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This work presents the analysis of the fractional time constant and the transitory response (delay, rise, and settling times) of a RC circuit as
a physical interpretation of fractional calculus in observables terms, the definition of Caputo fractional derivative is applied. The physical
interpretation of these observables allows a clearer understanding of the concept of fractional derivative.
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Este trabajo presenta el&lisis de la constante de tiempo transitoria y de la respuesta en frecuencia (tiempo de retrason lesamn-
tamiento) de un circuito RC como una interpretecfisica del élculo fraccionario enérminos de estos observables, la defonicde
derivada fraccionaria de Caputo es aplicada. La interpi@tdisica de estos observables permite tener un entendimiento claro del concepto
de derivada fraccionaria.

Descriptores: Calculo fraccionario; constante de tiempo fraccionaria; ecuaciones diferenciales fraccionarias; respuesta transitoria.
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1. Introduction Fractional-order models have been already used for modeling
of electrical circuits (such as domino ladders, tree structures,

Fractional calculus (FC), involving derivatives an integrals of€tC) and elements (coils, memristor, etc.). The review of
non-integer order, is the natural generalization of the classicauch models can be found in [33-35]. _
calculus, which during recent years became a powerful and APPlications of fractional calculus in electromagnetic
widely used tool for better modeling and control of processedn€ory are given in [36-41]. In Ref. [42] the time evolu-
in many areas of science and engineering [1-11]. Many physion pf the fractional elec'gromggnetlc waves using the time
ical phenomena have “intrinsic” fractional order descriptionfractional Maxwell's equations is presented. Unlike the work
and so FC is necessary in order to explain them [12]. In man@f the authors mentioned above, in which the pass from an
applications FC provide more accurate models of the IOhysi(_)rdmary derlvat!ve to a fract_lonal one is direct, here flrst.we
cal systems than ordinary calculus do. Since, its success falyze the ordinary derivative operator and try to bring it to
description of anomalous diffusion [13-16] non-integer orderth€ fractional form in a consistent manner [43]. In Ref. [44]
calculus both in one and multidimensional space, it has bed" alternative fractional construction for the electromagnetic
come an important tool in many areas of physics, mechanic&/aves in terms of the fractional derivative of the Caputo type
chemistry, engineering, finances and bioengineering [17-21]S Presented. _ o

Fundamental physical considerations in favor of the use of The nextsectionitis described of RC circuit and the frac-
models based on derivatives of non-integer order are givefional time constant and the transitory response.

in [22,23]. The Lagrangian and Hamilton formulation of dy-

namics and electromagnetic field in view of fractional cal-2  Fractional Calculus

culus has been reported in [24-29]. Fractional derivatives

provide an excellent instrument for the description of mem-The definitions of the fractional order derivative are
ory and hereditary properties of various materials and pronot unique and there exist several definitions, including:
cesses [30]. This is the main advantage of FC in compariGriinwald-Letnikov, Riemann-Liouville, Weyl, Riesz and the
son with the classical integer-order models, in which such efCaputo representation for fractional order derivative. In the
fects are in fact neglected. Another large field which require<Caputo case, the derivative of a constant is zero and we can
the use of FC is the theory of fractals [31-32]. The develop-define, properly, the initial conditions for the fractional dif-
ment of the theory of fractals has opened further perspectivéerential equations which can be handled by using an analogy
for the theory of fractional derivatives, especially in model- with the classical integer case. For these reasons, in this paper
ing dynamical processes in self-similar and porous structuresve prefer to use the Caputo fractional derivative. The Caputo
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fractional derivative (CFD) for a function of timef,(¢), is  In electric circuits this charge is often carried by moving elec-

defined as follows [6] trons in a wire. The change in the chargevith respect to
. timetis,
1 £ () (1) = % )
Cpy _ / 1 i(t) = —.
0+t f(t) F(n 7 ’Y) (t — 77)7,”4,1 dn) ( ) dt
0

Taking this into account, Ohm’s law can be written as a func-
wheren = 1,2,... € Nandn — 1 < v < n. We con- tion of the charge(¢)
sider the cases = 1, i.e., in the integrand there is only a
first derivative. In this casd) < v < 1, is the order of the v(t) = R@. (8)
fractional derivative. dt

o - __Theidea s to rewrite Ohm’s law in terms of a fractional (non-
The Caputo derivative operator safisfies the followinginieger) derivative. For this purpose we introduce a fractional
properties time derivative operator as follows

6 D}[f(t) +g(t)] = § D} f(t) + § DY g(t), 4

, 0<y <, 9)
¢D]c=0, where cis constant.  (2) dt”

The Caputo definition of the fractional derivative is very where is an arbitrary parametgr very CI.Ose ol Wh'ch rep-
.resents the order of the derivative and in the case 1 it

useful in the time domain studies, because the initial cond|b di int derivati tor. H
tions for the fractional order differential equations with the eco:gtians ‘?n tionr1 maryr(ltn ?Eer) di(rer?vr? Iivi opt:irr?vorr. owev:(;,
Caputo derivatives can be given in the same manner as f&pe ordinary ime operator has ensions otinverse seconds

1 i
the ordinary differential equations with a known physical in- s~ Then the expression (9),

terpretation. d7 1
Laplace transform to CFD gives [6] {%} == O<ysl (10)
m—1 . . . . . . .
LIEDY (1) = STF(S) — k=170 g).  (3) is not an ordinary time derivative, because of the dimension,

s~ 7,
k=0 . . . . . .
To be consistent with dimensionality, we introduce a new

The inverse Laplace transform requires the introduction oparametery, as follows
the Mittag-Leffler function. The Mittag-Leffler function is

defined by the series expansion as { 1 ﬂ} 1 0<n <l (11)
ol=vdtv] s’ T=5
o] tm
E,(t) = Z YR (a>0), (4  suchthat when = 1 the expression (11) becomes an ordi-
Tlam+1) s L ) . :
m=0 nary derivative. This is true if the parametehas dimensions
Whena = 1, from (4) we obtain of seconds|o] = s. Therefore, we can change the ordinary
time derivative operator by the fractional as follows
N >t
Et)=) w—m=2 —=¢. (5 i 1
I'm+1 m)! il - _
m=0 ( ) m=0 dt - ol—7 dt77 n 1< Y S n, (12)

Therefore, the Mittag-Leffler function can be seen as a gen-

L . - wheren is integer. These two expressions represent time
eralization of the exponential function. 9 P P

derivatives, since their dimensions are inverse seconds. The
o parameterr characterizes the fractional structures (compo-
3. Application Example nents that show an intermediate behavior between a sys-

, _ tem conservative (capacitor) and dissipative (resistor)), of
Ohm's law states that the current flowing through a conductofy,g fractional time operator [43]. Using the expression (12),

between two given points is directly proportional to the po-opm's jaw (8) becomes a fractional Ohm's law
tential difference and inversely proportional to the resistance

between them. The mathematical formula can be written as R dq
follows v(t) = o= dtv’

u(t) = Ri(t), (6) |
when~ = 1, from the expression(13) we have (8).

wherei(t) is the current flowing through the conductor mea-  The RC circuit is represented in Fig. 1. Applying Kirch-

sured in ampers (A);(t) is the potential difference measured noff's |aw, we have

between two points of the conductor in units of vdltend R

is the resistance of the conductor measured in ohms. The cur- R@ n lq(t) — o(t) (14)

rentis a flow of electric charge through a conductive medium. da C ’

0<y <1, (13)
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ift) Using the expression (13), the fractional differential
> 'VW equation for the RC circuit has the form
+ dv 1 C
R dg 1 _C,
q(t) = —o(t), (16)
atv T, Ty
v(t) c 7T where RO
Ty = Sy (17)
C it can be called fractional time constant due to its dimension-
ality s7”. When~ = 1, from (17) we have the well known

time constant = RC.
FIGURE 1. RC Circuit. Assuming thatv(0) = 0 and for any timet¢,
v(t) = Vou(t), wherelj is a constant source of voltage and
whereR (resistance)( (capacitance) and(t) is the voltage ~ u(t) is the step function. Applying the Laplace transform in
source. The general solution of (14) is well known and hag16) with zero initial condition (steady state)
the form

1 CVy
STQ(S) + —Q(S) = —- (18)
Ty TS
q(t) = ce V7 + e_t/T/et/Tv(t)dt, (15) _ .
Solving forQ(S), we obtain
wherer = RC is the time constant measured in seconds. Q(S) = CVo ) (19)
| S(s7+ L)
A) X 10’6 Charge on the Capacitor
l T T T T T T L
0.8 _____-..----"'" ]
T
< 06f D -
% =TT
5 PRAPY — 1
':: 04 . \‘\, =
@) ‘., - - = =(.75
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O | | | | 1 1 |
0 0.5 1 1.5 2 2.5 3 3.5 4
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FIGURE 2. Charge on the capacitor, in Figure A), exponents: 0.25,v = 0.5, v = 0.75 andy = 1, in Figure B), voltage on the capacitor,
exponentsy = 0.25,y = 0.5,y = 0.75 andy = 1.
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Applying the inverse Laplace transform [12] in (19) we ob-
tain the behavior of the charge with respect to time

TABLE |. Values of Charge and Discharge vs., Time Constant.

q(t) = C’Vo{l _ E7< _ it”) } Time % Load or % Discharge
Ty Constant Growth or Decrease
1—v
o 1 63.2 36.8
:CV{I—E (— t”’)}, 20
0 "\ 'RC (20) 2 86.5 135
1 3 95.0 5.0
¢ :C’V{l—E(——t‘*>}, 21
alt) 0 LA (21) 4 98.2 1.8
whereE.,(t) is the Mittag-Leffler function. 5 99.3 0.7
The parametet;, which represents the order of the frac-
tional differential Eq. (16), can be related to the parameter o
o, which characterizes the presence of fractional structures Dechagey Valoeawa Bmebaea
in the system. In our case the relationship is given by the \ B —_—
expression 091 TR == =075 ]
== 22 NG 5]
'Y—@- (22) O-S’it_:\ fme= =025 ]
Then, the magnitude 07F 1 %Y
| IR
b=1-7, (3) =" LN
Bosp ' o
characterizes the existence of fractional structures in the sys-= '—\ E \\
tem. This can be seen as follows:4if= 1, from (22) we e S .
haves = RC and thusd = 0 in (23), which means that in o3t | e .
the system there is not any fractional structures, that is, it is a A "\ i} ~{.
regularRC circuit. However, in the interval) < v < 1, or 02 T Yl Seel
the equivalent) < o < RC, the magnitudé increases and o1f ik . TP
tends to unity because are increasingly fractional structures ‘ ‘ ‘ ‘ it
in the system. 0 02 04 06 08 1 12 14 16 18 2
Substituting the expression (22) in (21) we have Ve
FIGURE 3. Discharge values of voltage in the RC circuit, exponent
q(t) = CVy [1 — EW(_yl—Vf‘Y)}, (24) v =1,7 = 0.368 located int = 1 second, fractional exponents:

v = 0.75, 7 = 0.368 located int = 0.628 seconds;y = 0.5,
wheref = ¢/RC is a dimensionless parameter. From (24),7 = 0.368 located int = 0.369 seconds and = 0.25, 7 = 0.368

we have the voltage in the capacitor located in¢ = 0.177 seconds.
o(t) = Vo {1 _ EW(_Vlf'y}:'y)}. (25) capacitor is novs6.5 of the total load. This situation is sim-
ilar, when the capacitor is discharged. When the CD source
The current isj(t) = dq(t)/dt, then from (24) we obtain voltage is removed an RC circuit has a constant time after the
voltage on the capacitor has gone frdf0 to 36.8 (it has
it) = Ei [1 _E (—71_757)] (26) lost 63.2 of its original value). Table | shows the value (in
R dt 7 percent) of these two cases.
Given the valuesR = 1MQ, C' = 1uF, we simulate The discharge values are show in the Fig. 3 for the frac-

the Egs. (24), (25) and (26), obtaining the Fig. 2 show thdional exponents; = 1, v = 0.75,7 = 0.5y v = 0.25,
behavior of the charge and voltage (in the same Figure). Fig:eSpectively.

ure 2 B) shows the voltage on the capacitor for the following ~ In assessing the fractional exponent shows that the time
fractional exponents = 0.25,v = 0.5,y = 0.75andy = 1.  constant tends to move forward in time as this exponent

4. AnaIySIS of the Fractional Time Constant TaBLE Il. Discharge Values vs., Time Constant.

The time constant is the time required for one capacitor to

g 5 Time(s) Voltage (V)
charge ta53.2 of the total charge (maximum voltage) after a
. . e 1 1 0.368
direct current source is connected to an RC circuit. The ca-
pacitor does not reach its maximum load (and voltage) in a 0.75 0.628 0.368
time constant. If a new constant lag time hill be charged ca- 05 0.369 0.368
0.25 0.177 0.368
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change fromy = 1, v = 0.75, v = 0.5 to vy = 0.25, respec- log ({) ;. = Lz
tively. That is, capacitor discharge occurs in less time than it 01‘? !

would take the entire order of exponent. This phenomenon
indicates the existence of another capacitive element, differ-
ent from the ideal capacitor in the RC circuit shown in Fig. 1,
showing fractional structures (components that show aninter- ¢ 1
mediate behavior between a system conservative (capacitor
and dissipative (resistor)). The Table Il shows the discharge
values vs., time constant. 4+

5. Transient Response

Then define three design specifications of the transient re-
sponse [47], in the Table Il is that in evaluating the output
for each value of fractional exponent. Delay tifevhich is e O A P

the time takes the output to reath’% of its final value. The 0.2 0.4 0.6 0.8 1.0

rise timet,, is the time it takes the output to go from% to FIGURE 5. Plot of the rise time versus fractional order derivative,
90% of its final value and the settling timg, is defined as  in the graphy = .
the time required for the response2td around its final value

and remain in that value. P 7 t.
The Table Ill describes the behavior of the delay time, 0g10(ss) =8

rise time and settling time, respectively, for different values 1) 2
of . It is observed that for alle(0.1] stored charge in the
RC circuit is directly proportional to the potential difference
across the capacitor, it follows that the transient behavior of g 1
the system can be analyzed using, equally, the graph of Fig-
ure 2 A) or Figure 2B), in this case is selected in Fig. 2 B)
for the analysis of the transient. 6
TABLE Ill. Fractional Exponent vs., Output. 44
Y ta tr Tos
1 3.16227 0.10000 1.77827
0.75 31.62277 0.06309 2.63026 27
0.5 100000 0.01000 39.81071
0.25 3162277.66016 0.00010 1995.26231 0

+ + + + + + t + > (V
02 04 06 08 1.0

FIGURE 6. Plot of the settling time versus fractional order deriva-

logq(Ty (= RO tive, in the graphy = ~.
Bolfa) oo 0% T6 08 1.0 )
——— ——t— (Y For the time delayt; can see that as the order of the
104 fractional derivativey, the time delay decreases with the de-

creases of the order of derivative, likewise, the delay sensi-

- tivity of the order of derivative increases with decreasing the
304 order of the derivative. No values are plottedfor smaller

T valuesy because these are very small. Apparently, it has an

- exponential decreases settling time for values under the order

of the derivative, see Fig. 4.

-5.07T For the rise time.,. as the order of the derivative varies
-+ from 0.25 to 1.0. As can be seen, the rise time increases as
704+ the order of the derivative decreases, becoming both more

sensitive. Is evident the effect that the order of the derivative
FIGURE 4. Plot of the delay time versus fractional order derivative, can have on clock systems and semiconductors circuits, see
in the graphy = . Fig. 5.
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For the settling time,, can be seen that as the order of derivative, likewise, the settling time sensitivity regarding the
the fractional derivative tends to zero the settling time tends order of the derivative also decreases. The rise time increases
to infinity, that is, the settling time decreases with increasingas the order of the derivative decreases, becoming both more
the order of the fractional derivative, likewise, the settling sensitive. The time delay decreases with the decreases of the
time sensitivity regarding the order of the derivative also de-order of derivative, likewise, the delay sensitivity of the order
creases. Apparently, there is an exponential growth settlingf derivative increases with decreasing order of the deriva-
time for smaller values of the derivative order, see Fig. 6. tive.

Is evident the effect that the order of the derivative can
have on clock systems and semiconductors circuits, which
must be small rise times damage to electronic circuits and

Fractional calculus is a very useful tool in describing the evoJarge rise times produce large errors in clock circuits. On the
lution of systems with memory, which typically are dissipa- other hand, in the steady state behavior is observed the re-
tive and to complex systems. In this work, by use of the Conduction_ in_the bandv_vidth having as consequence a lower data
cept of time constant and transitory response we discuss tof@nSmission capacity.
important consequences of application of fractional operators We emphasize that fractional differentiation with respect
in physics. to time can be interpreted as an existence of memory effects
In assessing the fractional exponent shows that the tim@hich correspond to intrinsic dissipation in our system.
constant tends to move forward in time as this exponent ~ We hope that this way of dealing with fractional electri-
change fromy = 1,y = 0.75, v = 0.5 toy = 0.25, respec- cal circuit can be found applications in the power electronics,
tively. That is, capacitor discharge occurs in less time than ifommunication theory, control theory, also in the modeling
would take the entire order of exponent. This phenomenoRf cells seen as an electrical RC circuit.
indicates the existence of another capacitive element, differ-
ent from the ideal capacitor in the RC circuit shown in Fig. 1, Acknowledgments
showing fractional structures (components that show an inter-
mediate behavior between a system conservative (capacitofhis research was supported by CONACYT.
and dissipative (resistor)).
Respect to transient response we conclude that the set-
tling time decreases with increasing the order of the fractional

6. Conclusion
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