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Calculation of the influence of the absorption grating on the diffraction efficiency
in photovoltaic media in reflection geometry for nonlinear regimes
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With simultaneous phase and absorption gratings, we calculated the contribution of the absorption grating to the total diffraction efficiency in
thick samples (around 0.5 cm) of iron doped lithium niobate with an applied electric field between 0 and -400 kV/cm in reflection geometry.
We started by solving numerically the set of partial, non-linear, material rate differential equations. Then, we used these solutions to find
numerical solutions in a self-consistent way to the beam coupling equations in two-wave mixing along sample thickness. For the given set of
values of physical parameters of lithium niobate, we found that the presence of the absorption grating has a weak influence on the diffraction
efficiency. It diminishes the total value of the diffraction efficiency in a small amount of around only 1%.

Keywords: Photorefractive gratings; absorption gratings; diffraction efficiency; non linear optics.

Con rejillas simult́aneas de fase y de absorción, calculamos la contribución de la rejilla de absorción a la eficiencia total de difracción en
muestras gruesas (aproximadamente 0.5 cm) de niobato de litio dopado con hierro. Consideramos la geometrı́a de reflexíon, con campos
aplicados entre 0 y -400 kV/cm. Primero resolvimos numéricamente el sistema de ecuaciones diferenciales parciales, no lineales del material.
Estas soluciones fueron utilizadas luego para calcular el intercambio de energı́a en la mezcla de dos ondas. Resolvimos numéricamente las
ecuaciones del acoplamiento de los haces a lo largo del grosor de la muestra. Para el valor usado del dopaje de hierro, encontramos que la
contribucíon de la rejilla de absorción es menos de 1% del valor total de la eficiencia de difracción.

Descriptores: Rejillas fotorrefractivas; rejillas de absorción; eficiencia de difracción; óptica no lineal.

PACS: 42.65.-k; 42.70-a; 42.70.Nq

1. Introduction

Lithium niobate is an indispensable material that has been
used in a large variety of nonlinear optical and photonic de-
vices, and it has been called the “silicon of photonics” [1,2].
This material is a photovoltaic medium that has a great op-
tical quality and excellent photorefractive properties [3]. On
the other hand the volume photorefractive gratings in reflec-
tion geometry have been used in a large variety of optical
devices, as switchable holographic element [4], in detection
of higher nonlinear harmonics for DWDM technology [5]
and controllable Fabry-Perot interferometer [6], among many
others. Because of its applications, it is very appealing to in-
vestigate the light induced charge transport in this material
and its photorefractive properties, for example, it has shown
how the photorefractive sensitivity can be improved by ap-
plication of external electric field and different iron doped
concentrations [7].

Starting with the fact that the absorption coefficient is
proportional to the amount of un-ionized donors [8,9], in this
paper we show that it is possible to calculate the amplitude
and phase of the absorption grating. Although the Eq. (3)
of Ref. [10] gives the amplitude of the absorption grating (its

phase is held fixed), we could not find in the literature an
assessment of the influence of an absorption grating on the
value of the total diffraction efficiency for reflection geom-
etry. In this work, we are interested on the calculation of
the influence of the absorption grating on the value of the to-
tal diffraction efficiency for reflection gratings in iron doped
lithium niobate.

As it was similarly developed in transmission geometry
for a weak applied field (5 kV/cm) [11], we started by solv-
ing numerically the set of non-linear material rate differential
equations for LiNbO3 to find the full overall space charge
field and the ionized donor density, fromt = 0 seconds up
to the stationary state. Afterwards, we used these solutions
to calculate the amplitude and phase of the absorption grat-
ing. Then, we calculated the diffraction efficiency using a
two wave mixing formalism. This latter calculation was per-
formed numerically too. From this strong beam coupling,
(with applied electric field between 0 and -400 kV/cm), there
is a spatial redistribution of the light intensity pattern. In
this way, the grating is spatially non-uniform and its ampli-
tude and phase become a function of crystal thickness. The
uniform grating approximation is reasonable for weak cou-
pling or thin-enough crystals. It is not adequate for fiber
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like crystals [12], or for strong coupling and high modula-
tion depth [10].

The paper is organized as follows. In Sec. 2 we summa-
rize our theoretical framework in order to identify the param-
eters which describe the phase and absorption gratings and
the photorefractive material equations. In Sec. 3 we show
how to calculate the absorption grating for a photorefractive
media, which has been solved numerically. In Sec. 4 we nu-
merically calculate the contribution of absorption grating to
the diffraction efficiency. Finally a summary and conclusions
are given in Sec. 5.

2. Theoretical framework

2.1. Two-wave mixing (TWM) formalism

A general TWM theory in nonlinear media was suggested
recently [13]. Their treatment includes both, the volume
index (or phase) grating and the gain (or absorption) grat-
ing, which have been induced because of the nonlinear re-
sponse of the medium, when it is illuminated with a static
or moving interference pattern. We consider the interaction
of two plane, monochromatic, linearly polarized electromag-
netic waves,~A1(~r, t) and ~A2(~r, t), that propagate inside a
nonlinear media in the paraxial approximation, as shown in
Fig. 1. The total light field can then be written as the super-
position of them

~A(~r, t) = ~A1(z) exp(−i~k1 · ~r − iψ1t)

+ ~A2(z) exp(−i~k2 · ~r − iψ2t) , (1)

where~k1 and~k2 are the corresponding wave vectors with
wavelengthsλ1 and λ2 respectively,ψ1, ψ2 represents the
phases of two light waves, and their amplitudes could be writ-
ten as~A1(z) = A1z(z)âz +A1x(z)âx; ~A2(z) = A2z(z)âz +
A2x(z)âx, (âx andâz are the unit vectors alongx andz direc-
tion respectively). The intensity of the moving interference
light pattern is

I(z) = I0 [1+ | m | cos(kgz + δt)] , (2)

whereδ = ψ2 − ψ1, kg =| ~k2 − ~k1 |, I2
0 =| A1 |2 + | A2 |2

is the total intensity of the light andm(z) is the light modu-
lation which varies along the media thickness according to

m(z) = 2
A1z(z)A∗2z(z) + A∗1x(z)A2x(z)

I0

=| m(z) | exp(iψm(z)) . (3)

Note that~kg = ~k2−~k1, is the grating vector, which is perpen-
dicular to the fringes recorder in the medium, whose magni-
tude iskg = 2π/Λ, whereΛ is the grating fringe spacing as
is shown in Fig. 1.

FIGURE 1. Schematic diagram of holographic experiment in the
reflection geometry.~kg = ~k2 − ~k1 is the grating vector, which is
perpendicular to the fringes recorder in the medium, whose magni-
tud iskg = 2π/Λ, whereΛ is the grating fringe spacing.

FIGURE 2. (a) Intensity light pattern (b) Refractive index grating
(c) Absorption grating.ψ is the phase difference between the phase
grating and the interference pattern, andφa is the phase difference
between the absorption grating and the interference pattern.

The aim of beam coupling analysis is to determine the
six independent parameters of the index and absorption grat-
ings [14]. In particular, the refractive-index modulationn1,
the absorption modulationα1 and the phaseφ between them,
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have been already experimentally measured [15]. If a si-
nusoidal pattern of light (2) is recorded on a photosensitive
medium, the refractive index and absorption gratings vary in
harmonic way as:

n(z) = n0 + n1 cos(kgz + δt + ψ) , (4)

α(z) = α0+ | α1 | cos(kgz + δt + φa) , (5)

wheren0 andn1 are the constant and the modulated refrac-
tive indices, andα0 andα1 are the constant and the mod-
ulated absorption, respectively. In general, the modulations
n1 andα1 could be functions of time and/or coordinatez.
We can see that there is a phase differenceψ between the
light pattern and the refractive index grating and another one
φa between the light pattern and the absorption grating, as is
shown in Fig. 2.

2.2. Kukhtarev material equations

The photorefractive effect is based on light-induced charge-
transport processes. In lithium niobate crystals (LiNbO3), an
inhomogeneous illumination excites electrons from defects
into the conduction band. These free charge carriers migrate
because of diffusion, drift, and the bulk-photovoltaic effect.
They are trapped in the darker crystal regions, and space-
charge field builds up that modulates the refractive index due
to the electro-optic effect [3,10].

The photorefractive response to illumination of light in
photovoltaic media is described by the Kukhtarev material
equations [16,17]:

∂N+
D

∂t
= (sI + β)(ND −N+

D )− γ̃neN
+
D , (6)

∂ne

∂t
− ∂N+

D

∂t
=

1
e
∇ ·~j , (7)

~j = eneµ~E + kBTµ∇ne + κ̃sI(ND −N+
D )ĉ , (8)

∇·(εoεE) = e(N+
D −NA − ne) , (9)

wheres is the photoionization cross section,γ̃ the charge car-
rier recombination rate,e the magnitude of electron charge
andµ the mobility of the charge carrier,ND the donor den-
sity, N+

D the ionized donor density,NA the acceptor den-
sity, ne the charge-carrier density,~j the electric current den-
sity, κ̃ the glass constant,̂c the +c-axis unit vector along the
z−direction, ~E the total electric field whose magnitude is
given by the sum of the externally applied electric fieldEext

and the space-charge fieldEsc, kB the Boltzmann’s constant,
T the temperature,t the time,ε the dielectric constant,εo

is the permittivity of free space,I the light intensity which
is defined in Eq. (2) and finallyβ the dark generation rate
whereId = β/s will be the dark irradiance.

3. Numerical solutions

In this paper, the following parameters of LiNbO3:Fe are
used in the calculations [10]:µ = 0.8 cm2V−1s−1,

γ̃ = 8.89 × 10−8 cm3s−1, s = 4.6 cm2s−1W−1,
ND = 18 × 1018 cm−3, NA = 1.2 × 1018 cm−3,
T = 300 K, κ̃ = 1.5681 × 10−25 A-cm-s, ε = 30,
Id = 0.0, I0 = 0.18 Wcm−2 with δ = 0 and a photovoltaic
field Epv ≈ 100 kVcm−1.

We solved numerically the set of non-linear material rate
differential Eqs. (6)-(9), following the method described in
Refs. [18, 19], for a fringe spacing ofΛ = 0.105 microns
and for several values of the applied fieldEext between0 and
−400 kVcm−1. It is necessary to mention that this method
does not rely on a Fourier expansion so its validity is not lim-
ited to using a truncated harmonic basis. We obtained the
overall space charge fieldEsc(z, t), the ionized donor den-
sity N+

D (z, t) and the charge-carrier densityne(z, t); for the
value ofm0 = m(z = 0) = 1.0, 0.9, 0.6, 0.3 and0.1 that is
the absolute value of the complex light modulation at the

FIGURE 3. Space charge fieldEsc(z, t) profile as function of the
spatial coordinatez, att = 220 milliseconds, for five applied fields
0, -50,-100,-150 and -200 kV/cm, and a light modulation m = 1.0.

FIGURE 4. Refractive-index change∆ns for the stationary state as
a function of the applied fieldEext.
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surface of the sample. Then we performed the Fourier de-
composition for the calculated overall space charge field to
obtain the amplitudeE1, of its fundamental component and
its phase,ψ; with respect to the light interference pattern. In
this way we have obtained the phase grating strength and its
phase as functions of the applied field.

The space charge fieldEsc(z, t) profile att = 220 mil-
liseconds, obtained for various externally applied electric
fields Eext = 0, -50,-100,-150 and -200 kV/cm, and light
modulationm0 = 1.0 as function of the spatial coordinate
z, are presented in Fig. 3. When the applied field is zero
the shape of the profile is clearly nonsinusoidal and nonsym-
metric. However, when the applied electric field is increased,
this shape is gradually lost and the curves are displaced in
the counter-direction of applied field. The profile has a ten-
dency to bend aroundz = Λ when the applied field is around
-150 kV/cm, which leads to an instability when its absolute
value (| Eext |) is slightly higher than photovoltaic fieldEpv.
Finally when the applied field is -200 kV/cm the profile is
practically sinusoidal but now it is displaced in the direction
of applied field. It is interesting to notice that the approx-
imate time to reach the so-called quasi-steady state is about
0.85 seconds, where the first harmonicE1 reaches saturation.
However, at this time we do not have important changes on
the final profile of the space-charge field.

The variation of the saturation values of the refractive in-
dex changes∆ns = 1

2n3
0r13 | E1 | are shown in Fig. 4

as a function of the applied fieldEext for fixed donor and
acceptor densitiesND and NA respectively. We see that
by increasing the magnitude of applied field the refractive
index drops to a minimum and grows afterward when this
magnitude is also increases; this behavior is similar to that
reported in Ref. [7] with other concentrations ofND and
NA. We have considered that2πn3

or13/λ ≈ 1.4 −1, where
n0 = 2.34 andr13 = 8.6 pmV−1 are the ordinary refrac-
tive index and the electro-optic coefficient respectively for a
wavelengthλ = 488 nm [10].

On the other hand, the scaled ionized donor density
N+

D (z, t)/NA profile aftert = 220 milliseconds, for light
modulationm0 = 1.0 and for various externally applied elec-
tric fields (Eext = 0, -50,-100,-150 and -200 kV/cm, as in
Fig. 3), are present in Fig. 5 as function of the spatial co-
ordinatez. We can see the same kind of behavior that we
have seen with the space charge field profile,i.e., the profiles
are non-sinusoidal, non-symmetric and when the magnitude
of the applied electric field is increased, their shape is dis-
placed in the counter-direction of the applied field. As the
absorption in photorefractive medium may be written by the
Lambert-Beer relation [8,9]

α = S(ND −N+
D ) , (10)

the constantS may be determined by calculating the spa-
tial average of Eq. (10),i.e., by means〈α〉 = α0 =
S(ND − 〈N+

D 〉) whereα0 is the average value of the absorp-
tion coefficient and〈N+

D 〉 is the spatial average of ionized

donor density, whose value is different fromNA as it is gen-
erally accepted [20] (see Fig. 5). Hence the amplitude of the
modulation of the absorption coefficient is:

| α1 |
α0

=
N+

D−1

ND − 〈N+
D 〉

, (11)

whereN+
D−1 is the magnitude of the first Fourier coefficient

of N+
D . The values of the amplitude of absorption modulation

| α1 | are shown in Fig. 6 as a function of the applied electric
field Eext for the stationary state. This magnitude will show a
behavior very similar to the refractive index changes just dis-
cussed. Finally, in Fig. 7 we show the phases of the refractive
index and absorption gratings in function of the applied elec-
tric field, denoted byψ andφa respectively. An interesting
characteristic feature is that the phase difference between the

FIGURE 5. Scaled ionized donor densityN+
D (z, t) profile as func-

tion of the spatial coordinatez, at t = 220 milliseconds, for five
applied fields 0,-50,-100,-150 and -200 kV/cm, and a light modu-
lation m = 1.0.

FIGURE 6. Absorption modulation amplitudeα1 for the stationary
state as a function of the applied fieldEext.
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FIGURE 7. Phases of the refractive index grating and absorption
grating as a function of the applied fieldEext. ψ is the phase dif-
ference between the phase grating and the interference pattern, and
φa is the phase difference between the absorption grating and the
interference pattern.

index and absorption gratings is slightly different from
π/2 (−π/2) when the magnitude of the applied field lies
to the left (to the right) of the critical applied field (around
-150 kV/cm) at which the refractive-index change is mini-
mum, see Fig. 4.

4. Coupled beam equations

In the reflection geometry, the coupled beam equations are
the following [13,21],

∂A1

∂z
= −i

(
κ∗ − i

α∗1
2

)
A2 − α0

2
A1 , (12)

∂A2

∂z
= i

(
κ− i

α1

2

)
A1 +

α0

2
A2 . (13)

Where the coupling factorsκ andα1, are calculated from the
solution of the material rate equations, since they are due to
the space charge field and ionized donor density respectively;
notice that we consider them complex and changing along
sample thicknessz as:

κ =
π

λ cos θ

n3
0r13 | E1(z) |

2
exp [i(ψ + ψm)] , (14)

α1 =
| α1(z) |

cos θ
exp [iφa] , (15)

where| α1 | is defined in Eq. (11) andθ is the incidence
angle in Fig. 1 which is going to be zero. The solutions to
the beam coupling Eqs. (12) and (13) must be self-consistent,
since the changes in the intensities and phases of the waves
cause changes on the light modulation and on the refraction
index and these changes in turn, will induce new changes in
the intensity and phases of the waves. To obtain these self-
consistent solutions we divided the sample in thin layers of

thickness∆z [22] in such a way that within each layer the
coupling factors are practically constant. This means that we
did not allow changes greater that 0.1% within each layer so
within each layer, we could have analytical solutions,

A1(z) =
iC1

2κ− iα1
(α0 − γ) exp

(
1
2
γz

)

+
iC2

2κ− iα1
(α0 + γ) exp

(
−1

2
γz

)
, (16)

A2(z) = C1 exp
(

1
2
γz

)
+ C2 exp

(
−1

2
γz

)
, (17)

whereγ =
√

α2
0− | α1 |2 +4 | κ |2 −2i(κ∗α1 + κα∗1), C1

andC2 are constants calculated from the initial values ofA1

andA2.
When a change of| κ(z) | larger than 0.1% occurred

within a layer, we chose a smaller layer and calculated the
new corresponding set of values of constants for the corre-
sponding layer∆z. We started evaluating the initial set of
constants for the first layer at the surface of the sample by us-
ing κ(z = 0) = κ0. Next, for the following layers, the values
of the complex amplitudes of the beams at the end of each in-
terval were used to evaluatem(z) and therefore, a new value
of κ at z was obtained to use in the following layer. Thus,
with the analytical solution within each layer we matched the
solutions at the boundaries of the layers.

From the complex amplitudes, obtained from the self-
consistent solutions of the pair of beam coupling equations,
we calculated the intensities and phases of each wave. We
considered no restrictions on the magnitude of the coupling
factors given in (16) and (17). From these we calculated
the corresponding light modulationm(z) as a function of
z, for each sample thicknessl. Finally, with the previously
recorded∆n1(z), we calculated the diffraction efficiency,

η(l) =
Ir(0)
Ii(0)

, (18)

FIGURE 8. Diffraction efficiency as a function of sample thick-
ness. We show the value ofη for the phase grating alone and for
simultaneous phase and absorption gratings. The largest difference
between both values is about 6%.
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154 M. A. GONZÁLEZ-TRUJILLO et al.,

FIGURE 9. Differenceηp − ηb calculated for different values of
thickness and applied external field.ηp andηb correspond to the
diffraction efficiency for phase grating alone and for both (phase
and absorption) gratings respectively. Observe that this difference
could be positive or negative depending in this case on applied field.

FIGURE 10. ∆η = (ηp − ηb)/ηp calculated for different values
of thickness and applied external field.ηp andηb correspond to the
diffraction efficiency for phase grating alone and for both (phase
and absorption) gratings respectively.

whereIi(0) is the intensity of the incident light beam for
z = 0; Ir(0) is the reflected beam intensity atz = 0. Notice
that we assumed thatIr(l) = 0.

In Fig. 8 we show the results for the diffraction efficiency
η, as a function of thickness. These results are for a grating
with m0 = 1 and applied fieldEext = −140 kV/cm. We con-
sidered two cases. The first one corresponds to simultaneous
phase and absorption gratings(ηb). The second one corre-
sponds to the phase grating alone(ηp). The value ofηb for
the first case is a bit larger than the corresponding value for
the second case. The largest difference between both values

is aboutηp−ηb = −6×10−3 atl = 0.5 cm as is shown in Fig.
9. Apparently this difference is reduced for smaller values of
thickness, but if we calculate∆η = (ηp − ηb)/ηp for dif-
ferent values of thickness and applied fields, we can see that
this quantity is nearly constant for each value of applied field
and it does not depend on the thickness, as it is shown in Fig.
10. ∆η has its minimum (≈ −10%) atEext ≈ −150 kV/cm,
where the values of photorefractive sensitivity also drops to a
minimum [7]. In the high-field region (Eext ≤ −200 kV/cm)
we can see that the presence of the absorption grating has a
weak influence on the diffraction efficiency around 1%.

5. Summary and conclusions

For the reflection geometry, we have considered the simul-
taneous presence of phase and absorption gratings in thick
samples (≈ 0.5 cm) of iron doped lithium niobate. In or-
der to assess the importance of the absorption grating on the
total value of the diffraction efficiency, we followed several
steps. The first was to solve numerically the set of nonlin-
ear differential equation for the material based on the band
transport model and included the photovoltaic effect, from
0 seconds up to the stationary state. From the solution, we
obtained the full space charge field and the ionized donor
density. Then, we performed the Fourier decomposition for
each, in this way, we obtained the amplitudeE1, N+

D−1, of
their fundamental component and their phasesψ, φa, with re-
spect to the light interference pattern. These solutions were
used to include the non-uniformity of the gratings to calcu-
late the beam energy exchange. Then, we solved numerically
the beam coupling equations for recording and for reading in
a self-consistent way, to include the variation of light modu-
lation along the sample thickness. From these solutions, we
calculated the beam intensities and the the light modulation
for recording. Then, we compared the diffraction efficiency
when both gratings are present, and when only the phase grat-
ing is present. For the set of values given for physical param-
eters of LiNbO3, we also found that the presence of the ab-
sorption grating diminishes or increases the total value of the
diffraction efficiency in a very small amount of around 1%.

Our results indicate that the absorption grating cannot
strongly affect the index grating in reflection geometry in
presence of a static interference pattern in thick samples. In
Ref. [10] the formation of refractive-index and absorption
gratings was done using a moving interference pattern in thin
samples (0.22 mm). In future work we will include in our
analysis a non-uniform grating in a thick sample recorded
with a moving interference pattern.
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López,J. Opt Soc. Am. B.15 (1998) 2092.
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