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In this work the validity of the Boussinesq approach for the heat transfer calculations in an open cavity considering natural convection and
surface thermal radiation is studied. Numerical calculations were conducted for Rayleigh number (Ra) values in the range of 104 -106.
The temperature difference between the hot wall and the bulk fluid (∆T) was varied between 10 and 100 K, and was represented as a
dimensionless temperature difference (ϕ). The deviations for the temperature fields and fluid flow patterns, between variable properties and
Boussinesq approach are noticeable forϕ=0.333. For total Nusselt numbers, the results with Boussinesq approach and variable properties,
indicates deviations within 0.22 % (Ra=105 andϕ=0.033) and 5 % (Ra=104 andϕ=0.333).
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1. Introduction

Heat transfer in open cavities is relevant in several thermal
engineering applications. Some examples include the cool-
ing of electronic devices and the design of solar concentra-
tors receivers, among others. In the literature, over the last
forty years, a large number of numerical studies have been
reported to describe the heat transfer in open cavities [1-35].
These studies can be categorized as: (a) natural convection in
an open cavity with isothermal walls [1-6], (b) natural con-
vection in an open cavities with adiabatic walls and isother-
mal at the wall facing the aperture [7-16], (c) combined nat-
ural convection with conduction or surface thermal radiation
in two-dimensional open cavities [17-27], (d) natural convec-
tion in partially open cavities [28-30] and (e) natural convec-
tion in a cavity with two open sides (using a symmetry plane)
[31-36]. The investigations of the heat transfer by combined
natural convection and surface thermal radiation are briefly
presented next.

Lageet al. [17] studied numerically the heat transfer by
natural convection and surface thermal radiation in a two-
dimensional open top cavity; the authors solved separately
the steady state equations of natural convection and thermal
radiation, assuming a temperature distribution on the vertical
adiabatic wall. Balaji and Venkateshan [18] obtained steady
state numerical results for the interaction of surface thermal
radiation with free convection in an open top cavity, whose
left wall was considered isothermal, and the right and bot-
tom walls were adiabatic and their temperature distributions
were determined by an energy balance between convection

and radiation in each surface element of the walls. Surface
radiation was found to alter the basic flow pattern as well
as the overall thermal performance substantially. Balaji and
Venkateshan [19] developed a numerical study of combined
conduction, natural convection and surface thermal radiation
in an open top cavity. Radiation was found to enhance overall
heat transfer substantially (50–80 %) depending on the radia-
tive parameters.

Singh and Venkateshan [20] presented a numerical study
of steady combined laminar natural convection and surface
radiation in a two-dimensional side-vented open cavity. The
numerical investigation provides evidence of the existence
of thermal boundary layers along adiabatic walls of the cav-
ity as a consequence of the interaction of natural convection
and surface radiation. Hinojosaet al. [21] reported numeric
results of Nusselt numbers for a tilted open square cavity,
considering natural convection and surface thermal radiation.
The results were obtained for a Rayleigh range from 104 to
107 and for an inclination angles range of the cavity from 0
to 180◦. The results show that convective Nusselt number
changes substantially with the inclination angle of the cav-
ity, while the radiative Nusselt number is insensitive to the
orientation change of the cavity.

Hinojosaet al. [22] presented numeric results for tran-
sient and steady-state natural convection and surface ther-
mal radiation in a horizontal open square cavity. The results
were obtained for a Rayleigh range from 104 to 107. The
results show that the radiative exchange between the walls
and the aperture increases considerably the total average Nus-
selt number, from around 94% to 125%. Nouanegueet al.



NUMERICAL STUDY OF THE BOUSSINESQ APPROACH VALIDITY FOR NATURAL CONVECTION AND SURFACE THERMAL. . . 595

[23] investigated conjugate heat transfer by natural convec-
tion, conduction and radiation in open cavities in which a
uniform heat flux is applied to the inside surface of the solid
wall facing the opening. The influence of the surface radia-
tion is to decrease the heat fluxes by natural convection and
conduction while the heat flux by radiation increases with in-
creasing surface emissivity.

Hinojosa [24] reported the numerical calculations of heat
transfer by natural convection and surface radiation in a tilted
open shallow cavity. The results in the steady state were ob-
tained for a Rayleigh number range from 105 to 107, inclina-
tion angles from 45 to 135◦ and aspect ratios equal to 2 and
4. It was found that the exchange of thermal radiation be-
tween walls is considerably more relevant that the convective
phenomenon for an inclination angle of 135◦. Oscillations
in the convective Nusselt number were observed for inclina-
tion angles of 45◦ (AR=4) and 90◦ (AR of 2 and 4). Wang
et al. [25] studied the combined heat transfer by natural con-
vection, conduction, and surface radiation in an open cavity.
The unsteady-state flow and heat transfer exhibited periodic
oscillating or chaotic behaviors due to formation of the ther-
mal plumes at the bottom wall. If the formation of thermal
plumes is periodic, the oscillations of flow and heat transfer
are also periodic.

However because rigorous mathematical models aimed
at describing natural convection and surface thermal radia-
tion are complex, the previously described studies have used
the Boussinesq approximation to predict the fluid motion and
heat transfer behavior inside the open cavity. This approx-
imation is commonly understood to consist of the follow-
ing [37]: (a) density is assumed constant except in the buoy-
ancy term in the momentum equations where it is varied lin-
early, (b) All other fluid properties in the governing equa-
tions are assumed to be constant, (c) Viscous dissipation is
assumed negligible. Nevertheless the accuracy of the Boussi-
nesq approximation has not been established to study the nat-
ural convection coupled with surface thermal radiation in an
open cavity.

Considering the above, this work is focused to analyze
the validity of the Boussinesq approach to study the heat
transfer by natural convection and surface thermal radia-
tion in a square open cavity. The governing equations were
solved with variable properties and Boussinesq approach, for
Rayleigh number (Ra) values in the range of 104-106. The
temperature difference between the hot wall and the bulk
fluid (∆T) was varied between 10 and 100 K and it was rep-
resented as a dimensionless temperature difference (ϕ). The
obtained results of the fluid motion pattern, temperature fields
and heat transfer were compared and discussed.

2. Model formulation and numerical solution

In this work, the natural convection and surface thermal ra-
diation in a two-dimensional, square open cavity of length L
is considered. The system is schematically shown in Fig. 1.
The cavity has two horizontal adiabatic walls. The vertical

wall is kept at constant temperature TH , while the surround-
ing fluid interacting with the aperture is at a fixed ambient
temperature (T∞) of 300 K which was lower than TH . The
fluid was radiatively non-participating and the walls of the
cavity were considered as black bodies. The ambient fluid is
air at atmospheric pressure and was assumed Newtonian and
an ideal gas. The fluid flow is assumed to be laminar and at
steady state.

From the above considerations, the governing equations
describing the fluid motion inside the cavity under steady
state conditions may be written as follows [38]:
continuity:
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The application of the Boussinesq approximation simpli-
fies the equations (1-4) as follows:
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whereρ, µ, ν, α, β and k are: the density, the dynamic vis-
cosity, the thermal diffusivity, the kinematic viscosity, the
thermal expansion coefficient and the thermal conductivity
respectively; whereas g is the acceleration of gravity.

The hydrodynamic boundary conditions used in this work
are:
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u(0, 0 ≤ y ≤ L) = u(0 ≤ x ≤ L, 0)

= u(0 ≤ x ≤ L,L) = 0 (9)

v(0, 0 ≤ y ≤ L) = v(0 ≤ x ≤ L, 0)

= v(0 ≤ x ≤ L,L) = 0 (10)
(

∂u
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)

x=L

=
(

∂v
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)

x=L

= 0 (11)

Equations (9) and (10) assume non-slip conditions at the
solid walls, whereas Eq. (11) assume that in the aperture
plane no velocity gradients and thus no momentum transfer
occurs at this location [10].

The thermal boundary conditions were set as follows:

T (0, 0 ≤ y ≤ L) = TH (12)
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T (L, 0 < y < L) = 0 if u < 0 or
(
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)

x=L,0<y<L

= 0 if u > 0 (15)

Equation (12) establishes that the vertical wall of the cav-
ity is at constant temperatures TH , whereas Eqs. (13) and
(14) were obtained applying an energy balance on the adia-
batic surfaces by considering the transmission of heat by ra-
diation and convection [22]. Finally Equation (15) considers
that the incoming fluid enters to the cavity at ambient tem-
perature, while for the fluid leaving the cavity the thermal
conduction is negligible [8].

To obtain the net radiative heat fluxes over the walls, the
walls were divided in elements according to the mesh used
to solve Eqs. (13)-(14) and the radiosity-irradiance formula-
tion was applied. The general radiosity equation for the ith

element of the cavity may be written as

Ji = εiσT 4
i

+ (1− εi)
N∑

j=1

FijJj (16)

where,εi is the emissivity of the surface element;Fij is the
view factor from the ith element to the jth element of the
cavity, while N is the total number of elements along the cav-
ity. View factors were evaluated using Hottel’s crossed string
method [39]. The net radiative flux (qr) for the ith element
of any of the walls of the cavity was calculated by

qri = Ji − qIi (17)

where qri is the net radiative heat flux,Ji is the radiosity of
the corresponding element and qIi is the irradiance energy

that arrives to the ith element coming from the rest of the
elements of the cavity.

The fluid properties were obtained at the mean temper-
ature of the isothermal wall and the ambient temperature
when Boussinesq approach is considered; whereas for vari-
able properties, the dependency of the fluid properties with
temperature was considered as follows.

The air density (ρ) was obtained from the ideal-gas equa-
tion:

ρ(p, T ) =
p

R · T (18)

The dynamic viscosity of air was computed from the
Sutherland equation and the thermal conductivity of airk
with an empirical relationship [38]:

µ(T ) =
14.58× 10−7T 3/2

110.4 + T
(19)

k(T ) =
2.6482× 10−3T 1/2

1 + 245.4× 10−(12/T )/T
(20)

For the specific heat capacity (Cp) the following equation
was obtained from experimental data [40]:

Cp(T ) = 955.1141 + 6.7898× 10−2T

+ 1.6576× 10−4T 2 − 6.7863× 10−8T 3 (21)

in above fluid properties equationsp is the fluid pressure in
Pa,T is the absolute temperature in K, R is the ideal gas con-
stant for air equal to 287 J/kg·K, µ is viscosity in Pa·s,k is in
W/m·K andCp in J/kg·K.

To generalize the validity of the numerical results, the fol-
lowing dimensionless variables were defined:

X =
x

L
Y =

y

L
U =

u

U0
V =

v

U0
(22)

θ =
T − T∞
TH − T∞

ϕ =
TH − T∞

T∞

Pr =
ν

α
Ra = Pr

gβ(TH − T∞)L3

ν2

where X and Y are the dimensionless horizontal and vertical
length of the cavity, respectively, U and V are the dimension-
less horizontal and vertical components of the velocity vec-
tor, θ is the dimensionless fluid temperature,φ is the dimen-
sionless temperature difference between the hot wall and the
ambient air, Pr is the Prandtl number and Ra is the Rayleigh
number. Theφ parameter is related with the non-buoyancy
influence of the temperature field on the flow field, whereas
the reference velocity Uo is connected with the buoyancy
force and was defined asU0 = (gβL(TH − T∞))1/2. It
is noted that the fluid properties included in the definitions of
U0 and both Ra and Pr numbers were computed at the mean
temperature of the isothermal wall and the ambient tempera-
ture.
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The convective Nusselt number is defined as the ratio be-
tween the heat flux at the hot wall in the presence of natural
convection and the heat flux due to conduction only,i.e.,

Nuc =
qconvection

qconduction
=
−kwall

(
∂T
∂x

)
x=0,0≤y≤L

kaverage(TH − T∞) /L
(23)

where kwall was obtained at TH , and kaveragewas computed at
the average temperature between the isothermal wall and the
ambient air.

The average convective Nusselt number in the cavity was
calculated by integrating the local Nusselt number over the
length of the isothermal wall:

Nuc =

1∫

0

Nuc dY (24)

The radiative Nusselt number is defined as the ratio be-
tween the radiative heat flux at the hot wall and the heat flux
due to conduction only, then:

Nur =
qradiation

qconduction
=

qr(0, 0 < y ≤ L)
kaverage(TH − T∞) /L

(25)

The average radiative Nusselt number was obtained in-
tegrating the radiative Nusselt numbers over the isothermal
wall, by the following mathematical relationship

Nur =

1∫

0

Nur dY (26)

The total average Nusselt number (Nut) was calculated
by summing the average convective Nusselt number and the
average radiative Nusselt number.

3. Numerical procedure

The Eqs. (1)-(8) were numerically solved by means of the
finite-volume method [38]. The equations were discretized

FIGURE 1. Scheme of the physical model.

FIGURE 2. Streamlines contours for Ra=105. The continuous line
corresponds to variable properties and the dotted line to the Boussi-
nesq approach.
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TABLE I. Mesh independence study in the open cavity.

Mesh size NuC Nur NuT
Difference Difference Difference

(%) for NuC (%) for Nur (%) for NuT

40×40 13.29 13.94 27.23

5050 12.93 13.53 26.46 2.71 2.94 2.83

6060 12.72 13.15 25.87 1.62 2.81 2.23

70×70 12.66 13.07 25.73 0.47 0.61 0.54

TABLE II. Comparison of average Nusselt numbers reported in the literature forφ=0.033.

This work (variable properties) Hinojosa et al [25] (Boussinesq)

Ra Nuc Nur Nut Nuc Nur Nut

104 3.05 3.54 6.39 2.98 3.72 6.70

105 6.36 7.64 13.70 6.40 8.02 14.42

106 12.32 16.42 28.14 12.43 17.29 29.72

into a large number of uniform control volumes using a stag-
gered mesh. The position of the grid nodes was calculated
using a stretching function, in orderto place nodes near the
isothermal wall. The interpolation of the convective terms
was performed with the power-law scheme [41], whereas the
diffusive terms were interpolated with a centered-difference
scheme. The SIMPLEC algorithm [42] was used to couple
the continuity and momentum equations. The resulting sys-
tem of linear algebraic equations was solved with the modi-
fied strongly implicit procedure (MSIP) [43].

The grid independence study was conducted by setting
Ra=106 andϕ=0.333. Table I shows the corresponding aver-
age values of the Nusselt numbers obtained for the numerical
grids tested. In this study, independence of the numerical
results from the grid size was assumed when the difference
in the Nusselt numbers computed between two consecutive
grids was less than 1%. Based on the values reported in Ta-
ble I, a non-uniform grid of 70×70 nodes was selected

The verification of the present code was accomplished by
comparing the model predictions with previous calculations
reported in the literature [22]. Table II shows the compari-
son of the Nusselt numbers, where the governing equations
were solved considering temperature-dependent fluid prop-
erties and setting∆T=10 K. It is observed that the absolute
percentage difference for average convective Nusselt number
was between 0.6 % (Ra=105) and 2.3% (Ra=104), whereas
for average radiative Nusselt number was between 4.8 %

(Ra=104) and 5.0 % (Ra=106). Based on above results the
present numerical code was considered as verified.

4. Discussion of results

For the purpose of the present analysis, the Rayleigh number
(Ra) was varied in the range of 104 to 106, and the dimen-
sionless temperature differenceϕ was varied in the range of
0.033 to 0.333. The latter corresponds to dimensional tem-
perature difference∆T in the range of 10-100 K.

Figure 2 presents the computed flow patterns in the open
cavity and streamlines contours as function ofϕ for Ra=105.
Every graph reports the corresponding results with variable
properties (continuous line) and with the Boussinesq assump-
tion (dotted line). In general the fluid enters from the bottom
of the aperture, circulates clockwise direction following the
shape of the cavity driven by the buoyant force acting upon
the fluid, and leaves by the upper of the aperture. It can be
observed forϕ=0.033 andϕ=0.167, a good agreement be-
tween the streamlines contours with variable properties and
Boussinesq approximation. However the further increment
to ϕ=0.333 produces an appreciable deviation between both
results, in the streamlines located at the center of the cavity.

The influence of the Rayleigh number on the fluid flow
pattern is shown in Figure 3, forϕ=0.033 andϕ=0.333. The
streamline patterns are very similar for the three Rayleigh

TABLE III. Average Nusselt numbers on the hot wall of the open cavity computed with variable properties.

Ra=104 Ra=105 Ra=106

φ Nuc Nur Nut Nuc Nur Nut Nuc Nur Nut

0.033 3.05 3.54 6.39 6.36 7.64 13.7 12.32 16.42 28.1

0.167 3.12 2.58 5.70 6.49 5.70 12.1 12.56 12.17 24.7

0.333 3.19 2.82 6.01 6.81 6.20 13.0 12.66 13.07 25.7
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FIGURE 3. Streamlines contours for the different Rayleigh numbers. The continuous line corresponds to variable properties and the dotted
line to the Boussinesq approach.
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FIGURE 4. Profiles of the dimensionless vertical component of ve-
locity at Y=0.5.

FIGURE 5. Isoterm contours for Ra=105. The continuous line cor-
responds to variable properties and the dotted line to the Boussinesq
approach.
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FIGURE 6. Isotherms for the different Rayleigh numbers. The continuous line corresponds to variable properties and the dotted line to the
Boussinesq approach.
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numbers, but the fluid moves faster for Ra=106 as indicated
by the density of the streamlines due to the increase in the
buoyancy force. However the increasing of the Rayleigh
number causes that the upper boundary layer becomes thin-
ner and faster, the velocity of the airflow moving towards the
aperture increases, and the area occupied by the leaving hot
fluid decreases compared with the one of the entering fluid.
Furthermore a very good agreement between the streamlines
contours with variable properties and Boussinesq approxima-
tion is observed whenϕ=0.033 for Ra=104 and Ra=105, but
for ϕ=0.333 the differences between both results is notice-
able in the streamlines located in the center of the cavity for
all Rayleigh numbers.

The Fig. 4 presents a comparison of the velocity pro-
files of the Y-component of the velocity at the middle height
of the cavity (Y=0.5). When Ra=104, the absolute average
differences of profiles with variable properties and Boussi-
nesq approach, are between 1.71 % forϕ=0.033 and 9.78 %
for ϕ=0.333. However the absolute average differences of
profiles for Ra=105, are between 4.41 % forϕ=0.033 and
14.65% forϕ=0.333. Furthermore for Ra=106 the absolute
average differences between profiles are within 3.42 % for
ϕ = 0.033 and 30.4% forϕ = 0.333.

The Fig. 5 show the dimensionless isotherms for differ-
ent values ofϕ for Ra=105, with every graph reporting re-
sults with variable properties (continuous line) and with the
Boussinesq assumption (dotted line). In all cases, the bot-
tom wall is heated up due to radiation exchange and trans-
fers energy by conduction to the entering fluid. The fluid
moves towards the isothermal vertical wall and gains more
energy increasing its temperature and moving up. When it
reaches the upper adiabatic wall, it changes direction toward
the opening of the cavity forming a thermal stratification in
the upper part of the cavity, besides the outgoing fluid trans-
fer heat to the wall by conduction and its temperature de-
creases. On the other hand, by increasing the dimensionless
temperature difference, the thickness of the thermal bound-
ary layer on heated wall and the volume occupied by the cold
fluid decreases slightly. However forϕ=0.033 andϕ=0.167,
a good agreement between the temperature fields obtained
with variable properties and the Boussinesq is observed. The
subsequent increment ofϕ rises the difference between both
results.

The effect of the Rayleigh number on the temperature
field is displayed in the Fig. 6 forϕ=0.033 andϕ=0.333. It is
noted that by increasing the Rayleigh number, the thickness
of the thermal boundary layer next to the hot wall decreases,
and the volume occupied by the cold fluid inside the cavity in-
creases. For all considered Rayleigh numbers, whenϕ=0.033
the temperature fields obtained with variable properties and
Boussinesq approximation are very close, while forϕ=0.333
noticeable differences are observed.

The dimensionless temperature profiles in the middle
height of the cavity (Y=0.5) are shown in Fig. 7. For Ra=104,
the comparison with the Boussinesq profile indicates absolute
average differences between 0.89 % forϕ=0.033 and 8.41 %

FIGURE 7. Profiles of the dimensionless temperature at Y=0.5.

for ϕ=0.333. However when Ra=105 the absolute average
differences are between 8.57 % forϕ=0.033 and 20.27 % for
ϕ=0.333. The absolute average differences between profiles
when Ra=106, are within 13.82 % forϕ=0.033 and 30.7 %
for ϕ=0.333.
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TABLE IV. Average Nusselt numbers on the hot wall of the open cavity obtained with the Boussinesq approach.

Ra=104 Ra=105 Ra=106

φ Nuc Nur Nut Nuc Nur Nut Nuc Nur Nut

0.033 2.98 3.61 6.27 6.39 7.84 13.7 12.54 16.92 28.5

0.167 2.98 2.55 5.53 6.40 5.70 12.1 12.53 12.45 24.9

0.333 2.93 2.78 5.71 6.34 6.22 12.5 12.10 13.25 25.3

TABLE V. Percentage differences between the average Nusselt numbers obtained with variable properties and with the Boussinesq approach.

φ
Ra=104 Ra=105 Ra=106

Nuc Nur Nut Nuc Nur Nut Nuc Nur Nut

0.033 2.30 1.97 1.88 0.47 2.61 0.22 1.79 3.04 1.49

0.167 4.49 1.16 2.98 1.39 0.00 0.74 0.24 2.30 1.01

0.333 8.15 1.42 4.99 6.90 0.32 3.46 4.42 1.38 1.48

The Table III shows the average Nusselt numbers val-
ues considering variable properties. It is showed that with
variable properties the average Nusselt numbers increases
with both, Rayleigh number andϕ. However when the
Rayleigh number is varied from 104 to 106, the average con-
vective Nusselt number increases by 296.9 % forϕ=0.333
and 302.5 % forϕ=0.167, while the average radiative Nus-
selt number has increased between 363.5 % forϕ=0.333 and
371.7 % forϕ=0.167. On the other hand, whenϕ is var-
ied from 0.033 to 0.333 the differences (considering a fixed
Rayleigh number) for the average convective Nusselt number
are within 7.08 % for Ra=105 to 2.76 % for Ra=106, whereas
for the average radiative Nusselt are between 15.53 % for
Ra=105 and 17.38 % for Ra=106. Furthermore the total aver-
age Nusselt number in the cavity is increased by 328.1 % for
ϕ=0.333 and 333.8 % forϕ=0.167 as the Rayleigh number
is varied from 104 to 106. Likewise, the total average Nus-
selt number in the cavity reduced by 5.04 % for Ra=105 and
8.56 % for Ra=106 asϕ is varied from 0.033 to 0.333.

In order to compare, the average Nusselt numbers val-
ues considering the Boussinesq approximation are presented
in the Table IV. It can be observed that the Nusselt number
remains almost constant or decreases when Rayleigh num-
ber andϕ are incremented. The previous behavior is ex-
plained because the Boussinesq approximation does not take
into account the effect of temperature on thermal conductivity
near the isothermal wall. However when the Rayleigh num-
ber is varied from 104 to 106, the average convective Nus-
selt number increases by 313 % forϕ=0.333 and 320.8 %
for ϕ=0.033, while the average radiative Nusselt number has
increased between 368.7 % forϕ=0.033 and 388.2 % for
ϕ=0.167. Whereas whenϕ is varied from 0.033 to 0.333
the average convective Nusselt number reduces between 0.8
% for Ra=105 and 3.5 % for Ra=106, furthermore the aver-
age radiative Nusselt reduces within 20.7 % for Ra=105 and
23.0 % for Ra=104. On the other hand the total average Nus-
selt number in the cavity was found to increase by 344.0 %

for ϕ=0.333 and 355.5 % forϕ=0.033 as the Rayleigh num-
ber is varied from 104 to 106. Likewise, the total average
Nusselt number in the cavity reduced by 8.5 % for Ra=105

and 11.2 % forRa=106 asϕ was varied from 0.033 to 0.333.
On the other hand, the percentage differences between

the Nusselt numbers obtained with variable properties and
the values with Boussinesq approach are reported in Table V.
The results indicates that for the average convective Nus-
selt number the differences are between 0.24 % (Ra=106

andϕ=0.167) and 8.15 % (Ra=104 andϕ=0.333). Further-
more when comparing the average radiative Nusselt numbers,
the differences are between 0 % (Ra=105 andϕ=0.033) and
2.30 % (Ra=106 andϕ=0.167). Therefore the variable prop-
erties do not affect the radiative exchange in the cavity. Fi-
nally the deviations obtained with the Boussinesq approach
for the total Nusselt number are within 0.22 % (Ra=105 and
ϕ=0.033) and 5 % (Ra=104 andϕ=0.333).

5. Conclusions

In this paper numerical are compared the numerical calcula-
tions of the natural convection and surface thermal radiation,
in a square open cavity considering variable fluid properties
and Boussinesq approach. From the results we can conclude
the following:

The consistency of the flow pattern and temperature field
obtained considering variable properties and Boussinesq ap-
proximation is good forφ=0.033 andφ=0.167. However for
larger temperature difference the variation is significantly.

Whenϕ=0.033 the average differences between Boussi-
nesq and variable properties for profiles of Y-velocity, are be-
tween 1.71 % for Ra=104 and 4.41 % for Ra=105. However
for ϕ=0.333 the average differences are within 9.78 % for
Ra=104 and 30.4 % for Ra=106.

The comparison of dimensionless temperature profiles
with Boussinesq and variable properties, shows that the dif-
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ferences are between 0.89 % for Ra=104 and 13.82 % for
Ra=106 when ϕ=0.033; whereas forϕ=0.333 the average
differences are within 8.41 % for Ra=104 and 30.7 % for
Ra=106.

For total Nusselt numbers, the results with Boussinesq
approach and variable properties, indicates deviations within
0.22 % (Ra=105 and ϕ=0.033) and 5 % (Ra=104 and
ϕ=0.333).

Nomenclature

Cp specific heat capacity, J/kg·K
g gravitational acceleration, m/s2

J radiosity, W/m2

k thermal conductivity, W/m-K

L lenght of the cavity, m

Nu local Nusselt number

Nu average Nusselt number

P pressure, N/m2

Pr Prandtl number

qr net radiative heat flux, W/m2

R ideal gas constant for air, J/kg·K
Ra Rayleigh number

T absolute temeprature, K

TH isothermal wall temperature, K

T∞ ambient temperature, K

Uo reference velocity, m/s

U,V dimensionless velocity components

u,v velocity components, m/s

X,Y dimensionless coordinates

x,y coordinates system, m

Greek symbols

α thermal diffusivity, m2/s

β thermal expansion coefficient, 1/K

ϕ dimensionless temperature difference

µ dynamic viscosity, Pa·s
θ dimensionless temperature

ρ density, kg/m3

σ Stefan-Boltzmann constant, W/m2K

1. P. Le Quere, J.A. Humphrey, and F.S. Sherman,Numerical
Heat Transfer4 (1981) 249-283.

2. F. Penot,Numerical Heat Transfer5 (1982) 421-437.

3. J.A. Humphrey, and W.M. To,Free and mixed convection in a
heated cavity, International Journal of Heat and Mass Transfer
29 (1986) 593-610.

4. D. Angirasa, J.G. Eggels, and F.T. Nieuwstadt,Numerical Heat
Transfer Part A28 (1995) 755-768.

5. S.K.S. Boetcher and E. M. Sparrow,International Journal of
Heat and Mass Transfer52 (2009) 3850-3856.

6. J. F. Hinojosa, and J. Cervantes de Gortari,Heat and Mass
Transfer46 (2010) 595-606.

7. Y.L. Chan, and C.L. Tien,Numerical Heat Transfer8 (1985)
65-80.

8. Y.L. Chan, and C.L. Tien,International Journal of Heat and
Mass Transfer28 (1985) 603-612,
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