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Generation of solutions of the Hamilton—Jacobi equation
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It is shown that any functiot?(q;, p:, t), defined on the extended phase space, defines a one-parameter group of canonical transformations
which act on any functiorf(¢;, t), in such a way that i€7 is a constant of motion then from a solution of the Hamilton—-Jacobi (HJ) equation

one obtains a one-parameter family of solutions of the same HJ equation. It is also shown that any complete solution of the HJ equation car
be obtained in this manner by means of the transformations generateddmstants of motion in involution.
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Se muestra que cualquier funiG(q;, p;,t), definida en el espacio fase extendido, define un grupo unigareamde transformaciones
carbnicas las cuales aein sobre cualquier furfm f(g;, t), de tal manera que §F es una constante de movimiento entonces a partir de
cualquier solud@n de la ecuaéin de Hamilton—Jacobi (HJ) uno obtiene una familia unip&taice de soluciones de la misma ecoadile HJ.

Se muestra tamén que cualquier solu@h completa de la ecudni de HJ puede obtenerse de esta manera por medio de las transformaciones
generadas pot constantes de movimiento en involaoi

Descriptores: Ecuacon de Hamilton—Jacobi; transformaciones@ainas; constantes de movimiento.

PACS: 45.20.Jj; 02.30.Jr; 02.20.Qs

1. Introduction way that if G is a constant of motion, then a solution of the
corresponding HJ equation is mapped into a one-parameter

In the Hamiltonian formulation of classical mechanics, thefamily of solutions of this equation. In this manner, each
canonical transformations, given locally by expressions ofonstant of motion adds a continuous parameter to a given
the formQ; = Qi(g;, p;,t), P = Pi(g;, p;, t), acton the ex- solut!on of the HJ equan_on. We also sho_w that any complgte
tended phase space (the Cartesian product of the phase sp&6dution of the HJ equation can be obtained from a solution
and the time axis) and, therefore, there is a naturally define®ithout parameters by means of the action of the groups of
action of a canonical transformation on any function definecc@nonical transformations generatedsbgonstants of mo-

on the extended phase space (that is, on any functiam, of tion ininvolution.

pi, andt). On the other hand, Hamilton's principal function, ~ Throughout this paper, several examples are given in or-
usually denoted by af, is a function defined on the extended der to illustrate the definitions and results presented here.
configuration space (that is, a functiong@fandt), just like

the wave function in the elementary Sétinger equation, 2. The action of a one-parameter group of
but there is no obvious way to define the action of a canoni- canonical transformations on functions de-

cal transformation on a function gf andt. _ fined on the extended configuration space
However, in Ref. [1] it was shown that, under certain

conditions, one can define an action of a time-independent/e start by reviewing the HJ equation, which will give us the

canonical transformation [that is, a canonical transformapattern to follow in the definition of the action of any one-

tion that does not involve the timeQ; = Q:(q;,p;), parameter group of canonical transformations on functions

P, = Pi(g;j,p;)] on functions defined on the configuration defined on the extended configuration space.

space, in such a way that if a (time-independent) Hamilto-

nian is invariant under the canonical transformation, a solu2.1. The Hamilton—Jacobi as an evolution equation

tion of the corresponding time-independent Hamilton—Jacobi_ o )
(HJ) equation is mapped into another solution. FurthermoreVen & Hamiltoniart (¢;, p;, t) of a system with degrees
f freedom, the corresponding HJ equation is the first-order

it was shown that the action of the one-parameter group of! Ireedc i s
canonical transformations generated by an arbitrary functioHartlal differential equation
pi) i [ jon simi - S
tCiv‘o(gZ,pl) is determined by an equation similar to the HJ equa H(qi,0S/9g;, ) + = - 0. @
In this paper, we consider systems with a Hamiltonianusua"y one is int_erested _inomplete solution®f the HJ
that can depend on the time, we show that one can define trgluation (1), that is, solutionS(g;, ¢, ;) of Eq. (1), con-
action of the one-parameter group of canonical transformal@iningn arbitrary parameters;, such that
tions generated by an arbitrary functi6f{g;, p;, t) on func- : 028 0
tions defined on the extended configuration space, in such a et dq;:0a, # 0,

@)
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because they yield the solution of the Hamilton equationsThe expression (7) is a (complet®;separable) solution of
(see.e.g, Refs. [2] and [3]). However, one can consider thethe HJ equation that reduces to the specified function (5) for
HJ equation as aavolution equationwhich determines the ¢ = 0. (A solution isR-separable if it is the sum of a function
function S(g;, t) that reduces to a given functiof(g;), for ~ of two or more variables and functions of one variable.)

t = 0 (or any other initial valuet, of t). (This fact does not We close this subsection with a second example. The
sound very strange if we consider the relationship betweesolution of the Hamilton equations for the time-dependent
the HJ equation and the Séfdinger equation.) In fact, if Hamiltonian )

we have the solution of the Hamilton equations, we can use H=P _ ktq ®)

it to find the solution of the HJ equation that satisfies any 2m ’

initial condition S(q;,t0) = f(g;). (Similar ideas are often wherem andk are constants, is given by

mentioned in the standard textbooks on analytical mechanics,

3

without presenting, however, a clear statement or an explicit q=qo+ tPo + ki7 p=po—+ }kﬂ’ (9)

procedure.) m  6m 2
For example, in the case of the Hamiltonian Whereqo andpo denote the values Qj andp att = O’ re-

spectively. Lettin
Cp?tp? p Y g
H = ———— + mgq, 3)

2m S(g,0,) = ag, (10)

wherem andg are constants, the solution of the correspond- h . bi ith the aid of E 9
ing Hamilton equations can be readily obtained and is giveﬁ(" erec is an arbitrary constant, with the aid of Egs. (9), we

by have s 08 1 1
30 = aal T §kt2 =a+ iktZ. (11)
= (q1)o + (p1)ot = (g2)0 + (p2)ot _ ﬁ q q |i—9
@ =ajo m 92 = \42)o 2’ Thus, from Egs. (1), (8), and (11), we have
p1=(p1)o,  p2=(p2)o — mgt, (4) 55 ) <35>2 T
w__ - (Z2 q
where(q;)o denotes the value af; att = 0, and so on. As ot 2m \ 9q
the initial condition we choose 1 1 2
=-5 (a + th2) + ktgq. (12)
S(q1,62,0) = a1q1 + az2qo, (5) m

Then, from Egs. (10)—-(12), we readily obtain
whereay, as are arbitrary constants. We want to find the as. (10~(12) y
1 k2t5
(a2t + gakt‘n’ + ) ,

solution of the HJ equation [see Egs. (1) and (3 1
q [ gs. (1) ©) S(g.ta) = ag+ Skt2g—
9 5 2 2m 20
s 1 [[os 8 .
9t~ 2m |\oq + o ) | T M9 6)  which is anR-separable complete solution of the HJ equa-
tion. (We might start with expressions more complicated than
that satisfies the initial condition (5). Recalling that (5) and (10), but these simple expressions are enough to ob-

dS/0q; = p;, making use of Egs. (4) and (5) we have tain complete solutions of the HJ equation.)
It should be clear that a similar construction can be de-

95 _ 95, _ vised using an arbitrary function df;;, p;,t) instead of a

Ign Oq1 | b Hamiltonian.

375 = 375 — mgt = as — mgt. 2.2. Families of solutions of the HJ equation and con-
42 9%2l=0 stants of motion

Substituting these expressions into the right-hand side

0 . . . . .
Eq. (6) we have Lny differentiable functionG(qg;, p;,t), defines a (possibly

local) one-parameter group of canonical transformations, de-

oS 1 ) ) termined by the (autonomous) system of first-order ordinary
a9t = om [a1? + (a2 — mgt)?] — mgga. differential equations
Combining the last three equations one readily finds that, dg¢;  9G(q;,p;,t) dp; _ 9G(gj,pj;) (13)
choosing the integration constant so that Eq. (5) is satisfied, da Op; ’ da 0q; ’

which are of the form of the Hamilton equations.

S(q1,q2,t) = c1qr + aaq2 — mgtqs .
For example, the function

a1t N (ag —mgt)? — ag®

()

pb1p2

2m 6m2g G(q1,q2,p1,p2,t) = o + mgqi, (14)
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wherem andg are constants, leads to the system of equationthe examples of Sec. 2.1. Making use of Egs. (16) and (19)
we have [withS(q;,t,0) = f(g;,t)]

dn _pp dez _p
ja_m, do:i_m7 ﬁzﬁ —mgoa = —mgaq.,
% = —mg, % =0. (15) g1 0q1|a—0
From the last two equations we find that % = gT]i T ag — mgt. (20)
p1 = (p1)o — mya, p2 = (p2)o, (16)

Substituting these expressions into Eq. (18), taking into ac-

where(p;)o denotes the value gf;, for a = 0. Substituting count Eq. (14), we obtain
these expressions into the first pair of equations (15) we get

oS 1
dgi  (p2)o dgz  (p1)o — mga da _E(_mga)(% —mgt) —mga.
dae ~ m’ da m ’
Combining the last equations and the initial condition (19)
Hence, one finds that
2 )oY 1)o¢x 042
q1 = (Q1)0 + (p,nio ) q2 = (q2)0 + (p’leo - 97 (17) ‘SV((]17q2’t7 O[Q,Oé) = (a2 — mgt)q2 — mgaq

(a2 — mgt)? — ap®

6m2g

The action of the canonical transformations defined by a
function G(g;, p;, t), on functions of(g;, t), will be defined
imitating the HJ equation.

Definition. The image of a given arbitrary functiof(q;, t) Note thatt is treated here as a constant because the canonical

under the one-parameter group of canonical transformatiorigansformations do not affe¢t Since the function (19) is a

generated by (g;, p;, t) is the functionS(g;, t,«) such that ~ particular case of (7), is a solution of the HJ equation (6), and
one can readily verify that (21) slsoa solution of Eq. (6),

1
+ 5(@2 — mgt)ga2 + (21)

G(qi, 0S/0qi,t) + 95 _ 0, (18) forallvalues of the parameter[which is essentially the two-
da parameter family of solutions (7)].
with the initial conditionS(g;,t,0) = f(q:,t). (Cf. Eq. (1).) Thus, we have obtained a two-parameter family of solu-

The following example shows that this definition pro- tions of the HJ equation (6), starting from a one-parameter
duces the expected effect in the case of transformations thaplution of this equation. As we shall show in the following
only affect the coordinates of the configuration space. InProposition, this is a consequence of the fact that the func-
deed, the one-parameter group of canonical transformatiorton (14) is a constant of motion for the Hamiltonian (3).

generated by.g, G = p; is given by [see Egs. (13)] Proposition 1. The image of a solution of the HJ equation,
. So(gi, t), under the one-parameter group of canonical trans-
@ =(@)o+a,  ¢=(g, fori=2, pi=(pio formations generated by a constant of motiéfy;, p;, ¢) is a

one-parameter family of solutions of the same HJ equation.
Proof. Assuming thatS(g;, ¢, «) is a solution of Eq. (18),
making use of the chain rule repeatedly, we have (here, and
in what follows, there is summation over repeated indices)

that is, “translations” along the -axis. Then, Eq. (18) takes
the f
e form o5 0S

—_ i 07
9a: | o
whose general solution is

0 oS 0H 0?8 0%S

S(q7at7a) = F(Ql —Q,42,..., QWJt)’ E B aipjaaaqj * aaat
whereF is an arbitrary function. By imposing the initial con- _ _0H 0G(4;,05/9qi,t)  9G(gi,95/04i,1)
dition S(g;,t,0) = f(q:,t), we find that Ip; 9q; ot
OH (0G  0G 9°S
S(qiat7a):f(ql_a7q?7"'a(bl7t) = — Qa5 (+ )
Op; \0q;  Op; 0q;0q;
which is the expected effect of a translation alongg¢haxis. 9G 928 Ple;
As a second example, the images of the function T op 0tog ot (22)

s — mgt)® — ag’
g

f(git) = (a2 —mgt)qa + (19)  According to the hypothesis; is a constant of motion, that

6m2g i
(which is the function (7) withy = 0) under the transfor- oG  0GOH 0GOH
mations generated by (14) can be obtained proceeding as in ot + 37%@ N @aiqj =0, (23)
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thus, the last line of Eq. (22) amounts to Then we see that the commutativity of the partial deriva-
tives of S implies that the Poisson brackets of the are
oG (3H n oH 9°S n 325> equal to zero. (The assumption thi;, ¢, «;) is a complete
Opi \9q; ~ Op; 0q;0q;  Otdq; solution of the HJ equation implies that the Poisson brack-
oG o 98 ets{G;,G;} vanish everywhere.) Since the Poisson brack-
=5 B, {H(% 05/0q¢;,t) + 815} ets{G;,G;} are equal to zero, the one-parameter groups of
pi O transformations generated by the functiaghiscommute. (In
B _dqi 0 {H( 980, 1) + 8S] fact, the groups of canonical transformations generated by
 dadg; > > ot two functionsF and G commute if and only if{ F, G} is a
) _ trivial constant, not necessarily zero [4].)
[see Egs. (13)]. Hence, we obtain the equation Let us consider, for example, the function
% [H(qi(a)7 05(qi(a),t,a)/0g;,t) S(qist, o) = a1q1 + aaga — mgtge

B aq?t n (ag — mgt)? — ao®

26
2m 6m3g - (28)

aS(Qi (a)v t, a) _
e

o ] ] which is the complete solution (7) of the HJ equation con-
which involves the images df and the coordinateg under i cted in Sec. 2.1. One finds that

the transformations generated @y Since the expression in-

side the brackets in the last equation vanishesfer 0, it is 95 _ o5

equal to zero for all values af, thus proving the assertion. oq 9q2

A partial converse of this Proposition is true. The stepsin . .

the prI(D)of show that if the imagespof a solution of the HJ eF()quayVhICh lead to [see Egs. (25)]

tion under the transformations generatedyre solutions

of the same HJ equation, astis a complete solution of the

HJ equation, thet is a constant of motion. The assumption o, the other hand,

that S is a complete solution of the HJ equation assures that

Eqg. (23) holds everywhere. In fact, the following stronger 95 ot as 0+ (ag — mgt)? — s
2m2g

a1 = p1, ag = p2 + mgt. (27)

2

result holds. T A
Proposition 2. A complete solution of the HJ equation, ) .

S(gi,t, ;) (not necessarily separable Brseparable), is the WNich. taking into account Egs. (27), are of the form (24)
image of S(g¢;, t,0) under the transformations generated byWlth

then constants of motion pit pat 1
G1:—Q1+ﬁ17 Gzz—Q2+%+§gt2~

)

(28)
Cilaipit) = o (g boalaipint))  (29)
i\di Pirt) = da; i, %5 Xk, Pl One can readily verify that’; andG, are constants of mo-

tion in involution, and that the function (26) can be obtained

( = 1,2,...,n), obtained by eliminating the; by means  p means of the transformations generatedchyand G

of 08 from 2,3
b 57%‘(% %) (5) S(ai,t) = —mgtaz — —5—, (29)
Furthermore, the functior; are in involution (.e., the Pois-  which is obtained from (26) setting; = a» = 0.
son bracket of7; and G is equal to zero). (Note that, ac- Indeed, the function
cording to Eg. (2), in principle, one can find tlg from
Egs. (25)) G =01G1 + asGy
Proof. We note that, by virtue of Egs. (25), Eq. (24) is equiv- 1
alent to Eq. (18). Since, by hypothesifg;, ¢, ;) is a com- = (—q1 + plt) + o (—q2 + pat + gt2) (30)
plete solution of the HJ equation, each functigp defined m m 2

by (24), is a constant of motion. In order to prove that thejs 5 constant of motion for all values of the constantsand
functionsG; are in involution, making use of Eq. (24), we , The one-parameter group of canonical transformations
calculate the mixed partial derivative generated by7 is given by (denoting by the corresponding

525 9 parameter)
= _7G7(qza 8S/aQ’n ta Oék)

80@-80@- aai ant ot
@ =(q)o+—s, @ =(q)0+—s,

B _3Gj 0 9S 090G, 0G; m m

T Opp Oy Oqi Opr Oqi p1 = (p1)o +a1s, p2=(p2)o+ azs,
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hence, making use of the initial condition (29),

— =0+ ays, % = —mgt + azs,
2

and substituting these expressions into Eq. (18), &itliven
by (30),

85 Oélt( ) T
— =« — —(ags «
D5 141 m 1 242
Ozgﬁ 1 9
— —(—mgt — = t=.
(—mgt + a2s) 20429
Thus,

S(q1,q2,t) = a1sq1 + aasqa — mgtgs

(a18)?t  (ags — mgt)® — (ags)?
- +
2m 6m2g

)

which reduces to the expression (26) whes 1.

3. Concluding remarks

According to Proposition 2, any complete solution of the
HJ equation is, locally, the image of a particular solution
(without free parameters) under the action of an Abelian
dimensional group (that is, a group locally isomorphic to the
additive Lie grougR™). As pointed out above, these solutions
need not be separable &-separable. It should be noted,
however, that some functions are invariant under the transfor-
mations generated by a functiéf even if these transforma-
tions are different from the identity. For instance, a function
that does not depend a@# is invariant under the translations
generated by .

One can readily see that, at least in the case of time-
independent operators, an analog of Proposition 1 holds in
the case of the solutions of the Séimger equation.

In addition to theR-separable complete solution (7), the
HJ equation for the Hamiltonian (3) also admits complete
separable solutions in the same coordinate system (see also
Ref. [5])

1. G.F. Torres del Castillo, D.A. Rosefdvarez and |. Fuentecilla

CarcamoRev. Mex. k5.56 (2010) 113.

2. E.T. Whittaker,A Treatise on the Analytical Dynamics of Par-
ticles and Rigid BodiesAth ed. (Cambridge University Press,

Cambridge, 1993). Chap. XII.

3. F. Gantmacher, Lectures in Analytical MechanicgMir,
Moscow, 1975). Chap. 4.

4. G.F. Torres del CastilldDifferentiable Manifolds: A Theoreti-
cal Physics ApproackBirkhauser Science, New York, 2012).
Sec. 8.2.

5. G.F. Torres del CastilldRev. Mex. ¥5.59 (2013) 478.

Rev. Mex. Fis60(2014) 75-79



