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Point symmetries of the Euler-Lagrange equations
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We give an elementary derivation of the equations for the point symmetries of the Euler—Lagrange equations for a Lagrangian of a system
with a finite number of degrees of freedom. We show that given a divergence symmetry of a Lagrangian, there exists an equivalent Lagrangiar
that is strictly invariant under that transformation. The corresponding description in the Hamiltonian formalism is also investigated.
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Damos una derivadn elemental de las ecuaciones para las siagepuntuales de las ecuaciones de Euler-Lagrange para una lagrangiana
de un sistema con urimero finito de grados de libertad. Mostramos que dada una &rhesta una divergencia de una lagrangiana, existe
una lagrangiana equivalente que es estrictamente invariante bajo esa trangfiorifeatibén se investiga la descrifgei correspondiente en

el formalismo hamiltoniano.

Descriptores: Lagrangianas; simess; lagrangianas equivalentes; constantes de movimiento; formalismo hamiltoniano.
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1. Introduction 4; On/dq;). A nontrivial solution of this equation yields the

_ . constant of motion
One of the advantages of the Lagrangian formalism in clas-

sical mechanics is that, roughly speaking, each continuous Lo 57 .y 3

. . ©(qi, dirt) =mi 3 : 3)

symmetry of the Lagrangian function of a system can be re- 9q; (9%

lated to the existence of a constant of motion. However, usu-

ally, this relationship is not fully exploited, and is employed

only in connection with simple geometrical transformations,f 'I' ¢ Do ‘ _ P

such as translations, rotations, and time displacements, ~aMi!Ies of point trans OVT]atr']O”SIi = q(q1;- -, qn,t, 8),
In the case of a system with one degree of freedom, a cor: = t'(a1;- -, qn, 1, 5), such that

stant of motion amounts to a first-order ordinary differential dd’ d’ d d

. . . . / qi / qi

equation (ODE) so that, with the aid of a constant of motion, ~ L(q;, —,t') = = L(qi, =, t) + —F(q;,t,s), (4)

. . d¢ dt dt’ dt

instead of having to solve a second-order ODE, one only has .

to solve a first-order ODE. When the number of degrees ofor all values of the parameterfor which the transforma-

freedom is greater than 1, any constant of motion also helption is defined, wherg” is some function ofy;, ¢, and s

to simplify the equations of motion. only. These transformations are sometimes called Noether
The (strict) variational symmetriesof a Lagrangian Symmetries [2], or divergence symmetries [3], but it seems

L(qi,4i,t) (i = 1,2,...,n), are the point transformations, more appropriate to call them Noether—Bessel-Hagen sym-

4 = q(q, . qu,t), ' =t (q1,...,qm,t), that leave the metries [7]. From Eqg. (4) it follows that a set of functions

A wider class of variational symmetries, also related
to constants of motion, is formed by the one-parameter

action integral &(qi,t), mi(gj,t) generates a one-parameter group of varia-

tl tional symmetries ol if there exists a functiol#(g;, t) (de-

/ Ldt fined up to an additive trivial constant) such that

to
. . . oL oL (dn; d§ d¢ dG

il P e — L=>=— (5
invariant, that is, 8q/7 + a4, <dt ) + = T Ty (5)
dg; dt’ dg;
L(q;, dt’ ) = dt = L(g, T t), @) [cf. Eq. (2)]. (The functiorG is equal to the partial derivative

. S 4 , of F' with respect tos, ats = 0, assuming that at = 0 the
with dt’/dt = 9t'/0t+g; 8¢’ /Oq; (here and henceforththere o oo reduces to the identity.) In this case, in addi-

IS summatlc_)n over _repeated |nd|qes). Tdmae—pa_rameter tion to¢ and then;, one has to find?. The constant of motion
groupsof strict variational symmetries are determined by the

first-order linear partial differential equation (PDE) associated with a solution of Eq. (5) is

oL~ OL (dm . d¢ 4 ity =n 2L (9L )
o - = (¢, Gist) =mim— — & m~@a— L) —G.  (6)
aq:" o < dt ) 5 Ly =0 @ D dd;

wheren;(q;,t) and {(g;,t) aren + 1 unknown functions Even though it is more complicated to solve Eq. (5) than
(see,e.qg, Refs. [1-6]) (note thate.g, dn/dt = 9n/dt + Eqg. (2), for some Lagrangians Eqg. (5) leads to many more
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constants of motion than Eq. (2) (segy, the example given that leaved. invariant, or leads to a Lagrangian equivalent to
in Sec. 2.1.1 of Ref. [6] and the examples below). L [see Eq. (4)].

The method usually employed to solve Egs. (2) and (5) A straightforward computation shows that if the functions
relies on the fact thag and; are functions of;; and¢ only £, n; generate a one-parameter group of variational symme-
and, in many cases, the left-hand sides of Egs. (2) and (5) atdes of L, (i.e., Eq. (5) holds for some functio&,), then
polynomials in thej;, with coefficients that depend @pand £, n; also generate a one-parameter group of variational sym-
t. Since Egs. (2) and (5) must hold for all valuesgpfg;,  metries ofL, with
andt, without imposing the equations of motion, by equating
the coefficients of the products of tlge on each side of the Gy =Gy + (58 + ma) F, (8)
equation, one obtains a system of equations that only involve ot 9q;

the variables; andt (see.e.g, Refs. [5, 6, 8]). (It may be up to an additive trivial constant. In other words, each solu-

noticed that the functiot¥ cannotdepend on thég; because tion, £, n; of Eq. (5) represents a variational symmetry of a

one would have terms proportional & on the right-hand whole class of La. ; ;

. . _ . o grangians or, equivalently, a symmetry of
side of Eq. (5), while the left-hand side of this equation is 8, set of Euler—Laarange equations. which are common to all
function ofq;, ¢;, andt, only. Cf., Eq. (9.2.10) of Ref. [9].) . grange equations, wh

In th fEq. (5 btains in thi the Lagrangians of a class.
n the case of Eq. (5), one obtains in this manner some Making use of Eq. (8) we can readily show that if a

e?pt)rr]essm; s for tfhe ﬁ?rﬁgl 'detrlvatlveﬁ/ ot and E)C;/ ?hqi" point transformation is a variational symmetry of a given La-
of the unknown functiorG? in terms of L, &, 7;, an eir grangianLq, then we can always find another Lagrangian,

fws(; par:!a: ger_|vatt_|ves. c(g ro_rtr;] the eqlﬁl'ty Of(;?e mn;gd dsec-Lz’ equivalent talL, for which the point transformation is a
ond partial derivatives ol with respect ta; andi, one inds g4+ yariational symmetry, that ig7s = 0. This conclusion

n(n + 1)/2 equations, that do not contaii. Once¢ andn: — g110s from the fact that, for any functio6y, it is always
are determined from the set of equations thus obtained, t ossible to find a functiof such that

functionG can be finally calculated (see.g, Ref. [6]).

As we shall show below, these calculations can be sim- 0 0
plified if, instead of starting from Eq. (5), one looks for the G1+ (f 2t Wiaq) F=0. ©)
symmetries of the Euler-Lagrange equations corresponding
to the given Lagrangian (see also Refs. [8, 10]), because the$@ fact, the solution is determined up to an additive function
aren PDEs for¢ andn; only (Egs. (26) below). In Sec. 2 arbitrary function ofn variables.
we prove that given a variational symmetry of a Lagrangian,
there exist Lagrangians equivalent to it for which the transfor2.1.  Transformation of the Euler-Lagrange equations
mation is a strict variational symmetry. We derive the trans- ] ] ]
formation rules for the Euler—Lagrange equations under point 0rder to find the equations for the symmetries of the Euler—

transformations, which lead to the equations for the genera-29range equations, we shall study the effect of a point trans-

tors of the one-parameter groups of symmetries of the Eulerformation on the Euler-Lagrange equations.

Lagrange equations. In Sec. 3 we show that, if the Lagrangian
is regular {.e., det(9*L/9¢;04;) # 0), the variational sym- ;o ; 10
metries are canonical transformations. ¢ = ¢i(a1-- - n: 1), (10)

In the case of a coordinate transformation of the form

where the new coordinates may depend explicitly ton
2. Symmetries of the Lagrangians and of the but the time itself is not changed, the inverse relations,

Euler-Lagrange equations g = qi(q’l,_. c 1), must exist, and making use repeatedly
of the chain rule one finds that
As is ’well known, two Lagrangians,Li(g:,;,t) 'and OL d L g (0L d OL "
iI;Q(ch,q,,zt), lead to the same Euler-Lagrange equations, that 9 ~ dtai ~ aq <8qj ” 8@-) ) (11)
0Ly _ EaL,l = 0Ly _ 3813.27 (Equation (11) explicitly demonstrates the covariance of the
Og; dt 9¢;  O¢i  dt 04 Euler-Lagrange equations under the coordinate transforma-
if and only if there exists a functiof'(¢;, ¢) such that tions (10), which means that different choices of the “gener-
alized coordinates” lead to equivalent equations of motion.)
Ly=1L,+ or + qiaiF. (7)  Hereitis assumed that the functiérappearing in both sides
ot 9q; of Eq. (11) is the same function, expressed in terms of two

In such a case, it is said that and L, areequivalent(see, different coordinate systems, but, whieis also transformed,

e.g. Ref. [8]). (Note that this indeed defines an equivalencd® ngral;lglanL(qhqi,t) must be replaced by a new La-
relation. In the literature, this equivalence is also called gaug8rangianL’ according to

equivalence and the functiof is called gauge function.) dt

Thus, a variational symmetry df is a point transformation L'(q;, d;5t') = L(gi, dis t)@7 (12)
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POINT SYMMETRIES OF THE EULER-LAGRANGE EQUATIONS 131

with ¢} = dg./dt’, so that the action integral remains invari- (the lower case Greek indices run ovef, 2, ...,n). With

ant ) the aid of Eqgs. (15) and (16) we see that this last relation
“ n amounts to
/ Ldt = / L'dt'.
A o (000 0Ly oy (01 o)
In order to find a relation analogous to Eq. (11), applica- 4% \9¢;  dt’ 9¢; 9g; du \ 9q;  dt dg;

ble to an arbitrary point transformation ot dt . <8L d 8L>
“ a0 %\ 5 T 3559
@ =q(q, ...,qn:t), ' =t(q1,....qn,1), (13) dg; du ™" \0g;  dt 9g;

instead of attempting a direct computation, it is convenient tQyhich meansé.g, takingu = ') that
defineqy = ¢ (note that this is not related to Relativity, it is

just a useful notation), so that Egs. (13) are equivalent to the oL, d oL

single equation

oq,  dt’ dd
q/a:q/a((havqnaQO)a Oé:O,l,...,TL7 (14) <8qjdt8tdqj> ({)LdaL) (17)
and we introduce an auxiliary variablein terms of which dgq; dt’  Odg; dt’ ) \Ogq;  dtdg; )

the coordinateg; andt will be expressed. Then, sine¢ds
now a function ofu, according to the elementary rules for a This relation reduces to Eq. (11) in the case whéte ¢, and

change of variable in an integral, demonstrates the covariance of the Euler—Lagrange equations
. u under the point transformations (13).
dg;/du . dt
L(g;,dg;/dt, t)dt = | L(g;, —2—,t) —d
/ (@, dgi/dt, 1) / (i Seyau D qu
to uo

) ) 2.2. Symmetries of the Euler—Lagrange equations
Hence, the use of the variablemust be accompanied by the

use of the Lagrangian We shall say that the point transformation (13) syanmetry

¥ _ _ dg;/du , dt of the Euler—Lagrange equatior®rresponding to the La-
L(4a; dga/du) = Lla, dt/du 1) du’ grangianL(q;, 4;, ) if Eq. (17) holds withL’ = L. Accord-
In fact, a straightforward computation (using again the chair'{ng 0 the. def|n|t|pn§ given in Sec. 1, if a point trgnsforma-
. ion (13) is a variational symmetry of a Lagrangian the
rule) shows that, foi = 1,2,...,n, N o . ; .
N N Lagrangianl’ appearing in Eq. (17) is equal foor is equiv-
oL d oL dt /0L d oL alent toL; in either case, we can replaééby L on the left-
- dq¢;  dtdg; )’ (5 hand side of Eq. (17) and therefore, any variational symmetry

dg;  dud(dg;/du)  du | _ )

. . . . of Lis also a symmetry of its Euler-Lagrange equations.
proving that the original Euler-Lagrange equations are in- L ) i
deed reproduced with. and In what follows it will be convenient to use the abbrevia-

B _ tion [8]
gi_dia daLd :c%t%L g =0k 40l (18)
g0  dud(dgo/du)  du Ot " T dq; At 04
d (. dg 1 0L
du du dt/du d¢; By contrast with the Lagrangiah, the functionsE; depend
a ToL  d oL ongj, 4;, G;, andt. Thus, the point transformation (13) is a
=—|=—-— — i — symmetry of the Euler—Lagrange equations if
du | Ot dt é)qi
_ b, (9L 4oLy (16) Ei(qh: i g t)
du 0q; dt 0q;
o dg; dt Ot dgy -
which is trivially equal to zero when the other Euler— “\og @~ ag ar Ej(ar, 4k, Gr,t),  (19)

Lagrange equations fdr are satisfied. (That is, we only get
n equations of motion froni, as in the case af.)

Applying now the relation (11) to the auxiliary La-
grangianL, we find that under a point transformation (13),

or, equivalently, interchanging the rolesgf andq/,,

fori=1,27...,n, Ei(qlmdlﬁijk’)t)
L L L L dq; dt’  ot’ dg; o
oL d 9L 94 (OL d 0L —( L= - ) Ej(qh dhr G t)). (20)
d¢,  dud(dqi/du)  I¢. \ Oqa  duI(dgn/du) O¢; At OJg; dt
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2.2.1. Example

G.F. TORRES DEL CASTILLO

consider a one-parameter family of symmetries of the Euler—
Lagrange equations

The Euler-Lagrange equations corresponding to the La-

rangian
grang m

2

wherem andg are constants, and@;, ¢2) = (z,y), poSsess
a one-parameter group of symmetries given by

L=—(i"+7%) —mgy, (21)

& = xe®/?,

1
Y =yet/? — —gt?(e® —e%/?), ' =te®.  (22)

2

In fact, for this family of point transformations (treatingas
an independent parameter),

dz’  e*/2dx e

— = =e /%0

dt’ esdt '

dy’  e*/2dy — gt(e* —e/?)dt
e esdt

=e 2y — gt(e® — e */?),
and, therefore,

d?z’  d(da’/dt') e /2di 89/2

= = = xr
de'? dv esdt ’
d?y  d(dy'/dt’)  em*/2dy — g(e® —e /) dt
de? dt’ o esdt

— 6735/2?; o 9(1 o 6738/2).

On the other hand [see Eq. (18)],

Ey = —mi,  E;=—mg—mj, (23)

hence, for instance, the right-hand side of Eq. (20) with2

gives
dz' dt’  ot' da’ (—mi’)
Oy dt 0Oy dt e
oy _ovayy
Oy dt Oy dt mg—my

— es/2es{ —mg — m[effis/Qy _ g(l _ 6738/2)]}

= —mg — mj),

which coincides withEs, and, in a similar manner, one finds

that the equation with = 1 also holds.

q; = Q;(QM ceesQn, t7 5)7 t/ = t/(QIa ey Q'mta S)a (24)
and we shall assume that(qi,...,qs,t,0) = ¢; and
t'(q1,---,qn,t,0) = t. Taking the partial derivative of both
sides of Eqg. (20) with respect tg ats = 0, using the chain

rule, we obtain

o (25 04| OB 04| oE oi
Y\ g Os o Odr Os|,._, O 0s|,_,
E. Ot oq’ !
9E; ot L (29 Y 9o d E,
ot ds|,_, 0s 0q; |4 ds dt | _

or, equivalently, with the aid of the standard definitions

94i(g),t, 8)
ni(g,t) = ——5——=|
I Js <=0
ot' (¢, t, s)
j,t = , 25
(i, t) 95 |, (25)
we have (sees.g, Refs. [4, 6])
OF; ~ OB (dye . d¢
g ™ " ag, at ~ Tar
+8Ei d27]k:_2..§_.di§
3G, \arz g T e
OE; on; &
+ 5B 94, +Eigy =0. (26)

(Equation (26) is derived in Ref. [8], Sec. 8.3, making use of
the language of fibred manifolds and jet prolongations.)

As in the case of Eqgs. (2) and (5), Egs. (26) are PDEs for
then + 1 functionsn; and¢. Any linear combination (with
constant coefficients) of solutions of Egs. (26) is also a solu-
tion of these equations, and the fact that Egs. (26) have to hold
for all values ofg, andgy (without imposing the equations
of motion), leads to several conditions that in some cases are
readily solved (see the example below). The main differences
between Egs. (26) and Egs. (2) and (5) are that Egs. (26)
constitute a system of PDEs, not a single equation when
n > 1. Equations (26) determine the variational symmetries
of a Lagrangian and all other Lagrangians equivalent to it,
and it does not contain the unknown functi@n However, in
order to find the constant of motion associated with a given

It can be readily verified that the point transformationssolutioné, n; of Egs. (26), we have to make use of Eq. (5) (to
(22) are not strict variational symmetries of the LagrangianobtainG) and then of Eq. (6). (Alternatively, thaifferential

(21). In fact, they satisfy Eq. (4) with

. 1 .
F = (/2 — )mgt |-y + égt2(2e35/2 -1).

of this constant of motion is equal to the contraction of the

vector field
6 + d77i _ % (9

0
f@‘*—m‘

The one-parameter groups of symmetries of the Euler—
Lagrange equations are more easily obtained by findingvith the differential of the Cartan 1-form, defined below
firstly their generators. Proceeding as in Ref. [6], we now[Eq. (37)].)
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2.2.2. Example. Particle in a uniform gravitational field

133

which imply thatA is a polynomial of degree not greater than
2, and the solution of Egs. (27) is given by

We will determine the generators of the point symmetries

of the Euler—Lagrange equations (23), corresponding to the

standard Lagrangian for a particle of massin a uniform

gravitational field (21). Substituting Egs. (23) into Egs. (26)

we obtain [with(z, y) = (q1, ¢2)]

B d2771_2..%_.ﬁ U
Tae T e Taz) T "o
. O df _
(mg+my)% mi - = 0,
(AP g€ AN om
Tar T Ya Yar ) T My
N L dE
- (mg—l—my)a—y - (mg+my)a =0.

Canceling the common facterm and writing more explic-
itly the derivativesi®n;, /dt?, we have

fx'%Jrfé%Jr(ngi})%Jrfﬁ% =0,
+o‘é%+(9+@%+(g+y)%=0- (@7)

Making use of the fact that the coefficientsidnd{ must
be equal to zero we find that

O _dE 0 Om O\ O dE

or dt 7 oy  oxr oy dt

Sinced¢/dt = 0¢/0t + ¢;0¢/0q;, from the preceding equa-
tions it follows thatd¢ /dq; = 0, hence

om One  d§

xdA
§_A<t)a 771_55 +Bl<yat)7
_yda
2 = 2 dr +BQ(Z7t)a (28)
whereA(t), B;(y,t), andBs(x, t) are some functions, with

0B;  0Bs
— +——=0. 29
y ox 0 (29)

£ =c3+ ort + cst?,

T
+ c7 = + cgat,

1
m = c1 + cat + ¢ (9752 + y) 9

2

72 = Ccg + ¢cs5t — cgx

y 3 5 L
7_715 » 't_f t
+C7<2 49 >+68 (!/ 29 )

wherecy, ..., cg are arbitrary real constants, which agrees
with the solution obtained from Eq. (5) [6]. Indeed, substi-
tuting these functiong andn; into Eq. (5) one readily finds
that, up to a trivial constant, the corresponding functibis
given by

(30)

1
—comgt 4+ cymx 4+ csm (y — 29t2)

3 1,54
+ cemgxt + crm —igyt—&-zgt

, 3 o 1 2 2 1 54
+c8m( 59t y+2(1 +y )+8g t).

Then, making use of Eq. (6), one can calculate the associated
constant of motion.

The fact thatc; and s do not appear irG means that
if only the constants; andcs are different from zero, the
transformations generated are strict variational symmetries
of L, which corresponds to the fact thatand¢ do not ap-
pear inL. (When onlyc; andcs are different from zero, the
vector field¢ 9/0t + n; 9/dq; reduces t@10/0x + ¢30/0t;
0/0x generates translations along thexis, andd/dt gen-
erates time displacements.) The one-parameter group of
point transformations (22) is generated by the vector field
£0/0t + n; 9/9q; with ¢; = 1 and all the other constants
¢, equal to zero.

The vector fieldd/0y (obtained settings = 1, and all
the other constants, equal to zero) generates translations
along they-axis, which are not strict variational symmetries
of the Lagrangian (21), since in this caGe= —mgt. With
the aid of (8) we can readily obtain a Lagrangian, equivalent
to (21), for whichd/0y generates strict variational symme-
tries. In view of Eq. (9), we need a functidnsuch that

By considering the coefficients of the quadratic terms in

the velocities in Eqgs. (27), one finds thatandn, must be
polynomials of first degree im andy: B;(y,t) = D1(t)y +
Dg(t), Bg(x,t) = —Dl(t)!L‘ + Dg(t), WhereDl, Do, and

Dy are functions of a single variable, and we have taken int§>100SINGE" = mgty,
account the condition (29). The vanishing of the linear terms

in the velocities in Egs. (27) implies thd?; is some con-
stant. Finally, from the terms that do not contéjnor ¢, one
obtains the conditions

X d3A d2D2

2 de3  di?

y d3A d2 Dg
2 de3 de?

3gdA

Dy =0 292 g
+ gt ) 2 dt )

0 0 oF

from Eq. (7) we have

d
—mgy + —(mgty)

m., . .
L2 = *(%2 + y2) at

2

m,. . )
= 5(1‘2 + %) 4+ mgty.

Now y is ignorable, buf., depends explicitly on.

Rev. Mex. Fis60(2014) 129-135
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2.2.3. Example. A singular Lagrangian which differs from the result found in Ref. [10] (the error in

] ) Ref. [10] was produced by the implicit assumption that the
As a second example, we shall consider the singular Lanew |agrangian is also independent;e).

grangian o _ As a consequence of the fact thats singular, its varia-

L'=aqi143 — a2d43 + 13, B tional symmetries contain an arbitrary function, and the cor-
already studied in Ref. [10] and the references cited thereirf€sponding constants of motion are not useful because, by
In this case virtue of the equations of motiogz = 0.

Ey = g3 — g3, Ey = —¢s, Es=q — g1 + ¢o. ) ) )
3. Hamiltonian formulation
The solution to Egs. (26) for these functiofis, given in
Ref. [10], is As is well known, for a given system with Hamilto-
. L, nian function H(q;,pi,t), where ¢;,p, are (local) coor-
§=c, M = —C2q1 +C3€” +cge dinates in the phase space, the coordinate transformation
_ b(gs), 5 = Cogs, 32 Q:; = Qi(gj,pj,t), P = P;(q;,p;,t) is canonical if there
12 c2d2 + blas) s = 243 (32) exists a function?”” such that
wherecy, ..., ¢4 are arbitrary real constants, ahds anar-
bitrary real-valued functiorof one variable. (We omit an PdQ; — Kdt — (pidg; — Hdt) = dF.
unnecessary additive constant, denoted’yin Ref. [10].) ] ] o ) _
In fact, substituting Egs. (31) and (32) into Eq. (5) we find The functionK is the Hamiltonian that determines the time
that the left-hand side of Eq. (5) amounts to evolution of the new coordinateg;, P; (see.e.g, Refs. [11,
12]). One can readily verify that i’ = T'(¢;,p;,t) is a new
d @ variable replacing, then the existence of a functidn such
T cselqs — caelqs —/b(u)du ) (33) that
P,dQ; — KdT — (p;d¢; — Hdt) = dF (34)
Hen(_:e, onlyc; andes are related_to strict var_iational SYM- assures that the Hamilton equations
metries of the Lagrangian (31); is related with the obvi-

ous invariance ofl under time displacements, whitg is dg; OH dp;  OH 35
related to a scaling symmetryj(= g1e~ %, g5 = gae™ %, dt — dp;’ dt g’ (35)
@5 = q3e°, t' =1). ,

Even though the Lagrangian (31) is singular, the genera®re equivalent to
expressions given in the preceding sections are also applica-
ble in this case. For instance, making use of Egs. (6), (32), dQi _ 0K dF; OK (36)

and (33) we find the constant of motion ar — op;’ ar - 9Q:

(For instance, this follows from the fact that the Hamilton
equations determine the extremals of the integi@l;dg; —

a2 Hdt).) However,the Poisson brackets are preserved only if

+ cze’ (43 — q3) + cae (43 + q3) + /b(u)du, T is a function oft exclusively(this happens in the case of
the family of transformations (22) and in the examples given
which differs from the expressions reported in Ref. [10].above, sinc€ is a function oft only). As in the case of
(The expressions presented in Ref. [10] are the ones given liie usual canonical transformations, the converse is not true,
Eq. (3), which are valid only in the case of a strict variationalthe equivalence of the Hamilton equations (35) and (R&s
symmetry.) not imply the existence of a functiof’ such that Eq. (34)
If we look for a Lagrangian equivalent to (31), for which holds [12].

b(gs) 0/0q- represents a strict variational symmetry, making  According to the usual definitions of the canonical mo-

v =ci(q1q3 — 4143) + c2(q3G1 — 143 — q243)

use of Eq. (9), withG = — [* b(u)du [see Eq. (33)], we menta and the Hamiltonian,
need a functiorf' such that 5
L L
@ oF pidg; — Hdt = %dqi — <qza — L) dt
- / bu)du + b(gs) 5— = 0 @ @
9q2

oL .
. o = Ldt + ——(dg; — ¢;dt).
(note that this PDE is simpler than the system of second-order 9q;

PDEs considered in Ref. [10]). Thus, we can choesg, The linear differential form

q3
q2 OL .
F= /budu, 0 = Ldt + — (dg; — ¢;dt), 37
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is known as the Cartan 1-form (seeg, Ref. [8] and the of motion, its derivative with respect to any “time” coordi-
references cited therein). Making use of this definition wenate will be equal to zero. Nevertheless, it seems interesting

see that, given two equivalent Lagrangiabs and L, = to explore the applications of more general transformations.
L, + dF/dt, By contrast, in the Lagrangian formalism, it is very useful to
OF OF consider point transformations in whi¢fs also transformed,
0, = (Ll + e + qia) dt as we can see in the examples given above and in Refs. [6, 8].
q;
OL oF . .
<aq-1 + 8q-) (dg; — ¢;dt) = 0r, +dF 4. Concluding remarks

and the condition (4) is equivalent to As a by-product of the derivations in this paper, we have
4! oL found the transformation rules of the Euler—Lagrange equa-

L(q,, q;;’t,) dt’ + fl(dqg — qut’) tions under point transformations [Eq. (17)]. As pointed out
dt aq; above, Egs. (26) constitute a convenient way to obtain all the
dg; oL ) variational symmetries of a given Lagrangian, because they

= L(g:, a t)dt + 9d: (dgi — gidt) + dF. do not contain the functio, present in Eq. (5).

As we have shown, when one considers point transfor-
ations in the phase space, there are two nonequivalent ways
f defining a canonical transformation; the transformations
Eq. (34)] induced by the variational symmetries of a Lagrangian obvi-

. In the standarql Hamiltonian for_mulat|on one only con- ously preserve the form of the Hamilton equations, but the
siders transformations of the coordinates of the phase SPaG8yisson brackets may not be preserved

maintaining ¢ unchanged and for many purposes this is

enough. For instance, any constant of motion can be asso-

ciated with a one-parameter group of canonical transformaAcknowledgment

tions, with¢ unchanged; in the case of the Hamilton—-Jacobi

method, one looks for a transformation to new coordinate§he author is grateful to Dr. JésLuis Lopez Bonilla for
which are constant of motion, but if a function is a constantbringing Ref. [10] to his attention.

Thus, if the Lagrangian is regular, a variational symmetry
corresponds to a canonical transformation [in the sense
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