity updates are close 9N crossover and mutation [19].
zero [14]. GA maintains a population of individuals, whose char-

The step-by-step to calculate the sublimation pressure ugcteristics are encoded in a fixed-length bit string, modeling
ing the particle swarm algorithm are described in detailsthe biological genotype [17]. It is at the discretion of the
To start the PSO the algorithm parameters must be define@rogrammer the way in which these bits represent the pheno-
as: number of iteration = 100, number of particles in type (ontogeny). As a parallel to nature, genetic material is
the swarmN; = 50, cognitive component; = 1.49, so- swapped between the individuals and mutated to produce off-
cial component, = 1.49, maximum velocityv,.x = 12,  SPring, with corresponding changes in their phenotypic per-
minimum inertia weighto,i, = 0.4, and maximum inertia formance. The crossover operator is an analogue of the re-
weight wmax = 0.41. The search space of the PR-WS-VL combination of genetic material as observed in reproduction.
model are defined, &8S1 for k1, (0.02, 0.20)SS2for A;, Crossover involves splitting the genomic bit-strings of two
(1, 8),SS3for A, (1, 2), andSS4for — log P* (1,5). 1) The  parents at a given number of locations and then splicing to-
initial population is created. This consists®f = 50 parti- ~ gether complementary sections of each parent’s bit-string to
cles (individuals), associated to one positign Let XVect form the genotype of the new individual. Crossover occurs
andVVect denote a particle position and its correspondingWith a random probability. The mutation operator simulates
velocity in a seach space, respectively. Each block repredatural mutation of DNA. This simply involves flipping bits
sents the possible values of the paramétersA;», A»;, and in the string in a stochastic manner. Mutation should be fairly
Ps. 2) The vector containing the current position of particleinfrequent and should be applied following crossover [18].
PVect , is created. 3) The objective function is evaluated The most significant differences between genetic algo-
for each of thelV; = 50 sets of valuesk;», Ao, A91, P°]  rithms and more traditional search and optimization meth-
and the values of the objective function are called the fithesf:ds, are: i) genetic algorithms search a population of points
The evaluation of the objective function is done by calculat-in parallel, not a single point: ii) genetic algorithms do not
ing the solubility by the PR-WS-VL model for each value of require derivative information or other auxiliary knowledge;
the set of parameters. Calculated and experimental solubipnly the objective function and the corresponding fitness lev-
ity values are introduced into the objective function resultingels influence the directions of search; iii) genetic algorithms
a vector of 50 elements, call¢elnObj . The elements are use probabilistic transition rules, not deterministic ones; and
in this case the deviations between experimental and calciv) genetic algorithms work on an encoding environment of
lated values of the solubility, defined by Eqg. (13). 4) Thethe parameter set rather than the parameter set itself [3].
elements of the vectdfFunObj are arranged according to The step-by-step to calculate the sublimation pressure
their decreasing fitness. Then, a new vector naR®est is  using the genetic algorithm are described in details. To
formed. The new patrticle position is computed by adding thestart the GA the algorithm parameters must be defined,
velocity vector to the current position Eq. (17). The velocity as: number of iteratiorit = 100, number of individuals
update equation is given by Eq. (16). 5) After calculating N;=>50, crossover operatonultipoint, crossover probabil-
the velocity, the particle swarm algorithm performs repeatedty P..,, = 0.8, mutation operatobinary, and mutation
applications of the update equations above until a specifiedrobability P,,,;,=0.035. The search space of the PR-WS-
number of iteration has been exceedgd, = 100, or until VL model are defined, aSS1 for k5 (0.02, 0.20),SS2 for
the velocity updates are close to zero. 6) The matfol is A5 (1,8),SS3for Ay (1,2), andSS4 for — log P* (1,5). 1)
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The initial population is created. This consist\gf = 50 in- of theMatSel matrix is performed by multipoint Crossover.
dividuals, represented by~ = 4 chromosomes aWVg = 20 Crossover is done by interchanging some of the genes of one
genes. Each block represents the possible values of the pparent with some of the other parent. Crossover points are
rameterski2, A12, Aoy, and P5. There are then 80 binary randomly defined and genes are interchanged. After this is
digits (0 or 1) randomly determined, so the total length isdone a new population of offsprings is created, population
N¢e = 80. This forms the chromosome matiitatChrom represented by the matrMatRecomb. 7) Mutation is per-
containing [V; x N¢g] elements. 2) The elements of the formed on the new populatidiatRecomb, according to the
matrix MatChrom are converted into real numbers in the es-defined mutation probability/,,; = 0.035). To do this, each
tablished range (search space) kg, A2, A21, and P*. gene is assigned a random number that represents the prob-
This is done using a new Phenotype maviatPhen, con-  ability of being mutated. If the random number is less than
taining [N; x N¢]. 3) The objective function is evaluated P the gene is selected for mutation. Mutation is done by
for each of theN; = 50 sets of valuesis, A1, Ao, P*] changing the binary number (if it is O it is changed to 1 and
and the values of the objective function are called the fitnessf it is 1 it is changed to 0). The elements of the new ma-
The evaluation of the objective function is done by calculat-trix formed after mutations are randomly introduced into the
ing the solubility by the PR-WS-VL model for each value of chromosome matrixMatChrom). 8) The newMatChrom

the set of parameters. Calculated and experimental solubitepresents a new generation of chromosomes, so steps 2 to 7
ity values are introduced into the objective function resultingare repeated until all defined generations, have been created.
a vector of 50 elements, calléelnObj . The elements are 9) The matrixMatPhen is formed after evaluation process,

in this case the deviations between experimental and calcand contains the individuals representing the optimum value
lated values of the solubility, defined by Eq. (13). 4) Theof the parameterg,,, A2, A2, and P*. The elements of
elements of the vectdFunObj are arranged according to the matrixMatPhen are converted so that all numbers are in
their decreasing fithess. The element whose value is the clothe search space for each of the variab®S1, SS2, SS3

est to cero is assigned an arbitrary value of 2.0. The eleand SS4). The objective function is evaluated for each of
ment whose value is the highest in of the vedtanObj is  the 50 sets4is, A2, 421, P?]. The set of parameters that
assigned an arbitrary value of 0.0. The otldér — 2 ele-  gives the minimum value of the objective function represent
ments are linearly distributed between 0 and 2 according tthe solution to the problem.

their values (fithess). Thus, a new vector narRedRank

is formed. 5) The vectdFunRank and theMatChrom ma-
trix determine the selection of the individuals for crossover.

This consists of a random sampling in which the individualFour pinary gas-solid phase systems of supercritical carbon
in the MatChrom matrix whose corresponding value in the gioxide + biosubstances containing: benzoic acid, caffeine,
FunRank vector are higher have more probability of being cnholesterol, and3-carotene were considered in this study.

selected to be parents and reproduce offspring. It could haprhese systems are of interest for the food, pharmaceutical
pen that some individuals are selected more than once for remq agrochemical industries, among others.

production. The new arrangement of the individuals, forma  Taple | shows the thermodynamic propertié& ( Tc,
new matrix nametlatSel . 6) Reproduction of the elements P., andw) of the substances used, and taken from Refs. 20

5. Binary systems used

TABLE |. Thermodynamic properties of the substances involved in this study.

Substance Formula Te(K) Pc(MPa) w V' (cm®/mol) Ref.

Benzoic Acid GHgO2 751.0 4.47 0.603 92.76 [20]
Caffeine GH10N4O2 855.6 4.15 0.555 145.68 [21]
Cholesterol G7H460 959.0 1.25 0.948 362.40 [20]
[-Carotene GoHse 1177.0 1.24 1.040 536.50 [22]
Carbon dioxide CQ 304.2 7.38 0.224 — [20]

TABLE Il. Details on the phase equilibrium data of the four systems used in this study.

CO, + AT(K) Np AP(MPa) Ay Ref.
Benzoic Acid 308-328 33 10-36 (L.4-72mp0~* [23]
Caffeine 313-353 24 20-35 (2.8-1b30P* [24]
Cholesterol 313-333 26 10-25 (0.02-x5p~* [25]
(B-Carotene 313-343 16 27.5-41.5 (0.9-251)"8 [26]
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to 22. The experimental phase equilibrium data taken from

the literature: benzoic acid [23], caffeine [24], choles-

terol [25], andi3-carotene [26], are presented in Table Il. As 100 2
seen in the Table, the temperature and pressure ranges are |%AP?| = —
narrow and go from 308 to 353 K and from 10 to 42 MPa, Np i=1
respectively.

_For obta_lnlng the optimum value_s (_ﬂs using the sol- Table Il shows the calculated binary interaction param-
ublllty datq in supc_arcntlcal carbon dioxide, were calculated,q, Ay and Ay using PR-WS-VL model with the two
the binary interaction parametefz, A1> andAyy included ;o vicaiy deriver algorithms for the systems considered in
in the PR-WS-VL model. These parameters are not dlrectl)fhis study. This Table shows the deviationsipfnd P*
related toP? [3], but their values determine the acceptance; . ihe four biosubstances using Egs. (18-20). A compari-
of the model used as a good correlating tool for the solubilitySon was made between of the results obtained with the PSO

s _ ps

calc exp

Ps

exp

(20)

of the solid in the compressed gas phase [27,28]. and GA algorithms and the results obtained with Levenberg—
. _ Marquart algorithm (LM) [29]. Note that, LM is commonly
6. Results and discussion used in these problems. Table IV shows the mean values of

the above variables of interest for these three algorithms. In

In this study, PSO and GA were programmed in C++, andhjs table, the best variables were calculated as an average of
used to minimize the difference between calculated and exhe best solution found by the three algorithms for all prob-
perimental solubility in Eg. (13). An exhaustive trial-and- |ems (four complex mixtures), and to evaluate the quality of
error procedure has been applied for tuning the PSO and Gfye entire set of solutions that each algorithm provides. In
parameters. general PSO performs better than GA and LM, with accuracy
The PR-WS-VL model and the biologically-deriver algo- of 95 94 and average deviation below than 5 %. The effect of
rithms (PSO and GA) used to calculdte were evaluated by  nymper of individuals for PSO and GA on CPU time is show
considering the deviations between experimental and calcy, Fig. 1. This figure illustrates the advantage of PSO in
lated values of the solubility of the solid in the high pressureconvergence time. The higher GA convergence time is due
gas. The accurate modeling of the solubility is essential tqg the fact that GA needs decoding at each iteration. Fig-
obtain accurate values @t [3,17]. These deviations were e 2 shows a comparison of the calculated binary interaction
expressed in relative form and absolute form, as follows: parameters for all mixtures, determined with PSO, GA and
LM algorithms and based on the minimization of the objec-

Np ex
100 ygalc —y p
|%0Ay2| = No 22 (18) tive function (Eq. (13)). The results found using PR-WS-VL
D=1 2 i model with biologically-deriver algorithms show that the gas
Np s s solubility, and the sublimation pressures were correlated with
5 100 P('al(' - Pex ot .
%APS = — == (19) low deviations between experimental and calculated values:
Np i P i the|%Ay| deviations were below than 15 %.
TABLE Ill. Interaction parameters, solubility, and sublimation pressure calculated with PSO and GA.
CO; T(K) Y2 P’.,(Pa) PSO estimation GA estimation

Az As |%Dy| [%AP| A As |%Ay| [%AP
Benzoic Acid 308 (8.0—31.5()10_4 0.2117[20] 1.4545 0.6520 6.88 4.85 1.4956 0.8398 6.79 6.13

318 (2.6-48.7%10~* 0.7725[20]  1.2987 0.6555 8.07 1.2987 0.6554 8.31
328  (1.4-71.7x107* 2.4730[20] 1.4272 0.3299 4.83 1.5852 0.1814 5.30
Caffeine 313  (2.9-5.4107* 0.0496[21] 5.2444 9.6491 3.98 3.21 5.2884 8.4560 3.57 3.68
333  (3.0-7.2107* 0.6359[21] 6.1332 7.1497 3.30 6.1527 8.8879 3.37
353  (2.8-11.3x107* 4.9004[21] 6.8976 7.6983 9.50 6.8896 8.5069 14.53
Cholesterol 313  (0.1-1.)10~* 2.63x10*[22] 6.9635 2.0779 2.02 2.24 6.7735 2.9879 3.22 3.32
323 (0.02-1.2x107* 9.49x107%[22] 6.3920 1.9664 3.39 6.9940 1.9454 3.41
333 (0.1-1.5x107* 3.17x1073[22] 6.0294 0.4953 3.70 4.1016 0.7769 4.44
B-Carotene 313  (0.9-10.2)07° 1.50x107'°[23] 8.3909 7.4303 5.22 6.65 8.4845 8.4983 4.68 9.21
333  (4.3-27.2x107% 9.81x107'*[23] 10.330 8.2917 9.94 10.319 8.2339 10.95
343 (19.5-25.4510"% 6.52x107'3[23] 7.1022 7.6303 9.05 7.1686 6.8413 11.08
Average 4.24 Average 5.59
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TABLE |V. Mean values of the variables of interest for PSO, GA
and LM.

Parameter PSO GA LM
CPU time (s) —-PC i3; RAM 4GB- 188 242 1079
Unique solutions in

the final population (%) 920 72 —
Accuracy of solutions (%) 95.24 89.23 80.01
Minimun deviation (%) 0.72 1.55 5.99
Maximun deviation (%) 9.94 1453 16.98
Average deviation (%) 4.24 5.59 10.33

500 .
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FIGURE 1. Effect of variation of the number of individuals on CPU
time: (O) PSO, and({) GA.
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FIGURE 2. Deviations of the binary interaction parameters esti-
mated by minimization with:(Q) PSO, () GA, and (A) LM.

For the Ps calculations, theA P# deviations were below
than+15%, and the/%A P#| deviations were below than 10

a0
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FIGURE 3. Sublimation pressures calculated with the PR-WS-VL
model + PSO algorithm. In these figuresilid lines are the ex-
perimental points andlilled diamonds are the calculated values.
(a) benzoic acid, (b) caffeine, (c) cholesterol, and{ejarotene.

rithm (see, Table Ill). Figure 3 shows a visual general picture
of the accuracy of the proposed PSO algorithm to calculate
the P*. The figures ratify the discussion presented above.
These results indicate that the proposed method (PR-WS-VL
+ PSO) is reliable enough to estimate tA& of any biosub-
stances using solubility data of the gas-solid systems contain-
ing supercritical fluids.

7. Conclusion

Based on the results and discussion presented in this study,
the following main conclusions are obtained: i) the PR-WS-
VL model is appropriate to modeling solid-gas phase equi-
librium of supercritical carbon dioxide + biosubstance sys-
tems; ii) the PSO or GA are good tools for the calculation of
the optimum value for the interaction parametéys, Ao

%. Comparing the results obtained with PSO and GA, theand As; using PR-WS-VL model; iii) in GA the follow-

best predictions of th&® were calculated with the PSO algo-

ing parameters are recommended for this type of calcula-
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probability P,,.; = 0.035; iv) in PSO the following param-  The authors thank the Direction of Research of the University

eters are recommended for this type of calculations: numof La Serena (DIULS), and the Department of Physics of the
ber of iterationt = 100, number of particles in the swarm University of La Serena (DFULS) for the special support that
N; = 50, cognitive component; 1.49, social compo- made possible the preparation of this paper.

nentcs 1.49, maximum velocityv,,,,, = 12, minimum

inertia weightw,,;, = 0.4, and maximum inertia weight

wmax = 0.41; and v) the PSO showed to be a best algorithm
to solve the optimization problem studied here.
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