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A physical interpretation of fractional calculus in observables terms: analysis
of the fractional time constant and the transitory response
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This work presents the analysis of the fractional time constant and the transitory response (delay, rise, and settling times) of a RC circuit as
a physical interpretation of fractional calculus in observables terms, the definition of Caputo fractional derivative is applied. The physical
interpretation of these observables allows a clearer understanding of the concept of fractional derivative.
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Este trabajo presenta el análisis de la constante de tiempo transitoria y de la respuesta en frecuencia (tiempo de retraso, elevación y asen-
tamiento) de un circuito RC como una interpretación f́ısica del ćalculo fraccionario en términos de estos observables, la definición de
derivada fraccionaria de Caputo es aplicada. La interpretación f́ısica de estos observables permite tener un entendimiento claro del concepto
de derivada fraccionaria.

Descriptores: Calculo fraccionario; constante de tiempo fraccionaria; ecuaciones diferenciales fraccionarias; respuesta transitoria.
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1. Introduction

Fractional calculus (FC), involving derivatives an integrals of
non-integer order, is the natural generalization of the classical
calculus, which during recent years became a powerful and
widely used tool for better modeling and control of processes
in many areas of science and engineering [1-11]. Many phys-
ical phenomena have “intrinsic” fractional order description
and so FC is necessary in order to explain them [12]. In many
applications FC provide more accurate models of the physi-
cal systems than ordinary calculus do. Since, its success in
description of anomalous diffusion [13-16] non-integer order
calculus both in one and multidimensional space, it has be-
come an important tool in many areas of physics, mechanics,
chemistry, engineering, finances and bioengineering [17-21].
Fundamental physical considerations in favor of the use of
models based on derivatives of non-integer order are given
in [22,23]. The Lagrangian and Hamilton formulation of dy-
namics and electromagnetic field in view of fractional cal-
culus has been reported in [24-29]. Fractional derivatives
provide an excellent instrument for the description of mem-
ory and hereditary properties of various materials and pro-
cesses [30]. This is the main advantage of FC in compari-
son with the classical integer-order models, in which such ef-
fects are in fact neglected. Another large field which requires
the use of FC is the theory of fractals [31-32]. The develop-
ment of the theory of fractals has opened further perspective
for the theory of fractional derivatives, especially in model-
ing dynamical processes in self-similar and porous structures.

Fractional-order models have been already used for modeling
of electrical circuits (such as domino ladders, tree structures,
etc.) and elements (coils, memristor, etc.). The review of
such models can be found in [33-35].

Applications of fractional calculus in electromagnetic
theory are given in [36-41]. In Ref. [42] the time evolu-
tion of the fractional electromagnetic waves using the time
fractional Maxwell’s equations is presented. Unlike the work
of the authors mentioned above, in which the pass from an
ordinary derivative to a fractional one is direct, here first we
analyze the ordinary derivative operator and try to bring it to
the fractional form in a consistent manner [43]. In Ref. [44]
an alternative fractional construction for the electromagnetic
waves in terms of the fractional derivative of the Caputo type
is presented.

The next section it is described of RC circuit and the frac-
tional time constant and the transitory response.

2. Fractional Calculus

The definitions of the fractional order derivative are
not unique and there exist several definitions, including:
Grünwald-Letnikov, Riemann-Liouville, Weyl, Riesz and the
Caputo representation for fractional order derivative. In the
Caputo case, the derivative of a constant is zero and we can
define, properly, the initial conditions for the fractional dif-
ferential equations which can be handled by using an analogy
with the classical integer case. For these reasons, in this paper
we prefer to use the Caputo fractional derivative. The Caputo
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fractional derivative (CFD) for a function of time,f(t), is
defined as follows [6]

C
0 Dγ

t f(t) =
1

Γ(n− γ)

t∫

0

f (n)(η)
(t− η)γ−n+1

dη, (1)

wheren = 1, 2, . . . ∈ N andn − 1 < γ ≤ n. We con-
sider the casen = 1, i.e., in the integrand there is only a
first derivative. In this case,0 < γ ≤ 1, is the order of the
fractional derivative.

The Caputo derivative operator satisfies the following
properties

C
0 Dγ

t [f(t) + g(t)] = C
0 Dγ

t f(t) + C
0 Dγ

t g(t),

C
0 Dγ

t c = 0, where c is constant. (2)

The Caputo definition of the fractional derivative is very
useful in the time domain studies, because the initial condi-
tions for the fractional order differential equations with the
Caputo derivatives can be given in the same manner as for
the ordinary differential equations with a known physical in-
terpretation.

Laplace transform to CFD gives [6]

L[C0 Dγ
t f(t)] = SγF (S)−

m−1∑

k=0

Sγ−k−1f (k)(0). (3)

The inverse Laplace transform requires the introduction of
the Mittag-Leffler function. The Mittag-Leffler function is
defined by the series expansion as

Ea(t) =
∞∑

m=0

tm

Γ(am + 1)
, (a > 0), (4)

Whena = 1, from (4) we obtain

E1(t) =
∞∑

m=0

tm

Γ(m + 1)
=

∞∑
m=0

tm

m!
= et. (5)

Therefore, the Mittag-Leffler function can be seen as a gen-
eralization of the exponential function.

3. Application Example

Ohm’s law states that the current flowing through a conductor
between two given points is directly proportional to the po-
tential difference and inversely proportional to the resistance
between them. The mathematical formula can be written as
follows

v(t) = Ri(t), (6)

wherei(t) is the current flowing through the conductor mea-
sured in ampers (A),v(t) is the potential difference measured
between two points of the conductor in units of voltsV andR
is the resistance of the conductor measured in ohms. The cur-
rent is a flow of electric charge through a conductive medium.

In electric circuits this charge is often carried by moving elec-
trons in a wire. The change in the chargeq with respect to
time t is,

i(t) =
dq

dt
. (7)

Taking this into account, Ohm’s law can be written as a func-
tion of the chargeq(t)

v(t) = R
dq

dt
. (8)

The idea is to rewrite Ohm’s law in terms of a fractional (non-
integer) derivative. For this purpose we introduce a fractional
time derivative operator as follows

dγ

dtγ
, 0 < γ ≤ 1, (9)

whereγ is an arbitrary parameter very close to 1, which rep-
resents the order of the derivative and in the caseγ = 1 it
becomes an ordinary (integer) derivative operator. However,
the ordinary time operator has dimensions of inverse seconds
s−1. Then the expression (9),

[ dγ

dtγ

]
=

1
sγ

, 0 < γ ≤ 1, (10)

is not an ordinary time derivative, because of the dimension,
s−γ .

To be consistent with dimensionality, we introduce a new
parameter,σ, as follows

[ 1
σ1−γ

dγ

dtγ

]
=

1
s
, 0 < γ ≤ 1, (11)

such that whenγ = 1 the expression (11) becomes an ordi-
nary derivative. This is true if the parameterσ has dimensions
of seconds,[σ] = s. Therefore, we can change the ordinary
time derivative operator by the fractional as follows

d

dt
→ 1

σ1−γ

dγ

dtγ
, n− 1 < γ ≤ n, (12)

wheren is integer. These two expressions represent time
derivatives, since their dimensions are inverse seconds. The
parameterσ characterizes the fractional structures (compo-
nents that show an intermediate behavior between a sys-
tem conservative (capacitor) and dissipative (resistor)), of
the fractional time operator [43]. Using the expression (12),
Ohm’s law (8) becomes a fractional Ohm’s law

v(t) =
R

σ1−γ

dγq

dtγ
, 0 < γ ≤ 1, (13)

whenγ = 1, from the expression(13) we have (8).
The RC circuit is represented in Fig. 1. Applying Kirch-

hoff’s law, we have

R
dq

dt
+

1
C

q(t) = v(t), (14)
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FIGURE 1. RC Circuit.

whereR (resistance),C (capacitance) andv(t) is the voltage
source. The general solution of (14) is well known and has
the form

q(t) = ce−t/τ + e−t/τ

∫
et/τv(t)dt, (15)

whereτ = RC is the time constant measured in seconds.

Using the expression (13), the fractional differential
equation for the RC circuit has the form

dγq

dtγ
+

1
τγ

q(t) =
C

τγ
v(t), (16)

where
τγ =

RC

σ1−γ
, (17)

it can be called fractional time constant due to its dimension-
ality sγ . Whenγ = 1, from (17) we have the well known
time constantτ = RC.

Assuming that v(0) = 0 and for any time t,
v(t) = V0u(t), whereV0 is a constant source of voltage and
u(t) is the step function. Applying the Laplace transform in
(16) with zero initial condition (steady state)

SγQ(S) +
1
τγ

Q(S) =
CV0

τγS
. (18)

Solving forQ(S), we obtain

Q(S) =
CV0

τγS
(
Sγ + 1

τγ

) . (19)

FIGURE 2. Charge on the capacitor, in Figure A), exponents:γ = 0.25, γ = 0.5, γ = 0.75 andγ = 1, in Figure B), voltage on the capacitor,
exponents:γ = 0.25, γ = 0.5, γ = 0.75 andγ = 1.
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Applying the inverse Laplace transform [12] in (19) we ob-
tain the behavior of the charge with respect to timet.

q(t) = CV0

{
1− Eγ

(
− 1

τγ
tγ

)}

= CV0

{
1− Eγ

(
− σ1−γ

RC
tγ

)}
, (20)

q(t) = CV0

{
1− Eγ

(
− 1

τγ
tγ

)}
, (21)

whereEγ(t) is the Mittag-Leffler function.
The parameterγ, which represents the order of the frac-

tional differential Eq. (16), can be related to the parameter
σ, which characterizes the presence of fractional structures
in the system. In our case the relationship is given by the
expression

γ =
σ

RC
. (22)

Then, the magnitude

δ = 1− γ, (23)

characterizes the existence of fractional structures in the sys-
tem. This can be seen as follows: ifγ = 1, from (22) we
haveσ = RC and thusδ = 0 in (23), which means that in
the system there is not any fractional structures, that is, it is a
regularRC circuit. However, in the interval,0 < γ < 1, or
the equivalent,0 < σ < RC, the magnitudeδ increases and
tends to unity because are increasingly fractional structures
in the system.

Substituting the expression (22) in (21) we have

q(t) = CV0

[
1− Eγ(−γ1−γ t̃γ)

]
, (24)

wheret̂ = t/RC is a dimensionless parameter. From (24),
we have the voltage in the capacitor

v(t) = V0

[
1− Eγ(−γ1−γ t̃γ)

]
. (25)

The current is,i(t) = dq(t)/dt, then from (24) we obtain

i(t) =
V0

R

d

dt̂

[
1− Eγ(−γ1−γ t̃γ)

]
. (26)

Given the values,R = 1MΩ, C = 1µF , we simulate
the Eqs. (24), (25) and (26), obtaining the Fig. 2 show the
behavior of the charge and voltage (in the same Figure). Fig-
ure 2 B) shows the voltage on the capacitor for the following
fractional exponentsγ = 0.25, γ = 0.5, γ = 0.75 andγ = 1.

4. Analysis of the Fractional Time Constant

The time constant is the time required for one capacitor to
charge to63.2 of the total charge (maximum voltage) after a
direct current source is connected to an RC circuit. The ca-
pacitor does not reach its maximum load (and voltage) in a
time constant. If a new constant lag time hill be charged ca-

TABLE I. Values of Charge and Discharge vs., Time Constant.

Time % Load or % Discharge

Constant Growth or Decrease

1 63.2 36.8

2 86.5 13.5

3 95.0 5.0

4 98.2 1.8

5 99.3 0.7

FIGURE 3. Discharge values of voltage in the RC circuit, exponent
γ = 1, τ = 0.368 located int = 1 second, fractional exponents:
γ = 0.75, τ = 0.368 located int = 0.628 seconds,γ = 0.5,
τ = 0.368 located int = 0.369 seconds andγ = 0.25, τ = 0.368
located int = 0.177 seconds.

capacitor is now86.5 of the total load. This situation is sim-
ilar, when the capacitor is discharged. When the CD source
voltage is removed an RC circuit has a constant time after the
voltage on the capacitor has gone from100 to 36.8 (it has
lost 63.2 of its original value). Table I shows the value (in
percent) of these two cases.

The discharge values are show in the Fig. 3 for the frac-
tional exponentsγ = 1, γ = 0.75, γ = 0.5 y γ = 0.25,
respectively.

In assessing the fractional exponent shows that the time
constant tends to move forward in time as this exponentγ

TABLE II. Discharge Values vs., Time Constant.

γ Time(s) Voltage (V)

1 1 0.368

0.75 0.628 0.368

0.5 0.369 0.368

0.25 0.177 0.368
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change fromγ = 1, γ = 0.75, γ = 0.5 to γ = 0.25, respec-
tively. That is, capacitor discharge occurs in less time than it
would take the entire order of exponent. This phenomenon
indicates the existence of another capacitive element, differ-
ent from the ideal capacitor in the RC circuit shown in Fig. 1,
showing fractional structures (components that show an inter-
mediate behavior between a system conservative (capacitor)
and dissipative (resistor)). The Table II shows the discharge
values vs., time constant.

5. Transient Response

Then define three design specifications of the transient re-
sponse [47], in the Table III is that in evaluating the output
for each value of fractional exponent. Delay timet̄d which is
the time takes the output to reach10% of its final value. The
rise timet̄r, is the time it takes the output to go from10% to
90% of its final value and the settling timētss is defined as
the time required for the response to2% around its final value
and remain in that value.

The Table III describes the behavior of the delay time,
rise time and settling time, respectively, for different values
of γ. It is observed that for allγε(0.1] stored charge in the
RC circuit is directly proportional to the potential difference
across the capacitor, it follows that the transient behavior of
the system can be analyzed using, equally, the graph of Fig-
ure 2 A) or Figure 2B), in this case is selected in Fig. 2 B)
for the analysis of the transient.

TABLE III. Fractional Exponent vs., Output.

γ t̄d t̄r t̄ss

1 3.16227 0.10000 1.77827

0.75 31.62277 0.06309 2.63026

0.5 100000 0.01000 39.81071

0.25 3162277.66016 0.00010 1995.26231

FIGURE 4. Plot of the delay time versus fractional order derivative,
in the graphα = γ.

FIGURE 5. Plot of the rise time versus fractional order derivative,
in the graphα = γ.

FIGURE 6. Plot of the settling time versus fractional order deriva-
tive, in the graphα = γ.

For the time delaȳtd can see that as the order of the
fractional derivativeγ, the time delay decreases with the de-
creases of the order of derivative, likewise, the delay sensi-
tivity of the order of derivative increases with decreasing the
order of the derivative. No values are plottedt̄d for smaller
valuesγ because these are very small. Apparently, it has an
exponential decreases settling time for values under the order
of the derivative, see Fig. 4.

For the rise timētr as the order of the derivative varies
from 0.25 to 1.0. As can be seen, the rise time increases as
the order of the derivative decreases, becoming both more
sensitive. Is evident the effect that the order of the derivative
can have on clock systems and semiconductors circuits, see
Fig. 5.
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For the settling timētss can be seen that as the order of
the fractional derivativeγ tends to zero the settling time tends
to infinity, that is, the settling time decreases with increasing
the order of the fractional derivative, likewise, the settling
time sensitivity regarding the order of the derivative also de-
creases. Apparently, there is an exponential growth settling
time for smaller values of the derivative order, see Fig. 6.

6. Conclusion

Fractional calculus is a very useful tool in describing the evo-
lution of systems with memory, which typically are dissipa-
tive and to complex systems. In this work, by use of the con-
cept of time constant and transitory response we discuss tow
important consequences of application of fractional operators
in physics.

In assessing the fractional exponent shows that the time
constant tends to move forward in time as this exponentγ
change fromγ = 1, γ = 0.75, γ = 0.5 to γ = 0.25, respec-
tively. That is, capacitor discharge occurs in less time than it
would take the entire order of exponent. This phenomenon
indicates the existence of another capacitive element, differ-
ent from the ideal capacitor in the RC circuit shown in Fig. 1,
showing fractional structures (components that show an inter-
mediate behavior between a system conservative (capacitor)
and dissipative (resistor)).

Respect to transient response we conclude that the set-
tling time decreases with increasing the order of the fractional

derivative, likewise, the settling time sensitivity regarding the
order of the derivative also decreases. The rise time increases
as the order of the derivative decreases, becoming both more
sensitive. The time delay decreases with the decreases of the
order of derivative, likewise, the delay sensitivity of the order
of derivative increases with decreasing order of the deriva-
tive.

Is evident the effect that the order of the derivative can
have on clock systems and semiconductors circuits, which
must be small rise times damage to electronic circuits and
large rise times produce large errors in clock circuits. On the
other hand, in the steady state behavior is observed the re-
duction in the bandwidth having as consequence a lower data
transmission capacity.

We emphasize that fractional differentiation with respect
to time can be interpreted as an existence of memory effects
which correspond to intrinsic dissipation in our system.

We hope that this way of dealing with fractional electri-
cal circuit can be found applications in the power electronics,
communication theory, control theory, also in the modeling
of cells seen as an electrical RC circuit.
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