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Dirac comb with a periodic mass jump

J.J. Alvarez
E.U. de Inforndtica de Segovia,
University of Valladolid, Spain.
jjalvarez@infor.uva.es

M. Gadella
Departamento de Bica Térica, Atbmica y Optica, Universidad de Valladolid,
Facultad de Ciencias, Paseo Bel9, 47011, Valladolid, Spain.
e-mail: manuelgadellal@gmail.com

L.M. Nieto
Fisica Térica, Atbmica y Optica, Universidad de Valladolid, Facultad de Ciencias,
Paseo Betn 9, 47011, Valladolid, Spain.
e-mail: luismi@metodos.fam.cie.uva.es

Received 3 June 2013; accepted 26 July 2013

We discuss some of the properties of the spectrum of a Dirac comb with periodic mass discontinuity. Based on the relationship between the
two different masses, we derive the general behavior of the spectra for bothFeas@sand E < 0. The relationship with the constant mass
model for the Dirac comb and the generalization to periodic quantum chainswlifferent masses are also discussed.

Keywords: Delta interactions; mass jumps; periodic potentials; energy band structures.

Se discuten algunas de las propiedades del espectro del peine de Dirac con una discontinaiiad peria masa. Deducimos el compor-
tamiento general del espectro para los cdsas 0 andE < 0, basandonos en la relam entre las diferentes masas. Taembse discute la
correspondencia entre nuestros resultados y los obtenidos para el peine de Dirac con masa constentelaageneralizadh a cadenas
peribdicas com masas diferentes.

Descriptores:Interacciones tipo delta; saltos de masa; potencialedgieds; estructuras de bandas de efserg

PACS: 03.65.-w; 03.65.Ge

1. Introduction with 2o + 3 = —1 andm(z) is an arbitrary function given

, _ L o _ the mass in terms of the position. Consequemntl) in (1)
One dimensional Hamiltonians with singular potentials haveshould be represented as an operator which in general does
recently received a lot of attention as they provide examplegot commute with the momentumas is a function of the
of exactly solvable models [1-6]. Independently, system§sariables. In this paper, we shall use some particular form
with variable mass have lately acquired some attention in thgs m(x) as well as a particular choice aof and 3. This is

literature [7-9]. The simplest one dimensional systems withhe purely kinetic term of the Hamiltonian. The total Hamil-
variable mass are those in which the mass is constant excegfnjan is of the formd = H, + V, whereV is a singular

for a discontinuity or jump at a given point. This kind of potential, the Dirac comb that will be defined in precise terms
abrupt discontinuity is interesting from the physicist point of |5ter.

view since it can be used to represent an abrupt heterojunc- This paper is organized as follows: in Sec. 2, we summa-

t|on| betz;ween tvvotdlfferenlt materlfllz [71. di . | rize the results in the case of one delta barrier and one mass
n the present example, we sftudy a one |’men5|ona'syﬁamp. The case of Dirac’s comb with periodic mass jumps
tem with an interaction in the form of Dirac's comb with

is discussed in Section lll, along some ideas concerning gen-

two alternating dlffer_ent MAasses. At the points SuPpor_t'ngeralizations to periodic systems with more different masses.
the deltas the mass is discontinuous and undergoes a Jump, o o rticle is closed with some concluding remarks.
it is constant at any other point. The purpose of this article

is to discuss the spectral phenomena produced by this kind
of periodic systems, an analysis inspired on the study of the ] ) )
Kronig-Penney model. 2. One Dirac delta with a mass jump atr = a
Here, the Hamiltonian for the system under our consider-
ation can be splitted in the sum of two terms: an unperturbed he simplest system of the type discussed in the Introduction
HamiltonianH, plus a singular potential. In its most general includes one delta barrier supported at the poirt a > 0
form, Hy can be written as plus a mass jump at the same point. As was stated in
1 the Introduction, situations with variable mass simulate non-
Ho = 5 m® () pm” (z) pm®(z) , (1) homogeneous media and, in particular, a mass jump mimics
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a sudden change in the media. Here, the idea is to combirtee Sobolev spac#/ (R/{0}) [13] and fulfill the following
the mass discontinuity with a delta interaction. This systemmatching conditions at = o [11]:

which has been already introduced in Ref. 10, is essential
for any further generalization. In addition, its inclusion here plat) pla—)
makes the present article self contained. Then, let us first con- < , ) =T < ) )
sider the HamiltoniarH, as in (1) with a mass jump at the ¢'(at)

pointa > 0. Thus, it seems natural to choose the function Ofwherecp(aJr) and(a—) are the boundary values at= a
the mass in terms of the positian(z) to be: of the functiony € D(H) to the right and to the left respec-

(6)
¢'(a—)

my if r<a tively. The2 x 2 matrix 7 gives the matching conditions at
m(x) = { ) . (2) x = aandthe prime denotes derivative with respect
m2 if r>a As was proven in a previous article [11], boundary condi-

tions given by7 define a domain for whicl#/ is self adjoint

We have seen that the kinetic tet#fy in (1) depends on if and only if [14]

the parametet (note than if we determine, § is automati-
cally determined). Among all possible choices,= 0 and

— gt
B = —1 is the most natural and, in addition, it has been My =T'MT, ™
proven to be Galilei invariant [8]. In Ref. 11 we have proven h
that a domain of self adjointness féf, can be provided by where,
the space of square integrable functief(s:) continuous at 72 0 1
z = a and with the following matching conditions for the M =5 ( 10 ) , i=1,2 (8)
first derivative: !
1, 1, The matching conditions that determine the Hamiltonian
g ¥ (et) = - ¥a=) = 0. G Hin(s)are[11]
In this case, the kinetic terti, can be written as [11]: ¥(a—) = P(a+) = ¥(a),
n? d?
T 5. 1.9 r<a, 1 1 2\
2my dx? ) b (g—) = 22
Hy = h21 g (4) mgw (a+) m11/1 (a=) = 73 ¥(a), 9)
o T3 T >a. _ . o
2my da? which is a simple generalization of (3). Note that the wave

functions on this domain are continuous. The discontinuity
in the derivative is the minimal generalization of the discon-
tinuity defining the delta potential allowing for a mass jump.
In this particular situation, matri¥ as in (6) is given by

A thoroughly discussion of the self adjoint versions of (4)
is given in Ref. 12. Another possibility is introduced in
Ref. 10. Also, a discussion on the self adjointhesggf
with mass jump and arbitrary values @fcan be carried out
analogously. However, this is not the relevant discussion in

here, where we have in addition to the mass jump, a Dirac T_ 1 0 (10)
delta at the same point = «a, so that the total Hamiltonian 2ma)  ma ’
becomes g m
H=Hy+)(z—a), a>0 ©) Thus far the discussion on the construction of the Hamil-
- 0 - ) .

tonianH in (5).
As done withH, in Ref. 12, a self adjoint version of (5)
should be constructed using the von Neumann formalism oé The Di b with .

self adjoint extensions of symmetric operators with equal de* € Dirac comb with mass Jumps

f|q|ency indices [1,2]. We shall present a brief discussion OfNow, we investigate the Dirac comb with mass jumps at the
this in the next subsection.

points supporting the deltas. As is well known, the one di-
mensional Dirac comb is a one dimensional Hamiltonian of
the formH = —h?/(2m) d?/dx? + V (x), whereV (z) is a
singular potential given by

2.1. Self adjoint determination of H through matching
conditions

According to the theory of self adjoint extensions of symmet- ~

ric operators, in orde_r to define fche total Hamilto_nian giv_en in Viz) = Z ~(z — na). (11)
(5), we need to specify a domaiP( H) for H. This domain

is a subspace of the space of square integrable functions ful-
filling certain conditions plus given matching conditions atIf the constant mass in the kinetic term of the Hamiltonian
x = a. Thus the functions in the domain &f belong to is replaced by a function of the position(z), we have to

n=—oo
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determine this function first. The simplest possible choice is 10| 1\ I s /\ S
the following: [ L= 0 [ /o
08| | \ A7 [ [\ [
" s // \\ // \\ // \\ // \\
...... | /
oV o \ | \ f \
my if 0<z<a 0.6 /‘/ r \ / \‘\ | \\\ | | \\\
’ | - - \ ‘
mo if a<x<2a - / / \ /’ \ '! \ | \‘ / \
— X i | | | ‘ | \
mE) =, it 2a<z<3a 12 [ | | \ | \ \
I | | | | | \
ma if da <z <4a 0.2 /;’ \ / \ / \/ \\ / ‘
...... , \ \ | \ \
| | ! | .y
2 4 6 8 10 12 14

Now, the situation is the following: at each point of the ] ) )
infinite sequencea with n € Z, whereZ is the set of the FIGURE 1. Dirac comb with constant mass and= 2. Repulsive
entire numbers, we have a Dirac delta, either attractive or re=>>¢
pulsive, plus a mass jump. The function giving the mass in
terms of the position is the simplest possible compatible with 1 4
the existence of a mass jump at each point supporting a delta /
This implies that the only possible values of the mass are just™ /
two: m; andms. F, 5553

In order to define the Hamiltonia@ = H, + V(z), s e /
we follow the procedure suggested in the previous section.
Then, we shall determine matching conditions at the points0.6 /
r, = na, n € Z. These matching conditions will be given  , /
by the following relations on the wave functiotigx): /

02 /
( Ynt1(na) ) ( Yn(na) ) k
= T,(na) , (13 0.5 10 15 20 25 30

! 1(na ' (na

w1 (1) ¥n(na) FIGURE 2. Diracs comb with constant mass afid= 2. Atractive
were v, (z) represents the functiogh(x), solution of the  case.
Schibdinger equation, on the intenjéh—1)a, na]. Note that

2) = A ethnT 4 B e~iknt \wherek, = r/2m, E /T2 This infinite chain of deltas with mass jumps described so
Yn(@) = An " " wE/ far can be represented in terms of a one dimensional Bravais
3.1. Determination of the spectrum lattice as follows:

Once we have established the matching conditions for the
above situation (11), we would like to obtain its spectrum.

The band structure of the spectrum of the Dirac comb is well
known [15] and it is depicted in Figs. 1 and 2, where the

energy band structure is given by:

| cos ka + b sinka |< 1. (14) Here the black circles represent the regions withand
k the white circles the regions withh,. Between them, we

Thus far, we have not distinguished between a comb witlraw linking lines representing the matching conditions be-
repulsive ¢ > 0) or attractive § < 0) deltas. In the case of tween two regions. This one dimensional lattice has a peri-
repulsive deltas, the expression (14) can be written as odicity 2a.

1 If we allocate one black circle at the origin of coordinates
[ — (15)  and we apply the Bloch theorem, we obtain three wave func-
W14+ %2 tions that are the minimal set of solutions of the Sclinger

equation that solve the Bravais lattice:

| cos(ka — a) |<

with tan o = v/k. ‘ ‘
When all deltas are attractive < 0 andE < 0), there is Vr(xz) = A e + Bie e 0<z<a

only one permitted energy band, which is given b . .

y P 9y g y Vrr(x) = Ap %% 4 Bye ¥k 4 <z < 2a
Yo,

| cosh ka — % sinhka |< 1. (16) b)) = (A eih=20) L B efik(:572a))eiK2a’

This is is shown in Fig. 2. 2a <x < 3a. a7)
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Then, applying the matching conditions given by (9) to this set of solutions we get a homogeneous linear system in the variables
Ay, As, By, Bs, whose coefficients are given by the following matrix:

eika efika _efifka _eigka
—ie’® (k—2im~) ie "R (k42imy)  _jeikEag iethea
iK2 K2 2ik 2ik ’ (18)
etK2a et 2a e 2 Ea _e2t fa
K20 (it omey) K20 (i} 1 omn) je—2ikgap, _je2ikéay
m m mé mé
where 1
ma 2
2:77 =, m = m k:kl (19)
my k1

The constanf appears as a consequence of the Bloch
theorem. In fact, the Bloch theorem states that our wave funé-
tions must satisfy the relatiop(z + 2a) = pv(x), where
|| = 1. Then, the relatiop = e?2¢K definesk. - —

In order to obtain a nontrivial solution of the above sys- | =
tem (17), the determinant of (18) must be zero. If we impose
this condition and after some algebra, we arrive to the follow-
ing condition:

0.5

1 = = w:»ﬂz.inzw» — —
cos K2a = M(ng cos ka(k coska . 00 Y
+ 2mry€ sinka) — sin ka(—4km~€ cos Eka
9 9.9 5 9 FIGURE 4. 3D plot of the energy bands fgr= 1 to £ = 3 with
+ (=4m " + k7 (1 + £7))sinéka)) . (20) - = 2. Atractive case.

In (20) the periodicity is expressed in terms of the energy and  In the attractive case with constant mass, Fig. 2, we have
all the other parameters. As a consequence, we shall obtaincaly one band. It is noteworthy to remark that, in the mass
band spectrum for both the attractive € 0) and the repul-  jumps case, the longer §& = my/m;, i.e., the bigger is the

sive (y > 0) cases. ratio between masses, the narrower is the energy band width.
Our results show that the dependency¢ds rather com-  This effect is shown in Figs. 5 and 6, where we depict the
plicated as is shown in Figs. 3 and 4. band for the value§ = 1.5 in Fig. 5 and¢ = 2.5 in Fig. 6.

In the repulsive case (Fig. 3), we can observe that thdn both cases, the width is shown by the distance between the

band structure including the mass jumps does not differdW0 blue lines measured over theaxis. This can be com-

much from the band structure that appears in the constaf@réd to the energy band width for the equal masses case,
mass case. See Fig. 1. ¢ = 1. This latter case has been already studied by Cérver

and coworkers [16].

12 '
10F-—-~-=

0.8 RN

0.6 N

04

0.0 0.5 10 1.5 2.0 25 3 Ok

FIGURE 3. 3D plot of the energy bands fgr= 1 to £ = 3 with FIGURE 5. Energy bands for the attractive case with= 2,
~v = 2. Repulsive case. £E=1.5.

Rev. Mex. Fis59(2013) 606-612



|
Jo
V \‘ ‘/V k

30

FIGURE 8. Energy bands for the repulsive case and the strong cou-
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we observe, in the cage > +, the same band structure as
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FIGURE 6. Energy bands for the attractive case with= 2,

&=125. pling limit, y,—3 =

3.2. Limit cases for¢

In this section we will study the limits for the “strong cou-

observed for equal masses, which is shown in Fig. 1.

pling” (my >> ms) and “weak coupling”{:; ~ ms). Here,
we usea = 1 andm = m; = 1 for simplicity. In the first
case, the limit ot — 0 on the Eq. (20) gives:

1
| cos(k — ) |<

~ that minimize condition (21).

1 (5 -3

with tan o« = (2v/k) — (k/2). The behavior of (21) is shown

in Figs. 7 and 8. It is clear that the band width goes to zero
if we start at the poink,, = 2,/7 and we take both limits

k — 0 andk — +oo. At this starting point, the equation on
the right term in (21) gets its maximum. We observe a pertur- 9 ¢
bation on the permitted energy band closest to the pgint
which doubles this band. This effect depends on the paramey, ,
ter~. This splitting is periodic iny and occurs at the values
v = n?(w?/4), with n € N. This comes from the values of

In the weak coupling caser; ~ ms):

72 2
’(1 (k) )cost:—i— 2 sin 2k

08 | | “
061 | ‘f‘ T A (O
oall 11 N | |

- /| 1 || |

02} / |

Yy +2) < k2

For low energies, the condition:

(23)

is easily derived. In this case, it appears one permitted energy

(21)

)

1.0

0.8

02

0.0

band only, which gets narrower agrows, up to saturate the
inequality (23). This is depicted in Figs. 9 and 10.

k

0 1

2.

3 4 5 6 7

7\ 2
+ (;) ’ <1 (22 FIGURE 9. Energy bands for the repulsive case for the weak cou-

pling. v = 2.

10

0.8

| | “ 0.6

04

02

0.0

0.0 02

04

Tk

0.6 0.8

FIGURE 7. Energy baznds for the repulsive case and the strong cou-Figure 10. Energy bands for the repulsive case for the weak cou-

T

pling limit, v,=1 = 7.

pling. v = 0.01.
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4. Concluding remarks ~ > 0, the mass jump does not add any new effect and a band

] . ] ) structure appears similar to the usual band structure shown
We derive the spectrum of a Dirac comb with a jump of massy, the case of constant massesn Ik 0, i.e., all deltas are

chated at the points SL_Jpporting the deltas. We analyze thgiiractive, the band width goes to zero as the ratio between
simplest problem in which the mass has two values only. Innasses goes to infinite.

addition, all the deltas are multiplied by the same coefficient |1 is clear that our model is equivalent to a one dimen-
v which is either positive or negative. The result is a periodicgjonal Bravais lattice.
potential which can be analyzed with the help of the Bloch 11 limiting cases “strong coupling’z, > ms) and

theorem. _ _ _ “weak coupling” (n; ~ m2) have been studied. Meanwhile
We may be tempted to generalize this model with thegor \weak coupling reappears the band structure shown for

introduction on more different massess, m., ..., Ma.  equal masses, new interesting effects emerge for strong cou-
However, this generalization does not give us anything ne ling

as it provides the same one dimensional Bravais lattice and Is

therefore equivalent to the situation here considered. More-

over, the introduction of more masses has the undesirable eAcknowledgements
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