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Point symmetries of the Euler–Lagrange equations
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We give an elementary derivation of the equations for the point symmetries of the Euler–Lagrange equations for a Lagrangian of a system
with a finite number of degrees of freedom. We show that given a divergence symmetry of a Lagrangian, there exists an equivalent Lagrangian
that is strictly invariant under that transformation. The corresponding description in the Hamiltonian formalism is also investigated.
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Damos una derivación elemental de las ecuaciones para las simetrı́as puntuales de las ecuaciones de Euler–Lagrange para una lagrangiana
de un sistema con un número finito de grados de libertad. Mostramos que dada una simetrı́a hasta una divergencia de una lagrangiana, existe
una lagrangiana equivalente que es estrictamente invariante bajo esa transformación. Tambíen se investiga la descripción correspondiente en
el formalismo hamiltoniano.
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1. Introduction

One of the advantages of the Lagrangian formalism in clas-
sical mechanics is that, roughly speaking, each continuous
symmetry of the Lagrangian function of a system can be re-
lated to the existence of a constant of motion. However, usu-
ally, this relationship is not fully exploited, and is employed
only in connection with simple geometrical transformations,
such as translations, rotations, and time displacements.

In the case of a system with one degree of freedom, a con-
stant of motion amounts to a first-order ordinary differential
equation (ODE) so that, with the aid of a constant of motion,
instead of having to solve a second-order ODE, one only has
to solve a first-order ODE. When the number of degrees of
freedom is greater than 1, any constant of motion also helps
to simplify the equations of motion.

The (strict) variational symmetriesof a Lagrangian
L(qi, q̇i, t) (i = 1, 2, . . . , n), are the point transformations,
q′i = q′i(q1, . . . , qn, t), t′ = t′(q1, . . . , qn, t), that leave the
action integral

t1∫

t0

L dt

invariant, that is,

L(q′i,
dq′i
dt′

, t′)
dt′

dt
= L(qi,

dqi

dt
, t), (1)

with dt′/dt = ∂t′/∂t+ q̇i ∂t′/∂qi (here and henceforth there
is summation over repeated indices). Theone-parameter
groupsof strict variational symmetries are determined by the
first-order linear partial differential equation (PDE)

∂L

∂qi
ηi +

∂L

∂q̇i

(
dηi

dt
− q̇i

dξ

dt

)
+

∂L

∂t
ξ + L

dξ

dt
= 0, (2)

where ηi(qj , t) and ξ(qi, t) are n + 1 unknown functions
(see,e.g., Refs. [1–6]) (note that,e.g., dη/dt = ∂η/∂t +

q̇i ∂η/∂qi). A nontrivial solution of this equation yields the
constant of motion

ϕ(qi, q̇i, t) = ηi
∂L

∂q̇i
− ξ

(
∂L

∂q̇i
q̇i − L

)
. (3)

A wider class of variational symmetries, also related
to constants of motion, is formed by the one-parameter
families of point transformations,q′i = q′i(q1, . . . , qn, t, s),
t′ = t′(q1, . . . , qn, t, s), such that

L(q′i,
dq′i
dt′

, t′)
dt′

dt
= L(qi,

dqi

dt
, t) +

d
dt

F (qi, t, s), (4)

for all values of the parameters for which the transforma-
tion is defined, whereF is some function ofqi, t, and s
only. These transformations are sometimes called Noether
symmetries [2], or divergence symmetries [3], but it seems
more appropriate to call them Noether–Bessel-Hagen sym-
metries [7]. From Eq. (4) it follows that a set of functions
ξ(qi, t), ηi(qj , t) generates a one-parameter group of varia-
tional symmetries ofL if there exists a functionG(qi, t) (de-
fined up to an additive trivial constant) such that

∂L

∂qi
ηi +

∂L

∂q̇i

(
dηi

dt
− q̇i

dξ

dt

)
+

∂L

∂t
ξ + L

dξ

dt
=

dG

dt
, (5)

[cf. Eq. (2)]. (The functionG is equal to the partial derivative
of F with respect tos, at s = 0, assuming that ats = 0 the
transformation reduces to the identity.) In this case, in addi-
tion toξ and theηi, one has to findG. The constant of motion
associated with a solution of Eq. (5) is

ϕ(qi, q̇i, t) = ηi
∂L

∂q̇i
− ξ

(
∂L

∂q̇i
q̇i − L

)
−G. (6)

Even though it is more complicated to solve Eq. (5) than
Eq. (2), for some Lagrangians Eq. (5) leads to many more
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constants of motion than Eq. (2) (see,e.g., the example given
in Sec. 2.1.1 of Ref. [6] and the examples below).

The method usually employed to solve Eqs. (2) and (5)
relies on the fact thatξ andηi are functions ofqi andt only
and, in many cases, the left-hand sides of Eqs. (2) and (5) are
polynomials in theq̇i, with coefficients that depend onqi and
t. Since Eqs. (2) and (5) must hold for all values ofqi, q̇i,
andt, without imposing the equations of motion, by equating
the coefficients of the products of theq̇i on each side of the
equation, one obtains a system of equations that only involve
the variablesqi andt (see,e.g., Refs. [5, 6, 8]). (It may be
noticed that the functionG cannotdepend on thėqi because
one would have terms proportional töqi on the right-hand
side of Eq. (5), while the left-hand side of this equation is a
function ofqi, q̇i, andt, only. Cf., Eq. (9.2.10) of Ref. [9].)

In the case of Eq. (5), one obtains in this manner some
expressions for the partial derivatives,∂G/∂t and∂G/∂qi,
of the unknown functionG in terms ofL, ξ, ηi, and their
first partial derivatives. From the equality of the mixed sec-
ond partial derivatives ofG with respect toqi andt, one finds
n(n + 1)/2 equations, that do not containG. Onceξ andηi

are determined from the set of equations thus obtained, the
functionG can be finally calculated (see,e.g., Ref. [6]).

As we shall show below, these calculations can be sim-
plified if, instead of starting from Eq. (5), one looks for the
symmetries of the Euler–Lagrange equations corresponding
to the given Lagrangian (see also Refs. [8, 10]), because these
aren PDEs forξ andηi only (Eqs. (26) below). In Sec. 2
we prove that given a variational symmetry of a Lagrangian,
there exist Lagrangians equivalent to it for which the transfor-
mation is a strict variational symmetry. We derive the trans-
formation rules for the Euler–Lagrange equations under point
transformations, which lead to the equations for the genera-
tors of the one-parameter groups of symmetries of the Euler–
Lagrange equations. In Sec. 3 we show that, if the Lagrangian
is regular (i.e., det(∂2L/∂q̇i∂q̇j) 6= 0), the variational sym-
metries are canonical transformations.

2. Symmetries of the Lagrangians and of the
Euler–Lagrange equations

As is well known, two Lagrangians,L1(qi, q̇i, t) and
L2(qi, q̇i, t), lead to the same Euler–Lagrange equations, that
is

∂L1

∂qi
− d

dt

∂L1

∂q̇i
=

∂L2

∂qi
− d

dt

∂L2

∂q̇i
,

if and only if there exists a functionF (qi, t) such that

L2 = L1 +
∂F

∂t
+ q̇i

∂F

∂qi
. (7)

In such a case, it is said thatL1 andL2 areequivalent(see,
e.g., Ref. [8]). (Note that this indeed defines an equivalence
relation. In the literature, this equivalence is also called gauge
equivalence and the functionF is called gauge function.)
Thus, a variational symmetry ofL is a point transformation

that leavesL invariant, or leads to a Lagrangian equivalent to
L [see Eq. (4)].

A straightforward computation shows that if the functions
ξ, ηi generate a one-parameter group of variational symme-
tries of L1 (i.e., Eq. (5) holds for some functionG1), then
ξ, ηi also generate a one-parameter group of variational sym-
metries ofL2 with

G2 = G1 +
(

ξ
∂

∂t
+ ηi

∂

∂qi

)
F, (8)

up to an additive trivial constant. In other words, each solu-
tion, ξ, ηi of Eq. (5) represents a variational symmetry of a
whole class of Lagrangians or, equivalently, a symmetry of
a set of Euler–Lagrange equations, which are common to all
the Lagrangians of a class.

Making use of Eq. (8) we can readily show that if a
point transformation is a variational symmetry of a given La-
grangianL1, then we can always find another Lagrangian,
L2, equivalent toL1, for which the point transformation is a
strict variational symmetry, that is,G2 = 0. This conclusion
follows from the fact that, for any functionG1, it is always
possible to find a functionF such that

G1 +
(

ξ
∂

∂t
+ ηi

∂

∂qi

)
F = 0. (9)

In fact, the solution is determined up to an additive function
arbitrary function ofn variables.

2.1. Transformation of the Euler–Lagrange equations

In order to find the equations for the symmetries of the Euler–
Lagrange equations, we shall study the effect of a point trans-
formation on the Euler–Lagrange equations.

In the case of a coordinate transformation of the form

q′i = q′i(q1, . . . , qn, t), (10)

where the new coordinates may depend explicitly ont,
but the time itself is not changed, the inverse relations,
qi = qi(q′1, . . . , q

′
n, t), must exist, and making use repeatedly

of the chain rule one finds that

∂L

∂q′i
− d

dt

∂L

∂q̇′i
=

∂qj

∂q′i

(
∂L

∂qj
− d

dt

∂L

∂q̇j

)
. (11)

(Equation (11) explicitly demonstrates the covariance of the
Euler–Lagrange equations under the coordinate transforma-
tions (10), which means that different choices of the “gener-
alized coordinates” lead to equivalent equations of motion.)
Here it is assumed that the functionL appearing in both sides
of Eq. (11) is the same function, expressed in terms of two
different coordinate systems, but, whent is also transformed,
the LagrangianL(qi, q̇i, t) must be replaced by a new La-
grangianL′ according to

L′(q′i, q̇
′
i, t

′) = L(qi, q̇i, t)
dt

dt′
, (12)
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with q̇′i ≡ dq′i/dt′, so that the action integral remains invari-
ant

t1∫

t0

Ldt =

t′1∫

t′0

L′dt′.

In order to find a relation analogous to Eq. (11), applica-
ble to an arbitrary point transformation

q′i = q′i(q1, . . . , qn, t), t′ = t′(q1, . . . , qn, t), (13)

instead of attempting a direct computation, it is convenient to
defineq0 ≡ t (note that this is not related to Relativity, it is
just a useful notation), so that Eqs. (13) are equivalent to the
single equation

q′α = q′α(q1, . . . , qn, q0), α = 0, 1, . . . , n, (14)

and we introduce an auxiliary variableu in terms of which
the coordinatesqi andt will be expressed. Then, sincet is
now a function ofu, according to the elementary rules for a
change of variable in an integral,

t1∫

t0

L(qi, dqi/dt, t) dt =

u1∫

u0

L(qi,
dqi/du

dt/du
, t)

dt

du
du.

Hence, the use of the variableu must be accompanied by the
use of the Lagrangian

L̃(qα, dqα/du) ≡ L(qi,
dqi/du

dt/du
, t)

dt

du
.

In fact, a straightforward computation (using again the chain
rule) shows that, fori = 1, 2, . . . , n,

∂L̃

∂qi
− d

du

∂L̃

∂(dqi/du)
=

dt

du

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
, (15)

proving that the original Euler–Lagrange equations are in-
deed reproduced with̃L, and

∂L̃

∂q0
− d

du

∂L̃

∂(dq0/du)
=

dt

du

∂L

∂t

− d
du

(
L− dqi

du

1
dt/du

∂L

∂q̇i

)

=
dt

du

[
∂L

∂t
− d

dt

(
L− q̇i

∂L

∂q̇i

)]

= − dt

du
q̇i

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
, (16)

which is trivially equal to zero when the othern Euler–
Lagrange equations for̃L are satisfied. (That is, we only get
n equations of motion from̃L, as in the case ofL.)

Applying now the relation (11) to the auxiliary La-
grangianL̃, we find that under a point transformation (13),
for i = 1, 2, . . . , n,

∂L̃

∂q′i
− d

du

∂L̃

∂(dq′i/du)
=

∂qα

∂q′i

(
∂L̃

∂qα
− d

du

∂L̃

∂(dqα/du)

)

(the lower case Greek indices run over0, 1, 2, . . . , n). With
the aid of Eqs. (15) and (16) we see that this last relation
amounts to

dt′

du

(
∂L′

∂q′i
− d

dt′
∂L′

∂q̇′i

)
=

∂qj

∂q′i

dt

du

(
∂L

∂qj
− d

dt

∂L

∂q̇j

)

− ∂t

∂q′i

dt

du
q̇j

(
∂L

∂qj
− d

dt

∂L

∂q̇j

)

which means (e.g., takingu = t′) that

∂L′

∂q′i
− d

dt′
∂L′

∂q̇′i

=
(

∂qj

∂q′i

dt

dt′
− ∂t

∂q′i

dqj

dt′

)(
∂L

∂qj
− d

dt

∂L

∂q̇j

)
. (17)

This relation reduces to Eq. (11) in the case wheret′ = t, and
demonstrates the covariance of the Euler–Lagrange equations
under the point transformations (13).

2.2. Symmetries of the Euler–Lagrange equations

We shall say that the point transformation (13) is asymmetry
of the Euler–Lagrange equationscorresponding to the La-
grangianL(qi, q̇i, t) if Eq. (17) holds withL′ = L. Accord-
ing to the definitions given in Sec. 1, if a point transforma-
tion (13) is a variational symmetry of a LagrangianL, the
LagrangianL′ appearing in Eq. (17) is equal toL or is equiv-
alent toL; in either case, we can replaceL′ by L on the left-
hand side of Eq. (17) and therefore, any variational symmetry
of L is also a symmetry of its Euler–Lagrange equations.

In what follows it will be convenient to use the abbrevia-
tion [8]

Ei ≡ ∂L

∂qi
− d

dt

∂L

∂q̇i
. (18)

By contrast with the LagrangianL, the functionsEi depend
on qj , q̇j , q̈j , andt. Thus, the point transformation (13) is a
symmetry of the Euler–Lagrange equations if

Ei(q′k, q̇′k, q̈′k, t′)

=
(

∂qj

∂q′i

dt

dt′
− ∂t

∂q′i

dqj

dt′

)
Ej(qk, q̇k, q̈k, t), (19)

or, equivalently, interchanging the roles ofqα andq′α,

Ei(qk, q̇k, q̈k, t)

=
(

∂q′j
∂qi

dt′

dt
− ∂t′

∂qi

dq′j
dt

)
Ej(q′k, q̇′k, q̈′k, t′). (20)
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2.2.1. Example

The Euler–Lagrange equations corresponding to the La-
grangian

L =
m

2
(ẋ2 + ẏ2)−mgy, (21)

wherem andg are constants, and(q1, q2) = (x, y), possess
a one-parameter group of symmetries given by

x′ = xes/2,

y′ = yes/2 − 1
2
gt2(e2s − es/2), t′ = tes. (22)

In fact, for this family of point transformations (treatings as
an independent parameter),

dx′

dt′
=

es/2dx

esdt
= e−s/2ẋ,

dy′

dt′
=

es/2dy − gt(e2s − es/2) dt

esdt

= e−s/2ẏ − gt(es − e−s/2),

and, therefore,

d2x′

dt′2
=

d(dx′/dt′)
dt′

=
e−s/2dẋ

esdt
= e−3s/2ẍ,

d2y′

dt′2
=

d(dy′/dt′)
dt′

=
e−s/2dẏ − g(es − e−s/2) dt

esdt

= e−3s/2ÿ − g(1− e−3s/2).

On the other hand [see Eq. (18)],

E1 = −mẍ, E2 = −mg −mÿ, (23)

hence, for instance, the right-hand side of Eq. (20) withi = 2
gives

(
∂x′

∂y

dt′

dt
− ∂t′

∂y

dx′

dt

)
(−mẍ′)

+
(

∂y′

∂y

dt′

dt
− ∂t′

∂y

dy′

dt

)
(−mg −mÿ′)

= es/2es
{−mg −m

[
e−3s/2ÿ − g(1− e−3s/2)

]}

= −mg −mÿ,

which coincides withE2, and, in a similar manner, one finds
that the equation withi = 1 also holds.

It can be readily verified that the point transformations
(22) are not strict variational symmetries of the Lagrangian
(21). In fact, they satisfy Eq. (4) with

F = (e3s/2 − 1)mgt

[
−y +

1
6
gt2(2e3s/2 − 1)

]
.

The one-parameter groups of symmetries of the Euler–
Lagrange equations are more easily obtained by finding
firstly their generators. Proceeding as in Ref. [6], we now

consider a one-parameter family of symmetries of the Euler–
Lagrange equations

q′i = q′i(q1, . . . , qn, t, s), t′ = t′(q1, . . . , qn, t, s), (24)

and we shall assume thatq′i(q1, . . . , qn, t, 0) = qi and
t′(q1, . . . , qn, t, 0) = t. Taking the partial derivative of both
sides of Eq. (20) with respect tos, at s = 0, using the chain
rule, we obtain

0 = δij

(
∂Ej

∂qk

∂q′k
∂s

∣∣∣∣
s=0

+
∂Ej

∂q̇k

∂q̇′k
∂s

∣∣∣∣
s=0

+
∂Ej

∂q̈k

∂q̈′k
∂s

∣∣∣∣
s=0

+
∂Ej

∂t

∂t′

∂s

∣∣∣∣
s=0

)
+

(
∂

∂s

∂q′j
∂qi

∣∣∣∣
s=0

+ δij
∂

∂s

dt′

dt

∣∣∣∣
s=0

)
Ej ,

or, equivalently, with the aid of the standard definitions

ηi(qj , t) ≡ ∂q′i(qj , t, s)
∂s

∣∣∣∣
s=0

,

ξ(qi, t) ≡ ∂t′(qi, t, s)
∂s

∣∣∣∣
s=0

, (25)

we have (see,e.g., Refs. [4, 6])

∂Ei

∂qk
ηk +

∂Ei

∂q̇k

(
dηk

dt
− q̇k

dξ

dt

)

+
∂Ei

∂q̈k

(
d2ηk

dt2
− 2q̈k

dξ

dt
− q̇k

d2ξ

dt2

)

+
∂Ei

∂t
ξ + Ej

∂ηj

∂qi
+ Ei

dξ

dt
= 0. (26)

(Equation (26) is derived in Ref. [8], Sec. 8.3, making use of
the language of fibred manifolds and jet prolongations.)

As in the case of Eqs. (2) and (5), Eqs. (26) are PDEs for
then + 1 functionsηi andξ. Any linear combination (with
constant coefficients) of solutions of Eqs. (26) is also a solu-
tion of these equations, and the fact that Eqs. (26) have to hold
for all values ofq̇k and q̈k (without imposing the equations
of motion), leads to several conditions that in some cases are
readily solved (see the example below). The main differences
between Eqs. (26) and Eqs. (2) and (5) are that Eqs. (26)
constitute a system ofn PDEs, not a single equation when
n > 1. Equations (26) determine the variational symmetries
of a Lagrangian and all other Lagrangians equivalent to it,
and it does not contain the unknown functionG. However, in
order to find the constant of motion associated with a given
solutionξ, ηi of Eqs. (26), we have to make use of Eq. (5) (to
obtainG) and then of Eq. (6). (Alternatively, thedifferential
of this constant of motion is equal to the contraction of the
vector field

ξ
∂

∂t
+ ηi

∂

∂qi
+

(
dηi

dt
− q̇i

dξ

dt

)
∂

∂q̇i

with the differential of the Cartan 1-form, defined below
[Eq. (37)].)
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2.2.2. Example. Particle in a uniform gravitational field

We will determine the generators of the point symmetries
of the Euler–Lagrange equations (23), corresponding to the
standard Lagrangian for a particle of massm in a uniform
gravitational field (21). Substituting Eqs. (23) into Eqs. (26)
we obtain [with(x, y) = (q1, q2)]

−m

(
d2η1

dt2
− 2ẍ

dξ

dt
− ẋ

d2ξ

dt2

)
−mẍ

∂η1

∂x

− (mg + mÿ)
∂η2

∂x
−mẍ

dξ

dt
= 0,

−m

(
d2η2

dt2
− 2ÿ

dξ

dt
− ẏ

d2ξ

dt2

)
−mẍ

∂η1

∂y

− (mg + mÿ)
∂η2

∂y
− (mg + mÿ)

dξ

dt
= 0.

Canceling the common factor−m and writing more explic-
itly the derivativesd2ηk/dt2, we have

∂2η1

∂t2
+ 2q̇j

∂2η1

∂qj∂t
+ q̈j

∂η1

∂qj
+ q̇j q̇k

∂2η1

∂qj∂qk
− 2ẍ

dξ

dt

− ẋ
d2ξ

dt2
+ ẍ

∂η1

∂x
+ (g + ÿ)

∂η2

∂x
+ ẍ

dξ

dt
= 0,

∂2η2

∂t2
+ 2q̇j

∂2η2

∂qj∂t
+ q̈j

∂η2

∂qj
+ q̇j q̇k

∂2η2

∂qj∂qk
− 2ÿ

dξ

dt
− ẏ

d2ξ

dt2

+ ẍ
∂η1

∂y
+ (g + ÿ)

∂η2

∂y
+ (g + ÿ)

dξ

dt
= 0. (27)

Making use of the fact that the coefficients ofẍ and ÿ must
be equal to zero we find that

2
∂η1

∂x
− dξ

dt
= 0,

∂η1

∂y
+

∂η2

∂x
= 0, 2

∂η2

∂y
− dξ

dt
= 0.

Sincedξ/dt = ∂ξ/∂t + q̇j∂ξ/∂qj , from the preceding equa-
tions it follows that∂ξ/∂qj = 0, hence

ξ = A(t), η1 =
x

2
dA

dt
+ B1(y, t),

η2 =
y

2
dA

dt
+ B2(x, t), (28)

whereA(t), B1(y, t), andB2(x, t) are some functions, with

∂B1

∂y
+

∂B2

∂x
= 0. (29)

By considering the coefficients of the quadratic terms in
the velocities in Eqs. (27), one finds thatη1 andη2 must be
polynomials of first degree inx andy: B1(y, t) = D1(t)y +
D2(t), B2(x, t) = −D1(t)x + D3(t), whereD1, D2, and
D3 are functions of a single variable, and we have taken into
account the condition (29). The vanishing of the linear terms
in the velocities in Eqs. (27) implies thatD1 is some con-
stant. Finally, from the terms that do not containq̈k or q̇k one
obtains the conditions

x

2
d3A

dt3
+

d2D2

dt2
−gD1 = 0,

y

2
d3A

dt3
+

d2D3

dt2
+

3g

2
dA

dt
= 0,

which imply thatA is a polynomial of degree not greater than
2, and the solution of Eqs. (27) is given by

ξ = c3 + c7t + c8t
2,

η1 = c1 + c4t + c6

(
1
2
gt2 + y

)
+ c7

x

2
+ c8xt,

η2 = c2 + c5t− c6x

+ c7

(
y

2
− 3

4
gt2

)
+ c8

(
yt− 1

2
gt3

)
, (30)

wherec1, . . . , c8 are arbitrary real constants, which agrees
with the solution obtained from Eq. (5) [6]. Indeed, substi-
tuting these functionsξ andηi into Eq. (5) one readily finds
that, up to a trivial constant, the corresponding functionG is
given by

−c2mgt + c4mx + c5m

(
y − 1

2
gt2

)

+ c6mgxt + c7m

(
−3

2
gyt +

1
4
g2t3

)

+ c8m

(
−3

2
gt2y +

1
2
(x2 + y2) +

1
8
g2t4

)
.

Then, making use of Eq. (6), one can calculate the associated
constant of motion.

The fact thatc1 and c3 do not appear inG means that
if only the constantsc1 and c3 are different from zero, the
transformations generated are strict variational symmetries
of L, which corresponds to the fact thatx andt do not ap-
pear inL. (When onlyc1 andc3 are different from zero, the
vector fieldξ ∂/∂t + ηi ∂/∂qi reduces toc1∂/∂x + c3∂/∂t;
∂/∂x generates translations along thex-axis, and∂/∂t gen-
erates time displacements.) The one-parameter group of
point transformations (22) is generated by the vector field
ξ ∂/∂t + ηi ∂/∂qi with c7 = 1 and all the other constants
ck equal to zero.

The vector field∂/∂y (obtained settingc2 = 1, and all
the other constantsck equal to zero) generates translations
along they-axis, which are not strict variational symmetries
of the Lagrangian (21), since in this caseG = −mgt. With
the aid of (8) we can readily obtain a Lagrangian, equivalent
to (21), for which∂/∂y generates strict variational symme-
tries. In view of Eq. (9), we need a functionF such that

G +
(

ξ
∂

∂t
+ ηi

∂

∂qi

)
F = −mgt +

∂F

∂y
= 0.

ChoosingF = mgty, from Eq. (7) we have

L2 =
m

2
(ẋ2 + ẏ2)−mgy +

d
dt

(mgty)

=
m

2
(ẋ2 + ẏ2) + mgtẏ.

Now y is ignorable, butL2 depends explicitly ont.
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2.2.3. Example. A singular Lagrangian

As a second example, we shall consider the singular La-
grangian

L = q̇1q̇3 − q2q̇3 + q1q3, (31)

already studied in Ref. [10] and the references cited therein.
In this case

E1 = q3 − q̈3, E2 = −q̇3, E3 = q1 − q̈1 + q̇2.

The solution to Eqs. (26) for these functionsEi, given in
Ref. [10], is

ξ = c1, η1 = −c2q1 + c3et + c4e−t,

η2 = −c2q2 + b(q3), η3 = c2q3, (32)

wherec1, . . . , c4 are arbitrary real constants, andb is anar-
bitrary real-valued functionof one variable. (We omit an
unnecessary additive constant, denoted byC3 in Ref. [10].)
In fact, substituting Eqs. (31) and (32) into Eq. (5) we find
that the left-hand side of Eq. (5) amounts to

d
dt


c3etq3 − c4e−tq3 −

q3∫
b(u)du


 . (33)

Hence, onlyc1 andc2 are related to strict variational sym-
metries of the Lagrangian (31);c1 is related with the obvi-
ous invariance ofL under time displacements, whilec2 is
related to a scaling symmetry (q′1 = q1e−c2s, q′2 = q2e−c2s,
q′3 = q3ec2s, t′ = t).

Even though the Lagrangian (31) is singular, the general
expressions given in the preceding sections are also applica-
ble in this case. For instance, making use of Eqs. (6), (32),
and (33) we find the constant of motion

ϕ = c1(q1q3 − q̇1q̇3) + c2(q3q̇1 − q1q̇3 − q2q3)

+ c3et(q̇3 − q3) + c4e−t(q̇3 + q3) +

q3∫
b(u)du,

which differs from the expressions reported in Ref. [10].
(The expressions presented in Ref. [10] are the ones given by
Eq. (3), which are valid only in the case of a strict variational
symmetry.)

If we look for a Lagrangian equivalent to (31), for which
b(q3) ∂/∂q2 represents a strict variational symmetry, making
use of Eq. (9), withG = − ∫ q3 b(u)du [see Eq. (33)], we
need a functionF such that

−
q3∫

b(u)du + b(q3)
∂F

∂q2
= 0

(note that this PDE is simpler than the system of second-order
PDEs considered in Ref. [10]). Thus, we can choose,e.g.,

F =
q2

b(q3)

q3∫
b(u)du,

which differs from the result found in Ref. [10] (the error in
Ref. [10] was produced by the implicit assumption that the
new Lagrangian is also independent ofq̇2).

As a consequence of the fact thatL is singular, its varia-
tional symmetries contain an arbitrary function, and the cor-
responding constants of motion are not useful because, by
virtue of the equations of motion,q3 = 0.

3. Hamiltonian formulation

As is well known, for a given system with Hamilto-
nian function H(qi, pi, t), where qi, pi are (local) coor-
dinates in the phase space, the coordinate transformation
Qi = Qi(qj , pj , t), Pi = Pi(qj , pj , t) is canonical if there
exists a functionF such that

PidQi −Kdt− (pidqi −Hdt) = dF.

The functionK is the Hamiltonian that determines the time
evolution of the new coordinatesQi, Pi (see,e.g., Refs. [11,
12]). One can readily verify that ifT = T (qj , pj , t) is a new
variable replacingt, then the existence of a functionF such
that

PidQi −KdT − (pidqi −Hdt) = dF (34)

assures that the Hamilton equations

dqi

dt
=

∂H

∂pi
,

dpi

dt
= −∂H

∂qi
, (35)

are equivalent to

dQi

dT
=

∂K

∂Pi
,

dPi

dT
= − ∂K

∂Qi
. (36)

(For instance, this follows from the fact that the Hamilton
equations determine the extremals of the integral

∫
(pidqi −

Hdt).) However,the Poisson brackets are preserved only if
T is a function oft exclusively(this happens in the case of
the family of transformations (22) and in the examples given
above, sinceξ is a function oft only). As in the case of
the usual canonical transformations, the converse is not true,
the equivalence of the Hamilton equations (35) and (36)does
not imply the existence of a functionF such that Eq. (34)
holds [12].

According to the usual definitions of the canonical mo-
menta and the Hamiltonian,

pidqi −Hdt =
∂L

∂q̇i
dqi −

(
q̇i

∂L

∂q̇i
− L

)
dt

= Ldt +
∂L

∂q̇i

(
dqi − q̇idt

)
.

The linear differential form

θL ≡ Ldt +
∂L

∂q̇i

(
dqi − q̇idt

)
, (37)
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is known as the Cartan 1-form (see,e.g., Ref. [8] and the
references cited therein). Making use of this definition we
see that, given two equivalent LagrangiansL1 and L2 =
L1 + dF/dt,

θL2 =
(

L1 +
∂F

∂t
+ q̇i

∂F

∂qi

)
dt

+
(

∂L1

∂q̇i
+

∂F

∂qi

) (
dqi − q̇idt

)
= θL1 + dF

and the condition (4) is equivalent to

L(q′i,
dq′i
dt′

, t′) dt′ +
∂L

∂q̇′i

(
dq′i − q̇′idt′

)

= L(qi,
dqi

dt
, t) dt +

∂L

∂q̇i

(
dqi − q̇idt

)
+ dF.

Thus, if the Lagrangian is regular, a variational symmetry
corresponds to a canonical transformation [in the sense of
Eq. (34)].

In the standard Hamiltonian formulation one only con-
siders transformations of the coordinates of the phase space,
maintaining t unchanged and for many purposes this is
enough. For instance, any constant of motion can be asso-
ciated with a one-parameter group of canonical transforma-
tions, witht unchanged; in the case of the Hamilton–Jacobi
method, one looks for a transformation to new coordinates
which are constant of motion, but if a function is a constant

of motion, its derivative with respect to any “time” coordi-
nate will be equal to zero. Nevertheless, it seems interesting
to explore the applications of more general transformations.
By contrast, in the Lagrangian formalism, it is very useful to
consider point transformations in whicht is also transformed,
as we can see in the examples given above and in Refs. [6, 8].

4. Concluding remarks

As a by-product of the derivations in this paper, we have
found the transformation rules of the Euler–Lagrange equa-
tions under point transformations [Eq. (17)]. As pointed out
above, Eqs. (26) constitute a convenient way to obtain all the
variational symmetries of a given Lagrangian, because they
do not contain the functionG, present in Eq. (5).

As we have shown, when one considers point transfor-
mations in the phase space, there are two nonequivalent ways
of defining a canonical transformation; the transformations
induced by the variational symmetries of a Lagrangian obvi-
ously preserve the form of the Hamilton equations, but the
Poisson brackets may not be preserved.
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