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This paper presents results of a time-resolved transillumination imaging method using temporal extrapolation. The temporal extrapolation is
performed with the cumulant expansion solution to the transport equation. The results obtained are compared to results of the same method
but using the diffusion approximation solution. It is found that the results are consistent but that the cumulant expansion method gives better
resolution, by a factor of approximately 3, for the imaging process, because it gives a better estimation of the photon contribution for shorter
integration times.
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Este art́ıculo presenta resultados de un método para la formación de iḿagenes resueltas temporalmente mediante la transmisión de luz usando
una extrapolación temporal. La extrapolación temporal se realiza mediante la solución a la ecuación de transporte mediante la expansión en
cumulantes. Los resultados obtenidos se comparan con los resultados del mismo método pero usando la solución mediante la aproximación
de difusíon. Se encuentra que los resultados son consistentes pero la el método usando la expansión en cumulantes da mejor resolución, en
un factor de aproximadamente 3, para el proceso de formación de iḿagenes, esto debido a que da una mejor estimación de la contribucíon
de los fotones con tiempos de integración menores.

Descriptores: Formacíon de iḿagenes resueltas temporalmente; formación de iḿagenes mediante láser;óptica de tejidos.

PACS: 87.63.lp; 87.63.lt; 87.64.Cc

1. Introduction

The study of the propagation of light in highly scattering
media has many applications, particularly in the medical
area [1,2], imaging of biological models [3] and character-
ization of materials [4]. In particular the technique of diffuse
optical tomography (DOT) has been implemented in differ-
ent configurations to study the structure of tissue [5-7]. To
overcome the limitations of multiple light scattering inside
tissue, DOT uses many source and detector positions to ob-
tain experimental scattered light intensities and an inversion
algorithm, typically using the diffusion approximation, to re-
construct the structure inside the sample from these measured
boundary intensities. The spatial resolution of these methods
is limited to about 4 mm at best [1,8,9]. This leads, in many
cases, to the use of other imaging techniques, such as CT or
MRI, simultaneously with the optical technique to provide
high resolution images of the tissue structure [7]. In this pa-
per we present an optical method which can be used to give
complementary higher resolution information to improve a
DOT image.

When illuminating a scattering sample with a pulse of
light, intuitively, the light that emerges first from the sample
has travelled the most direct path from the source to the de-
tector and so can be used to form a shadow image. Different
methods have been used to separate the directly-transmitted
first-arrival-time photons from the remainder of the transmit-
ted pulse. Kerr shutters [10], Raman amplifiers [11], and

photorefractive techniques [12] are just some of the methods
developed, as well as fast detectors [13-17] to separate the
first few picoseconds of the transmitted pulse from the longer
path-length photons. Using these methods the best resolution
for an absorbing object in the centre of 50 mm of a tissue-like
sample has been found to be approximately 10 mm [18].

Hebden and co-workers [18,19] showed that by fitting
the detected experimental transmitted pulse to a theoretical
curve, and then using the fitted curve, which has no experi-
mental noise, to separate the first-arriving photons from the
transmitted signal, the resolution for detection of absorbing
objects at the centre of a 50 mm tissue-like sample could
be improved to approximately 5 mm. In that work the dif-
fusion approximation solution to the transport equation [20]
was used as the fitting function and the authors reported that
the same results were obtained by using the random walk so-
lution [21]. It has also been shown that the inhomogeneities
presents in tissue can cause very large variations in the early
arriving light intensity meaning that the application of this
type of method in medical applications is limited [22], how-
ever, the method of fitting a theoretical function to the de-
tected pulse uses the light over a wide range of arrival times
to extrapolate to the early photons, and should be less sensi-
tive to this type of effect.

Cai and co-workers [23-27], in a series of papers, pre-
sented an alternative solution to the transport equation us-
ing the cumulant expansion method. They showed that their
method gives improved results for short propagation times. It
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is important to point out that this method is valid for a homo-
geneous sample, and so suffers from the same limitations as
the methods used by Hebdenet al [18,19], and in fact it is not
obvious if the cumulant expansion method should give bet-
ter results when used in the temporal extrapolation method.
However, as will be shown below, this method does improve
on the results presented by Hebdenet al [18,19].

In the following section, the equations used for the fitting
process, both for the cumulant expansion method, and the
diffusion approximation method (as a comparison) are pre-
sented, the experimental set-up is described in Sec. 3, and
the results are presented in Sec. 4. We give our conclusions
in Sec. 5.

2. Theory

The diffusion approximation equation used to fit the exper-
imental data of the transmitted intensity,I (t, d), for a slab
geometry as a function of timet and sample widthd, on-
axis, is the same as that used by Hebdenet al [18,19], and is
the equation derived by Pattersonet al [20], given by Eq. (1):

I (t, d) = A
1

(4Dcπ)3/2

1
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whereA is an arbitrary intensity factor,D is the diffusion
coefficient given byD = (1/3) (µa + µ′s)

−1, c is the speed
of light in the sample medium,µa is the absorption coeffi-
cient, µ′s is the transport scatter coefficient given byµ′s =
µs (1− g) with µs the scatter coefficient andg the mean co-
sine of the scatter distribution (the average cosine of the scat-
tering angle) of one scatter particle of the model sample, and
z0 is the reciprocal of the transport scattering coefficient. The
parameterd is the width of the sample andt0 is the parameter
indicating the arrival time of the incident pulse on the sample.

The equivalent equation for the cumulant expansion
method as derived by Caiet al is [23-27]

I(r, s, t) = A

[
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− 3
4π

D(t− t0) s · ∇rN(r, t)

]
(2)

whereI (r, s, t) is the photon distribution function depending
on positionr, directions, and timet, with:
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N (0)(r, t|r0, s0) =
1
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× exp
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whereN (0) (r, t|r0, s0) is the photon density for a point pulse
propagating alongs0 at positionr0 = (x0, y0, z0) and time
t0; which uses the transport mean free pathlt and the rela-
tions

gl = c µs

(
1− al

2l + 1

)
(6)

P (s, s′) =
1
4π

∑

l

alPl (s, s′) (7)

which is an expansion of the scattering phase function (which
describes the fraction of light energy incident on a scattering
particle from thes′ direction that gets scattered into thes di-
rection) in Legendre functions, and,

∆(t− t0) =
c {1− exp [−g1 (t− t0)]}

g1
(8)
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where ∆(t− t0) is the average center of photons, which
moves with speedc initially and stops atc/g1 = lt in the
long time limit [24], andD(t− t0) is the time-dependent dif-
fusion coefficient. A full definition of these quantities can be
found on Ref. 23. The equations for the cumulant expan-
sion method were programmed in C using algorithms from
the book “Numerical Recipes in C” [28] to verify that the
calculation was correct. The results were compared to results
published previously by Hebden and Delpy [19], for param-
etersµs = 9.07 mm−1, g = 0.916, µa = 0.011 mm−1,
c = 0.225 mm ps−1 andd = 51 mm. Figure 1 shows the re-
sults of the cumulant expansion method for this case, which
can be compared to Fig. 3 of Hebden and Delpy [19], to see
the very good agreement between the results of the cumulant
approximation with the experimental results of [19]. It is im-
portant to note that the cumulant expansion result is obtained
using the experimentally measured values given above; there
is no fit of the equation to the experimental data in this case.

The diffusion approximation, Eq. (1), was programmed
in the commercial program Origin and the non-linear fitting
algorithm in Origin was used to fit the experimental data for
these cases. For the cumulant expansion method, Eqs. (2) -
(9), a fitting program was written in C using the Levenberg-
Marquardt method [28], due to the complexity of the equa-
tions involved, and was tested by generating a pulse with the
cumulant expansion method, then using the fitting program
to recover the original parameters used in the simulation. It
was found that the values of the original parameters could be
recovered with an error of less than 1%.

3. Experiment and Procedure

Figure 2 shows a schematic diagram of the experimental
set-up. A Titanium-Sapphire laser (Coherent MIRA 900)
pumped by an Argon ion laser (Coherent INNOVA 300) pro-
duces near bandwidth limited 200 fs pulses at 76 MHz rep-
etition rate centered at 810 nm. The pulse width was mea-
sured by a second-order intensity autocorrelator and is much
less than the temporal resolution of the streak camera (Hama-
matsu Streakscope C10627) (about 42 ps sampling at the
temporal range used). The pulses are divided by a beam split-
ter to generate a trigger signal (through a Hamamatsu Delay
Unit C1097) and an incidence pulse on the sample. The in-
tensity of the incidence pulse is controlled by filters to avoid
saturating the streak camera. The incident beam is aligned
with the centre of the streak camera entrance slit. The sam-
ple contains an absorbing mask (a black painted aluminium
sheet) and the whole sample can be scanned across the beam
(see Fig. 3).

FIGURE 1.Result of calculation with the cumulant expansion
method for a sample with parametersµs = 9.07 mm−1, g =
0.916, µa = 0.011 mm−1, c = 0.225 mm−1 andd = 51 mm,
as reported by Hebden and Delpy [19].

FIGURE 2. The experimental setup.

The signal is detected and stored as a function of sample
position. At each scan position of the mask the detected sig-
nal is averaged over 20 pixels of the streak camera output,
which corresponds to an average over 125µm, to reduce the
noise in the pulse, and the fitting and further analysis of the
data is performed on this averaged pulse. Samples of whole
milk and diluted milk [29,30] were used in the results pre-
sented here.

Figure 4 shows a typical experimental curve obtained
for one position of the mask. As reported by Hebdenet
al [18,19], to obtain a reasonable (in terms of theχ2 pa-
rameter or the correlation parameter) fit it was necessary to
use only part of the pulse to fit the theoretical equation. De-
pending on the parameters of the sample under test, for the
cumulant expansion method and the diffusion method, fits of
the pulse over a range of between 4 ns and 1 ns were used.
The baseline (dark signal) values were removed before all the
fitting processes were performed. In the fitting processes the
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FIGURE 3. The sample and the mask are scanned together to cut
the direct beam reaching the detector. The dotted rectangle corre-
sponds to the motorized stage.

FIGURE 4. The result of fitting the cumulant expansion method to
the experimental data. The graph shows an example of the fit for
the case of whole milk.

parameterd (the sample width) was fixed to 50 mm,c (the
speed of light in the sample medium) was set to correspond
to a refractive index of 1.4, the parameterg was fixed at 0.9,
and the value oft0 was fixed from an experiment detecting
the arrival time of the pulse without the sample and then cor-
recting for the time of propagation through the sample to find
the arrival time of the pulse on the front face of the sam-
ple, these values weret0 = 3.33 ns for the diluted milk, and
t0 = 5.33 ns for the whole milk. The parameters adjusted in
the fitting process are:µs, µa, andA. An example of the fit
for a 50 mm wide sample of whole milk for a single position
of the mask is shown in Fig. 4. In this case the fit was over a
range of 4 ns, and the theoretical equation with the fit param-
eters was extended over a wider range to cover the part of the
pulse where the experimental noise dominates.

FIGURE 5. a) The cumulative intensity (shown in grey) of the ex-
tended fitted pulse (crosses) for a maximum integration time ofτ ;
b) an example of the cumulative intensity function for one position
of the mask.

The cumulative intensity,Ic(τ), of the extended fitted
pulse, shown in the top graph of Fig. 5, is then calculated as
a function of the upper limit,τ , of the time integral [18,19]

Ic(τ) =

τ∫

t0

I (t) dt (10)

This equation gives the intensity as a function of integra-
tion time, as shown in the bottom graph of Fig. 5. For a
non-fluorescent and non-phosphorescent media the integra-
tion over the full duration of the transmitted pulse would give
the same result as using a CW laser, and as the integration
time τ decreases, shorter path lengths are considered and the
resolution should improve. This operation is performed for
all of the positions of the scan of the sample and mask across
the incident beam, and the image of the edge as a function of
τ is constructed (Fig. 6). Note that the bottom graph of Fig. 5
is a horizontal line in Fig. 6.
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FIGURE 6. Graph of the value ofIc(τ) as a function of mask posi-
tion.

Then, for each integration timeτ , the image of the edge of
the mask (a vertical cut of Fig. 6) is fit to the Bentzen [31]
equation for the image of an edge assuming a Gaussian point
spread function,i.e. the edge spread function, given by

E(y − y0) =
C1

2
+

C1

2
erf

(
y − y0

σ
√

2

)
+ C2 (11)

whereC1 and C2 are fitting constants, erf() is the error
function,y − y0 is the edge position andσ is a measure of
the width of the region of the image where the intensity is
changing. The parameterσ can also be related to the reso-
lution of the imaging process, and the resolution is given by:
R = 2.93σ, using the criterion used by Hebdenet al [18,19],
of 10% of the maximum MTF value.

4. Results

Figures 7 and 8 show the results of the resolution values ob-
tained for two different samples; 50 mm wide samples of
whole milk and diluted milk (33% milk, 67% water), respec-
tively.

FIGURE 7. The value of the resolution limit as a function of inte-
gration time for whole milk.

FIGURE 8. The value of the resolution limit for diluted milk (33%
milk, 67% water).

The fitted values for the samples with no mask were,
for the whole milkµa = 0.0026 ± 0.0001 mm−1 and
µ′s = 3.5417 ± 0.0004 mm−1; and for the diluted milk
µa = 0.0009 ± 0.0001 mm−1 and µ′s = 1.0639 ±
0.0001 mm−1. It should be noted that, for the diluted milk,
the value ofµ′s is a typical value for tissue and is close to the
value used by Hebden et al [18,19], whereas the value ofµa

is a factor of 10 lower than tissue and the value used by them.
However, comparing the resolution values obtained with the
diffusion method by Hebdenet al [18,19], with the values
reported here for the same method, the results are consistent
(4.8±2.5 mm compared to7.5±2.5 mm). From the figures it
can be seen that, while the resolution values are very similar
for the fit of the diffusion equation and the cumulant expan-
sion results, the latter method allows results to be obtained
for smaller integration times, thus improving the resolution
obtained by a factor of approximately 3 (7.5 ± 2.5 mm for
the diffusion method compared to2.01± 2.58 mm).

Figure 9 shows the edge spread functions for values of
τ near the limiting values for cases of fits to the cumulant
method and to the diffusion method. Note that for similar
values ofτ the two methods give very different values of the
intensity (the y-axes in these graphs), with the diffusion fit
values being more than an order of magnitude smaller than
the cumulant fit values. The fits to the theoretical edge spread
function, Eq. (11), are also shown, except for the case of the
diffusion fit for τ = 3800 ps (Fig. 9(e)) where, because of
the poor contrast, the noise and the increase of the intensity
to the right of the apparent edge position, the result of the fit
of Eq. (11) depends on the initial values of the parameters in
the fitting algorithm. This means that the results of the fit are
not reliable and cannot be reported. In fact, in some cases the
value ofσ obtained when fitting Eq. (11) to this case turned
out to be negative. This case can be compared to the cumu-
lant fit case (Fig. 9(b)) which is for a smaller integration time
τ = 3766 ps but still gives a stable and repeatable value for
the fit to Eq. (11).
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FIGURE 9. The edge spread functions for diluted milk obtained from the reconstructed pulses using a fit of the cumulant expansion method
(a) and (b), and the diffusion approximation method (c), (d) and (e). The lines with the open circles are the edge spread function from the
fitting methods, and the dark lines are the fits to Eq. (10).
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5. Conclusions

In this paper we have shown an improvement in the temporal-
extrapolation method for the detection and formation of im-
ages of absorbing objects inside scattering media. The im-
provement of approximately a factor of 3 in the resolution
over previously reported results comes from the use of the cu-
mulant expansion method solution to the transport equation.
This result is important because it shows that with different
fitting equations the results can be substantially improved. In
particular it is interesting to note that the cumulant expansion
method gives results which are better than the diffusion ap-
proximation for early photons. However it should be noted
that it is not clear what the criteria for choosing a “better” fit-
ting method are since in the cases presented here, both meth-

ods are valid for homogeneous media, which is not the case in
the experiment with an absorbing object inside the scattering
medium. It has been shown that the results obtained with the
cumulant expansion method are consistent with the results of
the diffusion method, and that the improvement comes from
the ability to use shorter integration times with the cumulant
expansion method. These results could be used to comple-
ment other DOT methods.
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