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Thermodynamic response functions and Maxwell relations for a Kerr black hole
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Assuming the existence of a fundamental thermodynamic relation, the classical thermodynamics of a black hole with mass and angular
momentum is given. New definitions of the response functions andTdS equations are introduced and mathematical analogous of the Euler
equation and Gibbs-Duhem relation are founded. Thermodynamic stability is studied from concavity conditions, resulting in an unstable
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thermodynamic squares. Our results shown an interesting analogy between thermodynamics of gravitational and magnetic systems.
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1. Introduction

Classical macroscopic thermodynamics is a branch of
physics of great generality, applicable to systems of elabo-
rate structure, with different physical properties, such as me-
chanical, thermal, electric and magnetic. Therefore, thermo-
dynamics possess great importance in many fields of physics
and technical sciences [1, 2]. The task of thermodynamics is
to define suitable macroscopic quantities to describe average
properties of systems and explain how are these quantities
related by means of universally valid equations.

Even though thermodynamics is entirely of phenomeno-
logical nature, it is one of the best logically structured
branches of physics. However, it is known, that the sys-
tems which interact via the so-called long-range interactions,
present non-conventional thermodynamic properties [3–5].
Gravitational, coulombic and dipolar systems, are some ex-
amples of long-range interactions, in which it is possible to
observe non-common thermodynamic features, such as non-
additivity, non-extensivity and the possibility of negative heat
capacity. This work is inspired within this phenomenological
thermodynamic spirit.

Bekenstein [6,7] proposed that an appropriate multiple of
the event horizon area must be interpreted as the entropy,

Sbh =
kBc3

4~G
A; (1)

whereSbh is the entropy of the black hole,kB is the Boltz-
mann constant,c is the speed of light in vacuum,~ is the
Planck’s constant divided by2π, G is the universal constant
of gravity andA is the area of the event horizon. Moreover,
Hawkinget al [8] proved that certain laws of black hole me-
chanics are mathematical analogous of zeroth and first laws
of thermodynamics. Shortly after, it was proved that in addi-
tion to the laws of equilibrium thermodynamics, black holes
obey as well, the standard theory of non-equilibrium ther-
modynamics in the form of a fluctuation-dissipation theo-

rem [9]. Development of the so-called black hole thermo-
dynamics still continues [10–14].

Existence of non-zero temperature for a black hole sup-
ports the hypothesis that the relation between entropy and the
area of the event horizon of a black hole has some physical
significance. Knowledge of this quantity makes possible to
obtain the entropy of a black hole as a function of some fun-
damental parameters which describes such system; namely,
a thermodynamic fundamental equation for the black hole.
Thermodynamics is used to find information about a gravita-
tional system composed by a black hole, approaching to the
problem from the classical thermodynamics point of view [1].

Although a formal study of black hole thermodynam-
ics can be explored from a more fundamental perspec-
tive [15–19], it is not the goal of this work to pursue this
path. Instead, in this work exploration of the thermodynamic
information that can be extracted from theassumedexistence
of a thermodynamic fundamental equation is considered, as
would be done for an ordinary thermodynamic system. This
approach proves to be successful to recover the mathematical
structure, completely analogous, to conventional systems, in
particular magnetic ones.

This paper is organized as follows. In section two, the
fundamental thermodynamic equation of a black hole, its nat-
ural parameters and the derived equations of state are briefly
discussed. The non-common features observed in these equa-
tions are examined, including how can they be interpreted.
Mathematical analogous of the Euler equation and the Gibbs-
Duhem relation for these systems are calculated. In section
three new response functions are defined and analyzed, in
particular, specific heat and its odd behavior is studied. With
the aid ofTdS equations, independence of the new response
functions are found. In section four, the three possible Legen-
dre transformations are performed and the Maxwell relations
are given. The mnemonic diagrams for those relations are
constructed (thermodynamic squares) exhibiting an interest-
ing relation with magnetic systems. A particular application
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of the formalism to the “rotocaloric” effect is discussed. In
section five, stability conditions are reviewed and some con-
sequences are analyzed. Some conclusions are given in sec-
tion six.

2. The fundamental equation: Gibbs-Duhem
and Euler relations

In this work, the simplest black holes,i.e., those with spher-
ical symmetry [20] are considered. The most general one
is the Kerr-Newman black hole, which is characterized by
three parameters: massM , angular momentumJ , and elec-
tric chargeQ. The fundamental equation in energy represen-
tation can be found by substituting the areaA(M, J,Q) in
Eq. (1), usingU = Mc2, and inverting the expression to get
U = U(S, J,Q):

U =

{(
πkBc3

~GS

)[(
~cS

2πkB
+

Q2

2

)2

+ J2c2

]}1/2

. (2)

The first-order differential for the internal energy is:

dU =

(
∂U

∂S

)

J,Q

dS+

(
∂U

∂J

)

S,Q

dJ +

(
∂U

∂Q

)

S,J

dQ. (3)

In analogy with internal energy of a thermodynamic sim-
ple system,U = U(S, V,Ni), whereV stands for volume
andNi for mole number of thei-th component, partial deriva-
tives appearing in Eq. (3) play the role of intensive parame-
ters [6],

T ≡
(

∂U

∂S

)

J,Q

;

Ω ≡
(

∂U

∂J

)

S,Q

; Φ ≡
(

∂U

∂Q

)

S,J

. (4)

WhereT is the temperature of the black hole,Ω its angular
velocity andΦ describes the electric potential for a chargeQ
evaluated at a distance equal to the event horizon radius [21].
These relations are equivalent to the relations expressing in-
tensive parameters in terms of the independent extensive pa-
rameters in a simple thermodynamic system, in the context
of classical thermodynamics these relations are calledequa-
tions of state, and are different than the functional relation
between pressure and the energy density commonly used in
the context of cosmology and gravitation, bearing the same
name.

The differential in Eq. (3) can be written as:

dU = TdS + ΩdJ + ΦdQ. (5)

Such relation is analogous to the thermodynamic fundamen-
tal equation of a simple system. In a conventional thermo-
dynamic system, the derivatives of the internal energy with
respect to the extensive parameters, result in the intensive

ones. This property is reflected in the fact that for a con-
ventional thermodynamic system, the fundamental equation
is a homogeneous first-order function of some extensive pa-
rameters. Similarly, the equations of state of a conventional
thermodynamic system are homogeneous zero order func-
tions. However, for the Kerr-Newman black holes, funda-
mental Eq. (2), is not an homogeneous first-order function.
Two major implications for thermodynamics systems with
this behavior arise: first, it is an indication of non-additivity;
second, non-extensivity is present, that implies that the equa-
tions of stateare nothomogeneous zero-order functions.

The fundamental cause of those particular thermody-
namic properties lies in the gravitational nature of the system.
Gravitation falls in the so-called long-range interactions. It
is largely known that thermodynamical description of such
systems presents several complications, among them, non-
additivity and broken extensivity [3–5].

For the Kerr-Newman black holes, the equations of state
obtained by derivation of Eq. (2), are:

Ω =

(
2π2k2

Bc5

~G
J

S

)
· Σ(S, J,Q), (6)

Φ =

(
πkBc4Q

G
+

π2k2
Bc3Q3

~GS

)
· Σ(S, J,Q), (7)

T =

(
c2

2GS

)
· Σ(S, J,Q)

{
c2(~cS + πkBQ2)

− c

2~S
[(~cS + πkBQ2)2 + (2πkBcJ)2]

}
; (8)

with Σ(S, J,Q) given by:

Σ =

{(
πkBc3

~GS

)

×
[
(~cS + πkBQ2)2 + (2πkBcJ)2

]}−1/2

. (9)

Given the astrophysical relevance of the angular momentum
compared to the electric charge, henceforth in this work a
Kerr black hole is considered, characterized by its massM ,
and angular momentumJ . As a consequence, a fundamental
equationU = U(S, J) by takingQ = 0 in Eq. (2) is used,
for the sake of simplicity.

We analyze (in natural units) the equations of state,
T = T (S, J) andΩ = Ω(S, J) by plotting each one with a
fixed variable for each curve and studying its behavior. Start-
ing with the angular velocityΩ(S, J), in Fig. 1, it is shown
that for fixed entropy and increasing angular momentum, the
angular velocity increases asymptotically until it reaches a
maximum value. The rise of this asymptote can be under-
stood by the physical limit imposed to a rotating black hole,
which will be discussed later.
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FIGURE 1. Angular velocity vs. angular momentum for a given en-
tropy. The asymptote inΩ is linked to the so-called extreme Kerr
black hole.

FIGURE 2. Angular velocity for a givenJ . Rotation rate of the
black hole decreases as the thermal energy is radiated increasing
the entropy.

Considering Fig. 2, if the angular momentum is kept con-
stant for an increasing entropy, the angular velocity decreases
to zero asymptotically for maximum entropy. The system can
produce large amounts of energy at the expense of its rota-
tional energy, maximizing entropy [22].

Similarly, for the temperatureT (S, J), there are two
cases: In Fig. 3, ifS is kept constant it is possible to no-
tice that, for an increasing angular momentum, temperature
falls rapidly to zero, therefore, the angular momentum plays
the role of a temperature attenuator. During the process of en-
ergy production at expense of rotational energy, this energy
is radiated as thermic radiation, reducingJ and increasingT .

Considering Fig. 4, for a fixedJ , temperature reaches
a maximum as entropy increases, in this plot there are two
regions due to the competition betweenJ andS. There is a
region where temperature is a monotonically increasing func-
tion of entropy, and a second region whereT drops asymp-
totically until it reaches a certain value for maximum entropy.
Presence of those regions for the temperature is related to the
stability of the system.

In the entropic representation, the system has a relation
between internal energy and angular momentum, establishing

a boundary beyond which the proposed model has no physi-
cal meaning. That happens since reality condition for entropy
is violated in this limit,

Gc−5U2 ≥ J. (10)

This expression can be interpreted saying that for a fixed
value of the internal energy, angular momentum has a lim-
iting value, given by Eq. (10). Behavior of the angular mo-
mentum and the allowed region for internal energy are shown
in Fig. 5. It is important to mention that this maximum value
of J also appears in general relativity, referring to extreme
Kerr black holes and naked singularities [23]. Existence of
the same prediction in two different approaches is a good
indication that postulation of a fundamental thermodynamic
equation reasonably captures the essence of the system.

Following the canonical thermodynamic formalism, anal-
ogous of the Euler equation, since extensivity is broken, is
calculated. The internal energy is an homogeneous1/2-order
function, which implies that:

2TS + 2ΩJ = U. (11)

FIGURE 3. Temperature at fixedS. The inverse function
J = J(T ) is plotted to show thatT increases when the rotating
black hole transforms its rotational energy into thermal radiation.

FIGURE 4. Temperature for a givenJ . The maximum is related
with the thermodynamic stability of the system and the sign of the
specific heat.
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FIGURE 5. Forbidden region (over the curve) for the angular mo-
mentum.

From this expression, a Gibbs-Duhem-like relation can
be calculated,

dU = −2(SdT + JdΩ); (12)

with this procedure, a relation for the internal energy as a
function of temperature and angular velocityU = U(T, Ω)
is obtained. However, Eq. (11) it is not a fundamental ther-
modynamic equation, for this function it follows:

∂U

∂T
= −2S;

∂U

∂Ω
= −2J. (13)

3. Response functions andTdS equations

Second derivatives of the fundamental equation, also called
response functions, are usually descriptive of material prop-
erties and often these quantities are of the most direct physi-
cal interest. For the Kerr black hole we proposed the follow-
ing basic set of response functions, composed by the coef-
ficient of thermal rotationαΩ, the isothermic rotational sus-
ceptibility χT , and the heat capacity at constant angular ve-
locity CΩ. With this particular set, it is possible to recover all
the thermodynamic information. As we will show, definitions
given below reproduces the conventional structure of thermo-
dynamics, showing a close analogy with the thermodynamics
of magnetic systems but different to the thermodynamics of
fluids. To our knowledge, description of thermodynamics for
the Kerr black hole, using this set of response functions, it is
presented for the first time.

CoefficientαΩ is defined by:

αΩ ≡
(

∂J

∂T

)

Ω

. (14)

The coefficient of thermal rotation is the change in the angu-
lar momentum per unit change in the temperature of a Kerr
black hole maintained at constant angular velocity.

The response functionχT is given by:

χT ≡
(

∂J

∂Ω

)

T

. (15)

χT is the increase in the angular momentum per unit change
in the angular velocity at constant temperature, and can be
interpreted as an isothermic rotational susceptibility.

The heat capacity at constant angular velocity is defined
by:

CΩ ≡ T

(
∂S

∂T

)

Ω

=

(
d̄Q

dT

)

Ω

. (16)

The heat capacity at constant angular velocity is the quasi-
static heat flux required to produce unit change in the tem-
perature of a Kerr black hole maintained at constant angular
velocity.

All the other response functions of a Kerr black hole can
be expressed in terms of this basic setCΩ, χT , αΩ. This set
of functions are in fact, the three possible second derivatives
of the thermodynamic potentialG = G(T, Ω) that will be
introduced in section three,

χT = −
(

∂2G

∂Ω2

)

T

;

αΩ = −
(

∂2G

∂T∂Ω

)
; CΩ = −T

(
∂2G

∂T 2

)

Ω

. (17)

Two additional response functions of interest are the heat ca-
pacity at constant angular momentumCJ , and the isentropic
susceptibility,χS .

The heat capacity at constant angular momentum, defined
by:

CJ ≡ T

(
∂S

∂T

)

J

=

(
d̄Q

dT

)

J

, (18)

FIGURE 6. The specific heatCJ , shows negative values for large
enough values of the entropy.
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it is a measure of the quasi-static heat flux needed to change
in one unit the temperature of a Kerr black hole maintained
at constant angular momentum.

The response functionχS is given by:

χS ≡
(

∂J

∂Ω

)

S

. (19)

This quantity characterizes the change in the angular momen-
tum associated with an isentropic change in the angular ve-
locity.

TheTdS equations are necessary to obtain relations be-
tween response functions. These equations can be found by
considering entropy as a function of certain natural variables,
differentiating and rearranging the expression to find a rela-
tion betweenTdS and certain second derivatives. For a Kerr
black hole the firstTdS equation can be found by consider-
ing entropy as a function of the temperature and the angular
velocity,S = S(T, Ω),

TdS = CΩdT + T

(
∂J

∂T

)

Ω

dΩ; (20)

the secondTdS equation can be obtained considering en-
tropy as a function of the temperature and the angular mo-
mentum,S = S(T, J),

TdS = CJdT − T

(
∂Ω
∂T

)

J

dJ. (21)

Relations between response functions can be found through
manipulation of theTdS equations and the use of Maxwell
relations, discussed in section four. Two relations that de-
scribe the dependence ofCJ andχS in terms of the basic set
of response functions are:

χT (CΩ − CJ) = Tα2
Ω; (22)

CΩ(χT − χS) = Tα2
Ω. (23)

The specific heat at constant angular momentum is calcu-
lated:

CJ =

(
∂U

∂T

)

J

= − 1
2T 2

(
~c5

4πkBG
− πkBc5J2

~GS2

)
. (24)

It is possible to notice the existence of a negative region.
Since the second term is reduced for an increasing entropy
and subtraction inside the brackets will eventually result in
a positive quantity, causing that the specific heat becomes
negative, for sufficiently large values of entropy. Negative
region for the specific heat is known long ago for gravita-
tional systems [24] in general, and for black holes in partic-
ular [3,5,10,25]. Two interpretations about negative specific
heat arise.

One is related to the transfer of energy as heat; having
a region of negative heat implies that the temperature of a

black hole raises to a higher value, with energy transfer [26].
The second one is related to thermodynamic stability of the
system. For a negative specific heat, thermodynamic systems
are in unstable states passing perhaps, through a phase tran-
sition [28].

4. Thermodynamic potentials and Maxwell
relations

Another point of interest are the thermodynamic potentials.
Alternative representations for the thermodynamic funda-
mental equation, can be obtained via the application of a Leg-
endre transformation toU = U(S, J). For a Kerr black hole
there are three possible Legendre transformation.

Starting with the mathematical analogous of the
Helmholtz free energy, F = F (T, J) = U [T ],

F = U − TS, and − S =
∂F

∂T
; (25)

which can be written as:

F = Σ(S, J) ·
[

1
2

(
~c5

4πkBG

)
S +

3J2

2S

(
~c3

2πkB

)]
; (26)

with Σ(S, J) given by Eq. (9), forQ = 0. It is worth
to mention that Eq. (26) must be a function of temperature
and angular momentum as independent variables; instead,
Eq. (26) is a function of the entropy and the angular momen-
tum, F = F (S, J). We were not able to find an analytical
expression for Helmholtz free energy in that terms.

The Helmholtz free energy for a Kerr black hole in
diathermal contact with a heat reservoir can be interpreted
as the available work at a constant temperature, since
dW = ΩdJ .

A second Legendre transformation, can be obtained re-
placing the angular momentumJ , by the angular velocity
Ω, as the independent variable in the fundamental equation,
H = H(S, Ω) = U [Ω], this leads to:

H = U − ΩJ, and − J =
∂H

∂Ω
; (27)

the potentialH is given by:

H =

√
c4S

2G
·
[
1 +

(
Ω2

kBc5

~GS − Ω2

)]1/2

; (28)

which is a function of entropy and angular velocity as inde-
pendent variables. Therefore, Eq. (28) is an explicit expres-
sion for the potentialH = H(S, Ω). It can be interpreted as
the heat added to a Kerr black hole at constant angular veloc-
ity, sincedQ = TdS.

The last thermodynamic potential is obtained by si-
multaneously replacing both, the entropy and the angu-
lar momentum, by the temperature and the angular veloc-
ity as independent variables in the fundamental equation,
G = G(T, Ω) = U [T, Ω],
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FIGURE 7. The thermodynamic square representing the Maxwell
relation, Eq. (31) for the thermodynamic potentialH = H(S, Ω).

FIGURE 8. The thermodynamic square representing the Maxwell
relation given in Eq. (32) for the thermodynamic potential
G = G(T, Ω).

G = U − TS − ΩJ, and

−J =
∂G

∂Ω
, −S =

∂G

∂T
; (29)

an expression for theG potential is given by:

G =
1
2

[(
πkBc3

~GS

)(
~2c2

4π2k2
B

S2 + J2c2

)]1/2

. (30)

As for Helmholtz free energy in Eq. (26), an expression for
G(T, Ω) as a function ofS andJ instead of its natural vari-
ables was obtained. Physical interpretation of this potential

for a Kerr black hole it is not clear, since in a conventional
thermodynamic system, the mathematical analogous of this
potential used to be associated with a third extensive parame-
ter, missing in this case. However, for a Kerr-Newman black
hole, this third parameter is the electric chargeQ, therefore,
this potential can be interpreted as the available work at con-
stant temperature and angular velocity, sincedW = ΦdQ,
for a Kerr-Newman black hole.

Different representations for the fundamental equation
leads to the existence of various derivatives of independent
variables related to each thermodynamic potential, appar-
ently unrelated with other derivatives. However, there are
some relations among such derivatives; hence, just a few of
them can be considered as independent. These relations be-
tween derivatives are known as Maxwell relations and arise
from the equality of the mixed partial derivatives of the fun-
damental equation, expressed in any of its alternative repre-
sentations. Since there are only two independent variables,
no more than a pair of mixed derivatives exists in any rep-
resentation of the fundamental equation. For the energetic
representationU = U(S, J), the four Maxwell relations are:

(S, Ω)
∂2H

∂S∂Ω
=

∂2H

∂Ω∂S
⇒ −

(
∂J

∂S

)

Ω

=

(
∂T

∂Ω

)

S

, (31)

(T, Ω)
∂2G

∂T∂Ω
=

∂2G

∂Ω∂T
⇒

(
∂J

∂T

)

Ω

=

(
∂S

∂Ω

)

T

, (32)

(T, J)
∂2F

∂J∂T
=

∂2F

∂T∂J
⇒ −

(
∂S

∂J

)

T

=

(
∂Ω
∂T

)

J

, (33)

(S, J)
∂2U

∂J∂S
=

∂2U

∂S∂J
⇒

(
∂T

∂J

)

S

=

(
∂Ω
∂S

)

J

. (34)

Maxwell relations can be remembered conveniently in
terms of simple mnemonic diagrams [29]. In this case, the
construction rules of those diagrams are inspired in the con-
struction of the same mnemonic diagrams for magnetic sys-
tems [30]: A minus sign is added to the extensive variable of
magnetic work, with this adaptation it is possible to build the
mnemonic diagrams for magnetic systems. For Kerr black
holes, the same result can be achieved by adding a minus
sign to the angular momentum. Maxwell relations are repre-
sented in the next diagrams. In Fig. 7, the Maxwell relation
for the potentialH, (31) is depicted. The remaining Maxwell
relations are represented in Fig. 8 - Fig. 10 as successive
rotations of the thermodynamic square shown in Fig. 7.
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FIGURE 9. The thermodynamic square of the Maxwell relation,
Eq. (33) for the Helmholtz free energy,F = F (T, J).

FIGURE 10. The thermodynamic square representation of the
Maxwell relation given in Eq. (34) for the internal energy,
U = U(S, J).

4.1. The “Rotocaloric Effect”

An additional example of the similarities between thermody-
namics of magnetic systems and thermodynamics of black
holes, lies in the exploration of the magnetocaloric effect
(MCE) and its counterpart for a Kerr black hole, here named
as “rotocaloric effect”.

The MCE is a magnetothermal phenomena exhibited by
magnetic materials, in which a reversible change in tem-
perature of the material occurs under adiabatic and usually
isobaric conditions in the presence of a variable magnetic
field [27]. For a magnetic system with a total differential
for entropy expressed as a function of temperatureT , and the

magnetic fieldH, the change in temperature under variations
of H, can be obtained from:

dT

dH
= − (∂S/∂H)T

(∂S/∂T )H
. (35)

For a Kerr black hole a similar process could appear, a
reversible change in temperature of the event horizon under
adiabatic conditions due to variations in the angular momen-
tum of the black hole. To calculate this changes inT , the
TdS Eq. (21), is used. In an adiabatic processTdS = 0:

dT =
T

CJ

(∂Ω
∂T

)
J
dJ ; (36)

using the definition ofCJ and the Maxwell relations, it is
possible to express the variation inT as:

dT

dJ
= − (∂S/∂J)T

(∂S/∂T )J
. (37)

To compare both phenomena, the MCE is applied to a
paramagnetic substance composed byN freely removable
dipoles with a permanent magnetic dipole moment [2]. Con-
sidering only the dominant term in entropyS(T, H), the vari-
ation in the temperature of this paramagnetic substance under
changes in the applied magnetic field, is given by:

dT

dH
=

T

H
. (38)

Similarly, to calculate the value of the rotocaloric effect
for a Kerr black hole, an explicit relation for entropy as a
function of temperature and angular momentum is required.
The equation of state for temperature Eq. (8), considering
Q = 0, was used to find this relation. It is necessary to invert
T = T (S, J) to obtainS = S(T, J). An approximated rela-
tion S(T, J), was estimated considering an iterative process.

For a Kerr black hole, the first-order approximation was
calculated proposingS0 as the entropy of a Schwarzschild
black hole, the simplest one, by consideringJ = Q = 0 in
Eq. (2), and taking the derivative with respect of temperature:

S0(T ) =
~c5

16πGkB

1
T 2

. (39)

With this relation, the first-order approximationS1(T, J), for
the exact relationS(T, J), is given by:

S1 =
γ1

J4T 10
+

γ2

J2T 6
; (40)

whereγ1 andγ2 are two different combinations of the fun-
damental constants used in this work. If only the dominant
term 1/J2T 6 is considered in Eq. (37), the variation in the
temperature under changes in the angular momentum for a
Kerr black hole is:

dT

dJ
= − T

3J
. (41)

As J andT are non-negative in all the entropy domain, the
rotocaloric effect produces a drop in the temperature of the

Rev. Mex. Fis.60 (2014) 59–68



66 L. ESCAMILLA AND J. TORRES-ARENAS

black hole for an increase in the angular momentum and vice
versa, this result was previously obtained analyzing the equa-
tion of state for the angular velocity, Eq. (6) in section two.
The results in Eqs. (38) and (41) are very similar, but with
different sign. Therefore, the changes in temperature work in
the opposite direction for rotocaloric effect, compared with
magnetic systems.

Due the analogies between MCE and rotocaloric effect, it
is possible to construct a refrigeration cycle for the Kerr black
hole. This process is very similar than the magnetic one, only
with the opposite sign.

A deeper exploration of these effects will be given in a
subsequent work.

5. Stability conditions

As is discussed in section three, a negative region for the
specific heatCJ , exist, and it indicates non-stability in the
system. It is convenient to use the entropic representation of
the thermodynamic fundamental equation to analyze stability
conditions,

S =
2πkB

~c

[
Gc−4U2 +

(
Gc−8U4 − c2J2

)1/2
]
. (42)

The system is a thermodynamically stable one, if the entropy
S(U, J) satisfies:

S(U, J + ∆J) + S(U, J −∆J) ≤ 2S(U, J), (43)

S(U + ∆U, J) + S(U −∆U, J) ≤ 2S(U, J); (44)

or for infinitesimal displacements:
(

∂2S

∂U2

)

J

≤ 0,

(
∂2S

∂J2

)

U

≤ 0. (45)

For a stable system, the graphical representation of the pre-
vious conditions results in a concave curve for entropy. If
the entropy has a non-concave curve, the related system is
unstable. When the entropy possess both, concave and non-
concave regions, the system is not stable; instead, it is a lo-
cally stable one, but globally unstable.

Stability under variations in the angular momentum, at a
fixed internal energy, is analyzed in Fig. 11. Entropy is a con-
cave function in all its range of definition for the exchange of
angular momentum at constant internal energy. Therefore,
the Kerr black hole is stable under changes in the angular
momentum.

If the angular momentum is kept constant and variations
of the internal energy are allowed, it is possible to notice that
the entropy is non-concave in almost all its range, except for
a region where the entropy is a concave function. This lo-
cal stable region is accessible for the system once the reality
condition, Eq. (10), is satisfied; this region extends over the
energy domain, until the inflection point in the entropy curve
is reached. In natural units, the inflection point,

FIGURE 11. The entropic representation of the fundamental equa-
tion S(U, J) at constant energy. The concavity of the curve implies
thermodynamic stability.

FIGURE 12. EntropyS(U, J) for a fixed value ofJ . The entropy
is non-concave at almost all their domain, except for a region after
the reality condition (Eq. (10)) is satisfied.

FIGURE 13. Three-dimensional space(S, U, J), showing unstable
thermodynamic equilibrium for the system.

∂2S

∂M2
= 0; (46)

satisfies an approximate relation for the mass and the angular
momentum of the Kerr black hole,1/3M4 = J2. The sta-
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bility region ends when the left side becomes greater than the
right one. This is a remarkable result, since the reality con-
dition, Eq. (10) is very close to the approximated maximum
value obtain through the inflection point.

Hence, a Kerr black hole is locally stable around this re-
gion, but it is globally unstable under variations in its internal
energy, as can be seen in Fig. 12.

If variations in both, the angular momentum and the
internal energy are allowed, the three-dimensional space
(S,U, J), must be considered. The global stability condition
requires that the entropy surfaceS(U, J) lies everywhere be-
low its tangent planes. Accordingly, for arbitrary∆U and
∆J :

S(U+∆U, J + ∆J)

+ S(U −∆U, J −∆J) ≤ 2S(U, J); (47)

and locally, for∆U → 0 ∆J → 0:

∂2S

∂U2

∂2S

∂J2
−

(
∂2S

∂U∂J

)
≥ 0. (48)

The behavior of the entropy in the subspace(S,U, J) for a
Kerr black hole, is shown in Fig. 13. Entropy is a non-
concave function ofU andJ ; in correspondence with two-
dimensional case for the entropy as a function of the internal
energy, a region of stability exists.

Evidence that a Kerr black hole is a thermodynamic sys-
tem in unstable equilibrium in general, but in a state of locally
stable equilibrium, is founded.

The reality condition Eq. (10), and the stability condition
Eqs. (44) & (45) impose maximum values for the mass and
angular momentum of Kerr black holes, in order that those
systems have a well defined entropy and are thermodynami-
cally stable.

Two examples of Kerr black holes are chosen to illus-
trate how the angular momentum is constrained by impos-
ing these conditions. First, a stellar rotating black hole

with a mass of10 solar masses is considered. For this
black hole, the reality condition establish a maximum an-
gular momentum of,Jmax-rc = 8.81 × 1043 Kg m2/s, for
the stability condition, the maximum angular momentum al-
lowed for a thermodynamically stable black hole of this mass
is Jmax-sc = 6.00 × 1043 Kg m2/s. The second exam-
ple is a supermassive rotating black hole of2.3 × 108 so-
lar masses; the correspondent maximum values for the an-
gular momentum areJmax-rc = 4.66 × 1058 Kg m2/s and
Jmax-sc = 3.17 × 1058 Kg m2/s. It is possible to notice that
there is a region where the entropy is a concave function.

6. Conclusions

The implementation of the conventional thermodynamic
formalism for black holes is permitted by the postula-
tion of a fundamental thermodynamic equation of the form
U = U(S, J,Q). The proposal of considering a purely ther-
modynamic vision appears to be fruitful. The application of
this formalism to such systems present particular complica-
tions, as non-additivity or instability of equilibrium states,
typical of a system with dominant gravitational interactions;
however, this development shows the presence of considera-
tions suggesting that, beyond the mathematical exercise, the
proposed model really represents some aspects of a very in-
teresting behavior. This can be seen in the predictions made,
that can be found in other frameworks of physics and in re-
semble with the thermodynamics of magnetic systems. The
presented formalism could be a start point for the research
of interesting analogous thermodynamic processes for black
holes, as the Joule-Thomson effect and others. Results about
these topics will be presented in a future work.

Acknowledgments

We want to acknoweledge CONACyT (proyect-152684) and
the University of Guanajuato (DAIP-006/10) for the support
in the realization of this work.

1. H.B. Callen,Thermodynamics and an Introduction to Thermo-
statistics, 2nd ed. (John Willey & Sons, Singapore, 1985) pp.
35, 183.

2. W. Greiner, L. Neise and H. Stoker,Thermodynamics and Sta-
tistical Mechanics, 1st ed. (Springer-Verlag, NY, 1995) pp. 4,
218.

3. T. Dauxois, S. Ruffo,et. al. (editors),Dynamics and thermo-
dynamics of systems with long range interactions: an introduc-
tion, (Lect. Notes in Phys. vol 602), 1st ed. (Springer, Berlin,
2002).

4. R.S. Johal, A. Planes and E. Vives,Preprintcond-mat/0503329
(2005).

5. A. Campa, T. Dauxois and S. Ruffo,Phys. Rep. 480(2009) 57.

6. J.D. Bekenstein,Phys. Rev. D7 (1973) 2333.

7. J.D. Bekenstein,Phys. Rev. D12 (1975) 3077.

8. J.M. Baerdeen, B. Carter and S.W. Hawking,Commun. Math.
Phys. 31 (1973) 161.

9. P. Candelas and D.W. Sciama,Phys. Rev. Lett.38 (1977) 1372.

10. P.C.W. Davies,Rep. Prog. Phys.41 (1978) 1313.

11. R.M. Wald,Liv. Rev. Rel.4 (2001) 6.

12. E.A. Martinez,Phys. Rev. D53 (1996) 7062.

13. E.A. Martinez,Phys. Rev. D54 (1996) 6302.

14. P.S. Custodio and J.E. Horvath,Am. J. Phys. 71 (2003) 1237.

15. J.W. York Jr,Phys. Rev. D33 (1986) 2092.

Rev. Mex. Fis.60 (2014) 59–68



68 L. ESCAMILLA AND J. TORRES-ARENAS

16. H.W. Braden, J.D. Brown, B.F. Whiting and J.W. York Jr,Phys.
Rev. D42 (1990) 3376.

17. J.D. Brown, J. Creighton and R.B. Mann,Phys. Rev. D50
(1994) 6394.

18. C. Peça and J.P.S. Lemos,Phys. Rev. D59 (1999) 124007.

19. M.M. Akbar, Phys. Rev. D82 (2010) 064001.

20. R. D’Inverno,Introducing Einstein’s Relativity, 1st ed. (Oxford
University Press, NY, 1992) pp. 248.

21. S.W. Hawking,Phys. Rev. D13 (1976) 191.

22. J.D. Bekenstein,Physics Today(Jan 1980) 24.

23. C.W. Misner, K. S. Thorne and J.A. Wheeler,Gravitation
(W.H. Freeman, SF, 1973), pp. 878, 907.

24. T. Padmanabhan,Phys. Rep.188(1990) 285.

25. J. Oppenheim,Phys. Rev. E68 (2003) 016108.

26. B.R. Parker and R.J. McLeod,Am. J. Phys. 48 (1989) 1066.

27. M.-H. Phan and S.-C. Y,J. Magn. Magn. Mater. 308 (2007)
325.

28. P.C.W. Davies,Class. Quantum Grav.6 (1989) 1909.

29. F.O. Koenig,J. Chem. Phys.3 (1935) 29.

30. H.E. Stanley,Introduction to Phase Transitions and Critical
Phenomena, 1st ed. (Oxford University Press, London, 1971),
pp. 34.

Rev. Mex. Fis.60 (2014) 59–68


