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Generation of solutions of the Hamilton–Jacobi equation
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It is shown that any functionG(qi, pi, t), defined on the extended phase space, defines a one-parameter group of canonical transformations
which act on any functionf(qi, t), in such a way that ifG is a constant of motion then from a solution of the Hamilton–Jacobi (HJ) equation
one obtains a one-parameter family of solutions of the same HJ equation. It is also shown that any complete solution of the HJ equation can
be obtained in this manner by means of the transformations generated byn constants of motion in involution.
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Se muestra que cualquier función G(qi, pi, t), definida en el espacio fase extendido, define un grupo uniparamétrico de transformaciones
cańonicas las cuales actúan sobre cualquier función f(qi, t), de tal manera que siG es una constante de movimiento entonces a partir de
cualquier solucíon de la ecuación de Hamilton–Jacobi (HJ) uno obtiene una familia uniparamétrica de soluciones de la misma ecuación de HJ.
Se muestra también que cualquier solución completa de la ecuación de HJ puede obtenerse de esta manera por medio de las transformaciones
generadas porn constantes de movimiento en involución.

Descriptores: Ecuacíon de Hamilton–Jacobi; transformaciones canónicas; constantes de movimiento.

PACS: 45.20.Jj; 02.30.Jr; 02.20.Qs

1. Introduction

In the Hamiltonian formulation of classical mechanics, the
canonical transformations, given locally by expressions of
the formQi = Qi(qj , pj , t), Pi = Pi(qj , pj , t), act on the ex-
tended phase space (the Cartesian product of the phase space
and the time axis) and, therefore, there is a naturally defined
action of a canonical transformation on any function defined
on the extended phase space (that is, on any function ofqi,
pi, andt). On the other hand, Hamilton’s principal function,
usually denoted by anS, is a function defined on the extended
configuration space (that is, a function ofqi andt), just like
the wave function in the elementary Schrödinger equation,
but there is no obvious way to define the action of a canoni-
cal transformation on a function ofqi andt.

However, in Ref. [1] it was shown that, under certain
conditions, one can define an action of a time-independent
canonical transformation [that is, a canonical transforma-
tion that does not involve the time,Qi = Qi(qj , pj),
Pi = Pi(qj , pj)] on functions defined on the configuration
space, in such a way that if a (time-independent) Hamilto-
nian is invariant under the canonical transformation, a solu-
tion of the corresponding time-independent Hamilton–Jacobi
(HJ) equation is mapped into another solution. Furthermore,
it was shown that the action of the one-parameter group of
canonical transformations generated by an arbitrary function
G(qi, pi) is determined by an equation similar to the HJ equa-
tion.

In this paper, we consider systems with a Hamiltonian
that can depend on the time, we show that one can define the
action of the one-parameter group of canonical transforma-
tions generated by an arbitrary functionG(qi, pi, t) on func-
tions defined on the extended configuration space, in such a

way that ifG is a constant of motion, then a solution of the
corresponding HJ equation is mapped into a one-parameter
family of solutions of this equation. In this manner, each
constant of motion adds a continuous parameter to a given
solution of the HJ equation. We also show that any complete
solution of the HJ equation can be obtained from a solution
without parameters by means of the action of the groups of
canonical transformations generated byn constants of mo-
tion in involution.

Throughout this paper, several examples are given in or-
der to illustrate the definitions and results presented here.

2. The action of a one-parameter group of
canonical transformations on functions de-
fined on the extended configuration space

We start by reviewing the HJ equation, which will give us the
pattern to follow in the definition of the action of any one-
parameter group of canonical transformations on functions
defined on the extended configuration space.

2.1. The Hamilton–Jacobi as an evolution equation

Given a HamiltonianH(qi, pi, t) of a system withn degrees
of freedom, the corresponding HJ equation is the first-order
partial differential equation

H(qi, ∂S/∂qi, t) +
∂S

∂t
= 0. (1)

Usually one is interested incomplete solutionsof the HJ
equation (1), that is, solutionsS(qi, t, αi) of Eq. (1), con-
tainingn arbitrary parametersαi, such that

det
(

∂2S

∂qi∂αj

)
6= 0, (2)
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because they yield the solution of the Hamilton equations
(see,e.g., Refs. [2] and [3]). However, one can consider the
HJ equation as anevolution equation, which determines the
function S(qi, t) that reduces to a given functionf(qi), for
t = 0 (or any other initial value,t0, of t). (This fact does not
sound very strange if we consider the relationship between
the HJ equation and the Schrödinger equation.) In fact, if
we have the solution of the Hamilton equations, we can use
it to find the solution of the HJ equation that satisfies any
initial conditionS(qi, t0) = f(qi). (Similar ideas are often
mentioned in the standard textbooks on analytical mechanics,
without presenting, however, a clear statement or an explicit
procedure.)

For example, in the case of the Hamiltonian

H =
p1

2 + p2
2

2m
+ mgq2, (3)

wherem andg are constants, the solution of the correspond-
ing Hamilton equations can be readily obtained and is given
by

q1 = (q1)0 +
(p1)0t

m
, q2 = (q2)0 +

(p2)0t
m

− gt2

2
,

p1 = (p1)0, p2 = (p2)0 −mgt, (4)

where(q1)0 denotes the value ofq1 at t = 0, and so on. As
the initial condition we choose

S(q1, q2, 0) = α1q1 + α2q2, (5)

whereα1, α2 are arbitrary constants. We want to find the
solution of the HJ equation [see Eqs. (1) and (3)]

∂S

∂t
= − 1

2m

[(
∂S

∂q1

)2

+
(

∂S

∂q2

)2
]
−mgq2, (6)

that satisfies the initial condition (5). Recalling that
∂S/∂qi = pi, making use of Eqs. (4) and (5) we have

∂S

∂q1
=

∂S

∂q1

∣∣∣∣
t=0

= α1,

∂S

∂q2
=

∂S

∂q2

∣∣∣∣
t=0

−mgt = α2 −mgt.

Substituting these expressions into the right-hand side of
Eq. (6) we have

∂S

∂t
= − 1

2m

[
α1

2 + (α2 −mgt)2
]−mgq2.

Combining the last three equations one readily finds that,
choosing the integration constant so that Eq. (5) is satisfied,

S(q1, q2, t) = α1q1 + α2q2 −mgtq2

− α1
2t

2m
+

(α2 −mgt)3 − α2
3

6m2g
. (7)

The expression (7) is a (complete,R-separable) solution of
the HJ equation that reduces to the specified function (5) for
t = 0. (A solution isR-separable if it is the sum of a function
of two or more variables and functions of one variable.)

We close this subsection with a second example. The
solution of the Hamilton equations for the time-dependent
Hamiltonian

H =
p2

2m
− ktq, (8)

wherem andk are constants, is given by

q = q0 +
tp0

m
+

kt3

6m
, p = p0 +

1
2
kt2, (9)

whereq0 andp0 denote the values ofq andp at t = 0, re-
spectively. Letting

S(q, 0, α) = αq, (10)

whereα is an arbitrary constant, with the aid of Eqs. (9), we
have

∂S

∂q
=

∂S

∂q

∣∣∣∣
t=0

+
1
2
kt2 = α +

1
2
kt2. (11)

Thus, from Eqs. (1), (8), and (11), we have

∂S

∂t
= − 1

2m

(
∂S

∂q

)2

+ ktq

= − 1
2m

(
α +

1
2
kt2

)2

+ ktq. (12)

Then, from Eqs. (10)–(12), we readily obtain

S(q, t, α) = αq +
1
2
kt2q − 1

2m

(
α2t +

1
3
αkt3 +

k2t5

20

)
,

which is anR-separable complete solution of the HJ equa-
tion. (We might start with expressions more complicated than
(5) and (10), but these simple expressions are enough to ob-
tain complete solutions of the HJ equation.)

It should be clear that a similar construction can be de-
vised using an arbitrary function of(qi, pi, t) instead of a
Hamiltonian.

2.2. Families of solutions of the HJ equation and con-
stants of motion

Any differentiable function,G(qi, pi, t), defines a (possibly
local) one-parameter group of canonical transformations, de-
termined by the (autonomous) system of first-order ordinary
differential equations

dqi

dα
=

∂G(qj , pj , t)
∂pi

,
dpi

dα
= −∂G(qj , pj , t)

∂qi
, (13)

which are of the form of the Hamilton equations.
For example, the function

G(q1, q2, p1, p2, t) =
p1p2

m
+ mgq1, (14)
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wherem andg are constants, leads to the system of equations

dq1

dα
=

p2

m
,

dq2

dα
=

p1

m
,

dp1

dα
= −mg,

dp2

dα
= 0. (15)

From the last two equations we find that

p1 = (p1)0 −mgα, p2 = (p2)0, (16)

where(pi)0 denotes the value ofpi for α = 0. Substituting
these expressions into the first pair of equations (15) we get

dq1

dα
=

(p2)0
m

,
dq2

dα
=

(p1)0 −mgα

m
.

Hence,

q1 = (q1)0 +
(p2)0α

m
, q2 = (q2)0 +

(p1)0α
m

− gα2

2
. (17)

The action of the canonical transformations defined by a
function G(qi, pi, t), on functions of(qi, t), will be defined
imitating the HJ equation.
Definition. The image of a given arbitrary functionf(qi, t)
under the one-parameter group of canonical transformations
generated byG(qi, pi, t) is the functionS(qi, t, α) such that

G(qi, ∂S/∂qi, t) +
∂S

∂α
= 0, (18)

with the initial conditionS(qi, t, 0) = f(qi, t). (Cf. Eq. (1).)
The following example shows that this definition pro-

duces the expected effect in the case of transformations that
only affect the coordinates of the configuration space. In-
deed, the one-parameter group of canonical transformations
generated by,e.g., G = p1 is given by [see Eqs. (13)]

q1 = (q1)0 + α, qi = (qi)0, for i > 2, pi = (pi)0,

that is, “translations” along theq1-axis. Then, Eq. (18) takes
the form

∂S

∂q1
+

∂S

∂α
= 0,

whose general solution is

S(qi, t, α) = F (q1 − α, q2, . . . , qn, t),

whereF is an arbitrary function. By imposing the initial con-
dition S(qi, t, 0) = f(qi, t), we find that

S(qi, t, α) = f(q1 − α, q2, . . . , qn, t),

which is the expected effect of a translation along theq1-axis.
As a second example, the images of the function

f(qi, t) = (α2 −mgt)q2 +
(α2 −mgt)3 − α2

3

6m2g
(19)

(which is the function (7) withα1 = 0) under the transfor-
mations generated by (14) can be obtained proceeding as in

the examples of Sec. 2.1. Making use of Eqs. (16) and (19)
we have [withS(qi, t, 0) = f(qi, t)]

∂S

∂q1
=

∂S

∂q1

∣∣∣∣
α=0

−mgα = −mgα,

∂S

∂q2
=

∂S

∂q2

∣∣∣∣
α=0

= α2 −mgt. (20)

Substituting these expressions into Eq. (18), taking into ac-
count Eq. (14), we obtain

∂S

∂α
= − 1

m
(−mgα)(α2 −mgt)−mgq1.

Combining the last equations and the initial condition (19)
one finds that

S(q1,q2, t, α2, α) = (α2 −mgt)q2 −mgαq1

+
1
2
(α2 −mgt)gα2 +

(α2 −mgt)3 − α2
3

6m2g
. (21)

Note thatt is treated here as a constant because the canonical
transformations do not affectt. Since the function (19) is a
particular case of (7), is a solution of the HJ equation (6), and
one can readily verify that (21) isalsoa solution of Eq. (6),
for all values of the parameterα [which is essentially the two-
parameter family of solutions (7)].

Thus, we have obtained a two-parameter family of solu-
tions of the HJ equation (6), starting from a one-parameter
solution of this equation. As we shall show in the following
Proposition, this is a consequence of the fact that the func-
tion (14) is a constant of motion for the Hamiltonian (3).
Proposition 1. The image of a solution of the HJ equation,
S0(qi, t), under the one-parameter group of canonical trans-
formations generated by a constant of motionG(qi, pi, t) is a
one-parameter family of solutions of the same HJ equation.
Proof. Assuming thatS(qi, t, α) is a solution of Eq. (18),
making use of the chain rule repeatedly, we have (here, and
in what follows, there is summation over repeated indices)

∂

∂α

[
H(qi, ∂S/∂qi, t) +

∂S

∂t

]
=

∂H

∂pj

∂2S

∂α∂qj
+

∂2S

∂α∂t

= −∂H

∂pj

∂G(qi, ∂S/∂qi, t)
∂qj

− ∂G(qi, ∂S/∂qi, t)
∂t

= −∂H

∂pj

(
∂G

∂qj
+

∂G

∂pi

∂2S

∂qj∂qi

)

− ∂G

∂pi

∂2S

∂t∂qi
− ∂G

∂t
. (22)

According to the hypothesis,G is a constant of motion, that
is

∂G

∂t
+

∂G

∂qj

∂H

∂pj
− ∂G

∂pj

∂H

∂qj
= 0, (23)
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thus, the last line of Eq. (22) amounts to

−∂G

∂pi

(
∂H

∂qi
+

∂H

∂pj

∂2S

∂qj∂qi
+

∂2S

∂t∂qi

)

= −∂G

∂pi

∂

∂qi

[
H(qi, ∂S/∂qi, t) +

∂S

∂t

]

= −dqi

dα

∂

∂qi

[
H(qi, ∂S/∂qi, t) +

∂S

∂t

]

[see Eqs. (13)]. Hence, we obtain the equation

d
dα

[
H(qi(α), ∂S(qi(α), t, α)/∂qi, t)

+
∂S(qi(α), t, α)

∂t

]
= 0,

which involves the images ofS and the coordinatesqi under
the transformations generated byG. Since the expression in-
side the brackets in the last equation vanishes forα = 0, it is
equal to zero for all values ofα, thus proving the assertion.

A partial converse of this Proposition is true. The steps in
the proof show that if the images of a solution of the HJ equa-
tion under the transformations generated byG are solutions
of the same HJ equation, andS is a complete solution of the
HJ equation, thenG is a constant of motion. The assumption
thatS is a complete solution of the HJ equation assures that
Eq. (23) holds everywhere. In fact, the following stronger
result holds.
Proposition 2. A complete solution of the HJ equation,
S(qi, t, αi) (not necessarily separable orR-separable), is the
image ofS(qi, t, 0) under the transformations generated by
then constants of motion

Gj(qi, pi, t) = − ∂S

∂αj
(qi, t, αi(qk, pk, t)) (24)

(j = 1, 2, . . . , n), obtained by eliminating theαi by means
of

pj =
∂S

∂qj
(qi, αi, t). (25)

Furthermore, the functionsGi are in involution (i.e., the Pois-
son bracket ofGi andGj is equal to zero). (Note that, ac-
cording to Eq. (2), in principle, one can find theαi from
Eqs. (25).)
Proof. We note that, by virtue of Eqs. (25), Eq. (24) is equiv-
alent to Eq. (18). Since, by hypothesis,S(qi, t, αi) is a com-
plete solution of the HJ equation, each functionGi, defined
by (24), is a constant of motion. In order to prove that the
functionsGi are in involution, making use of Eq. (24), we
calculate the mixed partial derivative

∂2S

∂αi∂αj
= − ∂

∂αi
Gj(qi, ∂S/∂qi, t, αk)

= −∂Gj

∂pk

∂

∂αi

∂S

∂qk
=

∂Gj

∂pk

∂Gi

∂qk
.

Then we see that the commutativity of the partial deriva-
tives of S implies that the Poisson brackets of theGi are
equal to zero. (The assumption thatS(qi, t, αi) is a complete
solution of the HJ equation implies that the Poisson brack-
ets{Gi, Gj} vanish everywhere.) Since the Poisson brack-
ets{Gi, Gj} are equal to zero, the one-parameter groups of
transformations generated by the functionsGi commute. (In
fact, the groups of canonical transformations generated by
two functionsF andG commute if and only if{F, G} is a
trivial constant, not necessarily zero [4].)

Let us consider, for example, the function

S(qi, t, αi) = α1q1 + α2q2 −mgtq2

− α1
2t

2m
+

(α2 −mgt)3 − α2
3

6m2g
, (26)

which is the complete solution (7) of the HJ equation con-
structed in Sec. 2.1. One finds that

∂S

∂q1
= α1,

∂S

∂q2
= α2 −mgt,

which lead to [see Eqs. (25)]

α1 = p1, α2 = p2 + mgt. (27)

On the other hand,

∂S

∂α1
= q1 − α1t

m
,

∂S

∂α2
= q2 +

(α2 −mgt)2 − α2
2

2m2g
,

which, taking into account Eqs. (27), are of the form (24)
with

G1 = −q1 +
p1t

m
, G2 = −q2 +

p2t

m
+

1
2
gt2. (28)

One can readily verify thatG1 andG2 are constants of mo-
tion in involution, and that the function (26) can be obtained
by means of the transformations generated byG1 and G2

from

S(qi, t) = −mgtq2 − mg2t3

6
, (29)

which is obtained from (26) settingα1 = α2 = 0.
Indeed, the function

G ≡ α1G1 + α2G2

= α1

(
−q1 +

p1t

m

)
+ α2

(
−q2 +

p2t

m
+

1
2
gt2

)
(30)

is a constant of motion for all values of the constantsα1 and
α2. The one-parameter group of canonical transformations
generated byG is given by (denoting bys the corresponding
parameter)

q1 = (q1)0 +
α1t

m
s, q2 = (q2)0 +

α2t

m
s,

p1 = (p1)0 + α1s, p2 = (p2)0 + α2s,
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hence, making use of the initial condition (29),

∂S

∂q1
= 0 + α1s,

∂S

∂q2
= −mgt + α2s,

and substituting these expressions into Eq. (18), withG given
by (30),

∂S

∂s
= α1q1 − α1t

m
(α1s) + α2q2

− α2t

m
(−mgt + α2s)− 1

2
α2gt2.

Thus,

S(q1, q2, t) = α1sq1 + α2sq2 −mgtq2

− (α1s)2t
2m

+
(α2s−mgt)3 − (α2s)3

6m2g
,

which reduces to the expression (26) whens = 1.

3. Concluding remarks

According to Proposition 2, any complete solution of the
HJ equation is, locally, the image of a particular solution
(without free parameters) under the action of an Abeliann-
dimensional group (that is, a group locally isomorphic to the
additive Lie groupRn). As pointed out above, these solutions
need not be separable orR-separable. It should be noted,
however, that some functions are invariant under the transfor-
mations generated by a functionG, even if these transforma-
tions are different from the identity. For instance, a function
that does not depend onq1 is invariant under the translations
generated byp1.

One can readily see that, at least in the case of time-
independent operators, an analog of Proposition 1 holds in
the case of the solutions of the Schrödinger equation.

In addition to theR-separable complete solution (7), the
HJ equation for the Hamiltonian (3) also admits complete
separable solutions in the same coordinate system (see also
Ref. [5])
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