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From the five dimensional Myers-Perry solution and consider that de metric MP corresponding to the Kaluza-Klein ansatz (zero mode), we
obtained4 D solution with non-minimally coupled scalar and electromagnetic fields, characterized by three parametebsrelated to

the mass, angular momentum and electromagnetic field, respectively and proposing 4liastiiation is a solution type black hole. Then

fora # 0, b = 0 the electromagnetic field vanishes and the black hole is stationary. £d¥, b # 0 the solution is static with electric field.

If a # 0, b # 0 the solution is stationary with electric field and, due to the rotation, a magnetic field appears. The scalar field that arises from

the dimensional reduction is present in all cases. At infinity the solution is asymptotically flat and the trace of the scalar field get lost, turning

out that this solution is in agreement with the no hair conjecture.
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1. Introduction sions of the Myers-Perry solution ; there the region corre-
sponding to the ergosphere, possessing two Killing vectors,
Kaluza’s theory (1921), complemented by Klein’s interpreta-was interpreted as colliding gravitational waves. In this work
tion (1929), known as Kaluza-Klein theory (KK) is the pro- by applying the idea Kaluza-Klein to the five dimensional
posal to unify the theories of general relativity and electro-Myers-Perry solution we obtained4aD solution with scalar
magnetic theory in a five dimensional vacuum space-timeand electromagnetic fields. The obtained solution is char-
The Einstein’s equations (EE) for a vacuum five dimensionahcterized by three free parameters interpreted as mass, an-
space-time are equivalent to four dimensional EE with matgular momentum and electromagnetic field. Particular cases
ter consisting of scalar and electromagnetic fields. A comare static or stationary, with or without electromagnetic field,
plete analysis of the KK theory can be consulted in [1], wherewhile the scalar field that arises from the dimensional reduc-
among other resultstD space-times are interpreted as per-tion is always present, but at infinity its track is lost.
fect fluids and also geodesic trajectories are studied. The 4D solution is consider a solution type Black holes,
Previous work on this line includes the thermodynamicthen the derived black hole is regular, except in the case that
properties and classification of stationary, spherically symthe two parameters related to rotation and electric field are
metric, asymptotically flat solutions of the Kaluza-Klein the- both zero. The fact that the solution is derived from a reg-
ory corresponding to regular black holes in four dimen-ular 5D black hole does not guarantee that #ie solution
sions [2]. It has been shown that the regular black holege singularity-free. Actually, the lift t&.D of singular4D
that are constructed from the Kaluza-Klein reduction are inspace-times has been used as a mechanism to release of sin-
terpreted as rotating bound states of DO and D6 branes [3yularities [9].
Moreover, structures similar to a Kaluza-Klein bubble arise  Another aspect of interest to be extracted from the derived
when five dimensional deSitter space-time with a deficit ansolution is if the scalar field that arises from the dimensional
gle is considered [4]. In [5] charged axisymmetric station-reduction(zero mode), can be detected at infinity, being then
ary black holes for a wide class of scalar tensor theories counter example of the no hair conjecture. In all cases the
with minimally coupled scalar field were generated from theenergy density associated to the scalar field vanishes at infin-
known general relativity electrovacuum solutions. For theséty. However the Riemann tensor associated to the black hole
solutions no regular horizons coexist with scalar field as wellyith scalar field vanishes more rapidly compared to the corre-
as they reinforce the Bekenstein’s statement that there is nsponding Schwarzschild’s black hole, in a sort of smoothing
asymptotically flat, stationary and stable black holes in Genof the curvature produced by the scalar field.
eral Relativity endowed with a scalar field. The paper is organized as follows:in Sec. 2 it is pre-
In [6] it is demonstrated that a solution for a rotating black sented thesD Myers-Perry solution; in Sec. 3 the obtained
hole with electric and scalar charges can be generated by 4D space-times, their fields and asymptotic behavior are ana-
boost transformation of the fifth coordinate from the Kerr so-lyzed; the horizons of théD solution are studied and the new
lution. interpretation of the Myers-Perry’s parameters is discussed.
The Myers-Perry black hole [7] is the N-dimensional gen-Section 4 presents interesting particular spaces-times for the
eralization of the Kerr geometry; in five dimensions it is adifferent values of the parameters; in some cases the thermo-
regular black hole with two angular momenta. Previously,dynamics is discussed. Final remarks are given in the last
in [8] it was addressed a reduction from five to four dimen-section.
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2. Myers-Perry solution The previous action is written in the string frame (coupling
between the scalar field arfg); it is well known that is re-

The Myers-Perry (MP) solution [7] is a solution of vacuum |ated to the action in the Einstein frame via a conformal trans-
Einstein equations in an arbitrary dimension. In particular Weioymation of the metric tensor.

address the five dimensiondl[{) case representing a regu-

: . . 2 We establish a comparison between i Myers-Perry
lar rotating black hole (two rotations) that is a generalization . . - . :
. . . . solution to interpret it intD (zero mode and coordinateis
of the Kerr solution. This solution possesses three Killing

: 1 o
vectors and one Killing tensor [10]. In the Boyer-Lindquist not the radius of*). There are three possibilities to select the

. . . fifth coordinate (Killing directionsip, ¢t andt) but only two
coordinategr, , 6, ¢, ) [10] the MP line element is; are spacelikep andy. Given the symmetry betweehande

r? and betweemr andb in a phase ofr/2, it is physically equiv-
A alent to choose or ¢ as the compact coordinate. Choosing
+ (12 + b?) cos? Ody)? ¥ as the fifth coordinate, the scalar field and electromagnetic
potential are given by:

d82 _ p2

dr® + p*do* — dt* + (r* + a?) sin® 0dp?

2
+ Z0[dt + asin® 6dg + beos® 0dy]?, (1) ,
P 72 2 2,32, T0;2 2
= by = 3 9 —|— b —|— 7b S 9 5 6
where @ = Gyp = COS (r 2 cos ) (6)
2_ .2, 2 2 2 2 - 2

p° =1+ acos” 0+ b°sin” 0, quQAt:gtw:bCOSz@:)%, @)

A = (r? +a®)(r* + V%) — rar?. 2 ,

~ r )

the angles) ands) take values from the intervé, 2], andd KO%Ap = gyy = p%ab sin?  cos” 0, (8)

takes values i, 7/2]; a andb are the two angular momenta,

ro is related to the black hole mass. The black hole horizon tice thatd., — asin? 04 i Kerr-N black hol
(double root) is located at : notice that4d, = asin +, as in Kerr-Newman black hole,

and that the coupling between the scalar and electromagnetic
r2 = 1 {r% _a2 b4 \/(rg —a? — b?)2 — 4a252| (3) field is through the parametér The line element ikD has
2 the form:

and represents & sphere. The MP solution is regular ex- ) 5 o
ceptifa = b = 0 that corresponds to the Tangherlini’s solu- 52 — (7“3 1 525214?) a2 + P g2
tion [11] and only in this case it has a singularityrat 0. P A

2 2 i 2 0 o4 272 42 2
3. Myers-Perryin 4D + {(r + a)sin“ 0 + pza sin® 0 — k“¢ A4 d¢
It is well known that thes D Kaluza-Klein theory in vacuum + p2dO% + (a sin2 9’;(3 _ qu?AtA(b) dtdp  (9)
is equivalent to atD space-time equipped with scalar and P
electromagnetic fields [1]. There are several ways to reduce
from five to four dimensions, in here we adopt the Klein'sthis line element represents a stationary space-time
compactification approachg. to consider that the fifth co- with scalar field ¢) and electromagnetic potential
ordinate has a circular topology at a small enough scale; thig,, = (A4:,0,4,,0). The corresponding components of

is also known as the cylinder condition. the Maxwell tensoi;; = 0;A; — 0; A; are given by,
The relation between theD Kaluza Klein metricgsp
and the4D space timed,z) is given by F, = E, = 8,A, — 0,4,
Jap + ”2$2Aa‘4ﬁ kG Ao bré cos* 6 (b2 + 12 + p?
gan = y ] @ =04 == ) (10)
kG2 Ap e pio
where we have scaled the electromagnetic potentiaby Frp = By = 0y Ag — 0pAr = —0p Ay
a constants, and ¢ is the scalar field. [4, B] run over r2bcos® fsin 26 [(a2 — b2) (b2 + r2) + b2r2]
{0,1,2,3,4} and|a, §] over{1,2,3,4}. The obtained.s = - k i (11)
is a solution to the action [1]
. R Fd)r = Br = 8¢Ar — (97>A¢ = 7(()\'7«14(1) = asin2 GET (12)
S=—[day/=go| —=
/ v g¢<167TG Fpp = By = 89A¢ — 8¢A9 = 89A¢
42 aB g5 49 & 2 o 4 2 2\ (2 4 2,.2
n gFagF“ﬁ n 2g 8,1?8%5 . (5) _ abrgsin26 cos™ § [(a® +7%)(b i— ) + b2rg] (13)
4 3% 42 k plot
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and
Fiy =0 Fo=0 (14)

From these expressions we see that it is a stationary solu-
tion with a rotation parameterized ly if « = 0 the solution
becomes diagonal and therefore static. Particularly interest-
ing is the fact that the stationarity is not derived from boost-
ing a static solution. The scalar field is present no matter
the value of the parameters, as an effect of the dimensional
reduction. This circumstance implies that the obtained solu-
tions are not subject to the unicity theorems validlin for
the Einstein-Maxwell solutions.

The electromagnetic field derives from th® angular
momentumb, since wherb = 0 the electromagnetic field
vanishes. Moreover, the magnetic field componéfysand
Fy4 are associated to the angular momentugince the so-
lution with a = 0 andb # 0 does only possess electric field
(componentd,. and Fyy).

3.1. Event Horizons

Since that thel D solution comes from a solution that repre-
sents a black hole inD, we search for the possible horizons
considering that thé D solution (9) is a solution that repre-
sent a black hole. We obtained that thB space-time (9)
has one horizon derived frogy,. — oo (A = 0) that corre-
sponds to the horizon D (3), but in this case is 82 sphere
with the same restrictiory > a + b.

We determine the event horizon solving gf = 0; the
solution is the double root:

1
=3 [B + /B2y 4@} (15)
where
B=12_a2cos26 —b2sin2f — b2 FIGURE 1. Numerical result for the horizon;, and possible er-
0 gospherer.. The first graphic is fon = b = 3 andro = 8. The
Q = —b%a®cos® 0 — b*sin? 0 + r%bz sin?d  (16)  second one correspondsde= 5, b = 0 andro = 9
When¢;" is the time like Killing vector and is the ro- 'Considering fixed coordinates’ = {¢,r}, the invariant
tational Killing vector, they both satisfy Killing's equation X is given by;
£a:p + &£8.q, then the norm of the time like Killing vector is A M2
£%€0 = g Kir = 5—7 7% (17)
- . pBcostd N
If the norm of Killing vector goes to zero, we obtain the
Killing horizon which is the information described in (15) N = [r2b? cos® 0 + p? (% + b?)]
(ergosphere). 2, 2\(,.272 2 2,2 | 12
From Eq. (15) onlyr?F is physically acceptable since X (7 + a7)(rgb” cos™ 0 + p*(r" +b%)
r2 < 0. In Fig. (1) we show the two horizons, one corre- +a?rgp?(r? + b*)sin” 0],

sponds to a spherically symmetrid (= 0) and the other is s 5 oo o 0 9 ouo

an ergosphere whose shape depend on the values of the pa- M = (p” 477+ a”)[rgh” cos™ 0 + p”(r" + b7)]

rameters: an'db: ' + r§a2b2(p2 + 72 4 b2) cos? O sin® 6, (18)
The previous statement can be posed in terms of trapped

surfaces, whose existence is determined from the invariank’ is zero only ifA = 0, and in this case we say that a hori-

K, [13]: the marginally trapped surfaces are defined wherzon is present (horizon,); otherwise, Eq. (15) determines

K = 0 and coincide in many instances with the classicalthe ergosphere.. K does not diverge except in the case

horizons. On the other hand the space-time presents singu-= b = 0, in which K « 1/r? and the4D solution (black

larities if K diverges. hole) is singular at = 0.
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3.2. Interpretation of parameters

In five dimensions the parametersandb are related to the b2sin20 1

two angular momenta of the MP black hole arids related By = % ~ (24)

to its mass. After we apply the KK reduction, the interpre- kr r

tation of the MP pqrameters in 4'.3 may be obtaiqed from theI'he magnetic field arises from the rotation, sinceif 0, the

asymptotlc behavior of the metrllc components in Weyl CO_magnetic field vanishes. As for the electric field, its asymp-

ordinates f, z). The transformation that relates the Boyer- L . . . i
tote is signing some kind of electrical multipole. If one com

Lindquist(r, #) and Weyl(r, z) coordinates is given by [14]: pares with the electric field components for a given multipole,

. . , whose dependence orgoes likel /(r'+2); m being re-
= VA 20 qim . . . .
" z\ﬁsm ’ lated to the azimuthal angle [12]. On this basis we can think
r2 2 a2 — b2 of a electric multipole of ordefr = 4.
ZCOS20<1O27AQ>,
A = g2 (1 + az> (1 + Ii) — 12, (19) 3.4. Energy-momentum tensor of the scalar field
r r

In these coordinates the following limits at infinity apply 1° c@lculate the total energy-momentum tensor of the com-

/T 22 — oo with z/v/72 + 22 =finite. The asymptotic plete scalar and electromagnetic fields is very cumbersome.
behavior of the metric functions i) Minkowski-spacetime Since we have shown that at infinity the electromagnetic field
is (cf. Egs. (4.8) in [14]): vanishes, then it is important to determine what the behav-

ior of the scalar field is at infinity. To this end we calculate

B 2M -9 oN1—1 the scalar component di,,. If the electromagnetic param-
Gu=—1+ N + Ol + 2%)] eter vanishesh = 0, the solution (9) represents a station-
9.2 ary (@ # 0) or static ¢ = 0) black hole with scalar field;
Gio = — g+ O[( +2%)]""  (20) the information about the scalar matter can be extracted from
(72 22)% (see [1)
And comparing Egs. (20) with the expansions from 1 Va(d.0
. _ B( oz(b)
Eqg. (9), the mass and angular momentur ihare: Top = %T, (25)
_ 2Msp T(Q) _Jip ar%
Map = 3r 4 Jip = or 8 (1) with the scalar field¢) given by Eq. (6), the component cor-

In this case the parametey is related to the mass arnd responding to the energy density is

to the angular momentum. On the other side the pararheter
r3(r? + 2a? — a® cos? 0)

is related to electromagnetic field. Tt — 26
¢ (r2 + a?cos? 6)3 (26)
3.3. Asymptotic Behavior
The asymptotic behavior of thieD solution when- — oo is: In the limit of large distances, — oo, the energy density
associated to the scalar field vanishegasx r2/r*; then
dsip = —dt* +dr? + r?df* + r*sin® 0d¢®,  (22)  the scalar field is associated to the source, vanishing at large

_ _ _ ) ) _ distances, this in agreement with the asymptotic flatness of
that is a Minkowski space in spherical coordinates, then thene metric (22).

space time intD is asymptotically flat.

. . The no scalar hair conjecture excludes the availability of
In the limit » — oo apparently the scalar field ) y

y N . .. any knowledge of a scalar field from the far away exterior
¢ r* + b* cosf diverges, however, the energy density geometry of a black hole even when a scalar field is present

0 : .
Ty that corresponds o the scalar field va_mshes asymptotr, the space-time along with gravity. Our results are then in
cally, as we shall show in the next subsection. Moreover, on . : :
: : A agreement with the no-hair conjecture.
the axial axis- — 0 the scalar field is constant.
In the limitr — 0, the electromagnetic field is constant;
while in the limitr — oo the field behaves like
W 1 4. Particular cases
E,— =2~ —,
kr6 6 )
10 cos Obr2 (b2 9 { The4D space-time (9) has three free parametgisandr,
Ey — 2sin 0 cos 20( —a7) —. (23)  making it possible to obtain different space-times depending
kT r on the different values of these parameters. We shall address
separately these cases as follows:
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4.1. Casey#0,b=0anda #0 In this case the expressions for the Riemann tensor com-

ponents can be handle, some of them are,
From Egs. (7) and (8) itis clear thatlif= 0 anda # 0, both

A and A, vanish (stationary Brans-Dicke case); the scalar trir _ 3L3 RtOt0 _ _ o

field reduces t@? = r2cos?§. The line element (9) takes s¢ rd’ s¢ ri(rd —r2)’

the form:

R¢9¢9 _ T(Q) RTOT0 _ T(Q) (T(% 7 TQ) (30)
r2 sC ) 0’ sc T r8 s
dsle = — <1 - 0) A2 r8sin
2 2 2 . .
ré+ a®cosf And one can compare them with the corresponding to a
(rz + a2 cos? 9) 0 Schwarzschild solution with mass,
(55— ) dr
2 2 _ .2
rta "o Rirtr _ _2ﬂ RiOW0 _ m
asin’ 62 Sehw e S (T

+ (r* + a® cos? 0)df* + ————2—dtd

( ) 7t a0 g $op0 _ _ 2m roro __m(r —2m)

2 RSChW - .20 RSchw - 6 ) (31)
raa?sin® 0 r7sin” 6 T

2 2
+(T ta +r2+a260520

) sin? 0de?  (27)

From the comparison we see that for the black hole with

. . . scalar field, its corresponding Riemann tensor vanishes, for
Moreover the line element (27) is non diagonah(# 0),  qiancerd990 as =5 while the Schwarzschild's goes as

being.then a_stati;)nary 230'““;’” .With scalar field. It has &7 meaning that at infinity Schwarzschild’s gravitational
jE he”fj' hfl';zcz’s‘;z :T;;g ;az,e C\'/?}Z?}n by ;hti:rl?noeszﬁ]:re field persists farther than the corresponding to the black hole
+ =0 4 ' ; 0 = 4 - =" with scalar field. Roughly speakin
ment (27) is singular at = 0, singularity that lies behind the gnly sp g
horizonr? = a?sin” # Rabed
+ abed Schw
R —=aw 32
oc e, (32)

scalar

4.2. Caseg#0,a=0andb+#0 L . .
07 0,a 7 It indicates that the scalar field has a smoothing effect

In the case = 0, b # 0, one of the electromagnetic potential On the curvature. In principle such effect should be de-
components is zerads = 0, but we still have the electric tectable with very fine precision experiments, for instance,
field associated tel,;, and since there is no rotatioB; = 0.  in geodesic deviation near a black hole of known mass, the
The line element (9) represents a static space-time= 0), measured deviation should be stronger in absence of scalar
with a spherical horizon with radiog = 2 —b?, whose size ~ field.

is reduced fromr, as an effect of the electromagnetic field. ~ In this case is also easy to check the energy conditions
The line element is given by: satisfied by the scalar field. The necessary condition for the
existence of a black hole with spherical symmefiy<
o oy is satisfied and does not impose additional conditionsgon
ds? = (20 — 1 k23242 ) d® + 1* sin® 0dg? 0% Imp Jona. ¢ o
3 <p2 wem A 77 sin” fdg the weak energy conditiohl” — 7} > 0 is satisfied as well.

The line element (29) corresponds to a static space-time

2
+ (r? 4 b? sin? 0) {déﬂ + 2%2} (28)  with spherical symmetry and scalar field and the mass is
rit bt g given by [16]:
Whenry = b the line element (28) presents a naked sin- ) r )
gularity atr = 0. M(r) = % -3 /Tf(r)TQdT = ;70 (33)
T

Th

4.3. Casey#0,a=0andb=0
where r;, is the radio of the horizon that in this case is
In this case the electromagnetic field vanishes and we have,g — . Testing the condition for tidal forces at the horizon
static space-time with a scalar field. The metricis given by 277" — -, M" < 1, it is satisfied. The regularity of geom-
9 etry at the horizon ensures that tidal gravitational forces are
ds?, = — ( — Tg) dt? bounded there. Test particles following geodesics feel noth-
r ing particular as they cross the horizon.

d 2
+—( r2)+r2sin9dw2+r2d62, (29) 44, Casey#0,a—b
178

In this case the space-time has a spherical horizon at
The solution (29) presents a spherical horizon?at 2 3 = 1 (rd —2a® £ \/r§ — 4a?r2) wrapped by the ergoshere
and has a singularity at = 0; it is very similar to the 71 = J(r§ — 2a® + \/r§ — 4a®r¢ cos® §). The electromag-

Gibbons-Maeda black hole [15] but without axion charge. netic and scalar fields do not vanish.
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45. Casey=0,a#0,b#0 in this case the temperature and specific heat depend on the
. coordinate §). The denominatoN does not vanish for any
When the parameter related to the masss zero, the solu-  yye and therefore we can not conjecture about a phase tran-

tion is static without electromagnetic field, sition.
9 9 P> 9, 9 On the other hand when we consider the static black hole
dsyp = —dt” + rodr Co - .
(r2 4 a2)(r2 + b2) (a = 0), the behavior is very S|1m|Iar to Schwarzschild’s,
being the surface gravityy = --; and the temperature
+ (r? 4 a?) sin” d¢?* + p*db* (34) g g W "o P

T = £ = 32— The specific heat is given by, = —r.
This space-time is regular and does not posses horizon;

the scalar field is given by = (12 + b?) cos? 6; there is no

energy density associateddpbeing7} = 0. 6. Conclusions

5. Black Hole Thermodynamics A 4D space-time a scalar and electromagnetic fields is ob-
tained through the Kaluza-Klein reduction fromd B Myers-
Thermodynamic properties of black holéB in vacuum are  Perry black hole; the angular momentum and mass of the MP
well known, and is interesting to determine the thermody-solution are related in théD solution to mass and angular
namic quantities of the stationary solution (no electromagmomentum; the second angular momentum of the MP so-
netic fields,b = 0) that represents a black hole (27) with |ution becomes associated to the electromagnetic field. The

scalar field. The surface gravity [16] is given by: event horizon is regular and in the stationary case there is
N . 10gu an ergosphere. TheD space-time is asymptotically flat and
k= rllj}h 20r 27T, (35) regular. There are several interesting particular cases: it may

be static or stationary and the electromagnetic field may van-
ish or not depending of the chosen values of the parameters;
%he scalar field is present in all cases, as a result of the dimen-
sional reduction.

wherery, is the radio of horizon and’ is the black hole tem-
perature. The specific in terms of the energy density (onl
scalar field is present):

2 . . L
C, = —2mr? L+ rhTtt(rhth (36) Near the horizon the energy density of the scalar field is
1—riT(rn) — ry - (rn) nonzero. Moreover we check that in the spherically symmet-

Jic case the weak energy condition holds and the tidal grav-
itational forces are bounded in the vicinity of horizon. The
no-hair conjecture holds in this three-parameter solution: at

For the stationary black hole the surface gravity and th
specific heat are given, respectively, by:

7= lim 1 Ogu infinity there is no trace of the scalar field because the en-
r—rp 2 Or ergy density associated to the scalar field vanishes at large
y r2r r2\/rg — a2 - distances.
= 11m =
r—r, 2+ a?cos?0  (r2 — a?sin® 0)2
M 2 _ 202 0
o= —2n(r2 — a?) (rg 13 sin” 0) 38y Acknowledgments
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M = (7'(2J — a?sin? 9)3 + r% (7'(2J — a2)(7'3 + a2 sin? 0) support.
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