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Gravitational waves bounds in Brane-Worlds
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This paper is dedicated to investigate an astrophysical method to obtain the new dynamics generated by extra dimensions as well as bounds
for the brane tension. Using the modified Einstein equations in the brane with a vanishing non-local effects, we study the contributions of the
modified radiated power by gravitational waves and the stellar period modified by branes in a binary system composed by two neutron stars.
Finally we propose two lower energy bounds, using these astrophysical methods.
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1. Introduction

Brane world dynamics is an interesting alternative for com-
plementing the Einsteinian general relativity (GR) by adding
new degrees of freedom caused by the existence of extra di-
mensions. Many proposals try to solve diverse physical prob-
lems such as hierarchy problem [1,2], the cosmological con-
stant (CC), the accelerated expansion of the universe [3-7]
and the radiative corrections in quantum processes with an
extra dimensions [8,9]. Similarly, other authors generalize,
for example, the Randall-Sundrum models (RS) assuming a
cosmological scenario with the aim of studying the space-
time evolution, the scalar perturbations and the structure for-
mation with brane world corrections [10-13] and possible
consequences of a scalar-field as dark matter which only lives
in a hidden brane [10-12]. Analogously, the perspective of in-
teracting branes is welcomed due to the extra terms in the dy-
namical equations and in the equation of state (EoS) [14,15],
which provide with relevant information principally in high
energy epochs such as inflation [14].

Numerous experimental and observational evidences
constrain the range of action of the brane world dynam-
ics [12,16-22]. For example, some observational results ar-
gue that the brane tension must beλ > (1 MeV)4 in or-
der to nucleosynthesis holds [16]; similarly, the dark radi-
ation contributions caused by the non-local effects are con-
strained by CMB and nucleosynthesis observations to be
no more than∼ 5% of the radiation energy density [16].
Other authors [17,18], focus in understanding the effects
of extra dimensions and their repercussions on the astro-
physical dynamics, principally on the modification of the
Tolman-Oppenheimer-Volkoff (TOV) [17] equation and in
consequence in the galactic rotational curves and density pro-
files [18].

Particularly, this paper is focused on the assumption
that the 5dim Einstein’s equation is correct; the assump-
tion generates corrections in the four dimensional Einstein’s
equation on the brane, producing quadratic contributions
in the energy-momentum tensor and non local effects re-

lated with the Weyl’s tensor and the fields contained in the
bulk [23]. Remarkably these corrections must has effects in
the CMB [24,25], gravitational waves (cosmic and astrophys-
ical) [26-28] and in galaxy dynamics imprints which could
be measured in the future with space and terrestrial experi-
ments [29,30].

Under this scenario, we take the task of finding bounds to
the brane tension to investigate the region of validity of the
theory. We calculate the correction predicted by the brane
theory about the power of gravitational waves radiated by an
astrophysical binary system, and compare it with the obser-
vational data of the PSRB1913 + 16 [31] binary system, in
order to set an upper bound of the brane tension. Also, it
is calculated the equation of period and shown the new term
provided by branes in high energy regime. Similarly, using
the data of the binary system, it is possible to obtain an upper
bound for the brane tension.

The article is organized as follows: In Sec. 2, we focus
our attention to a short review of the mathematical branes for-
malism, in Sec. 3 we obtain a bound of brane tension from
an expression of the radiated power and orbital period, using
an extensively studied binary system. Finally, in Sec. 4 we
discuss the results and give our conclusions.

2. A short review of the Mathematical Formal-
ism

Let us start by writing the equations of motion for an em-
bedded brane in a five dimensional bulk using the Randall-
Sundrum II (RSII) model [2], see also [16,23]. We first as-
sume that the Einstein equations are the gravitational equa-
tions of motion of the 5dim Universe,

GAB + Λ(5)gAB = κ2
(5)TAB , (1)

whereGAB denotes the five dimensional Einstein tensor,TAB

refers to the 5D energy-momentum tensor,Λ(5) represents
the 5dim cosmological constant, andκ2

(5) is the 5dim gravi-
tational coupling. In order to write the gravitational equations
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of motion in the 4dim brane, we need to calculate the Gauss
and Codacci expressions, respectively,

(4)Rα
βγδ = (5)Rµ

νρσqα
µqν

βqρ
γqσ

δ + Kα
γ Kβδ −Kα

δ Kδγ , (2a)

DνKν
µ −DµK = (5)Rρσnσqρ

µ , (2b)

where the extrinsic curvature over the 4D manifoldM is
given byKµν = qα

µqβ
ν∇αnβ , K = Kµ

µ , andDµ is the co-
variant differentiation ofqµν . It is important to remark that
in the brane world scenario, our 4dim world is described by a
domain wall (3-brane) (M,gµν) in 5dim space-time (V,qµν).
We denote the vector unit normal toM by nα and the in-
duced metric onM by gµν = qµν−nµnν [23]. Following an
appropriate computation, it is possible to demonstrate that the
modified 4dim Einstein’s equation can be written as [16,23]

Gµν +ξµν +Λ(4)gµν = κ2
(4)Tµν +κ4

(5)Πµν +κ2
(5)Fµν , (3)

where

Λ(4) =
1
2
Λ(5) +

κ4
(5)

12
λ2 , (4a)

κ2
(4) = 8πGN =

κ4
(5)

6
λ , (4b)

Πµν=−1
4
TµαTα

ν +
TTµν

12
+

gµν

24
(3TαβTαβ − T 2) , (4c)

Fµν =
2TABgA

µ gB
ν

3
+

2gµν

3

[
TABnAnB −

(5)T

4

]
, (4d)

ξµν ≡ (5)CE
AFBnEnF gA

µ gB
ν . (4e)

Here,Λ(5) andΛ(4) are the five and four dimensional cosmo-
logical constants, respectively,GN is Newton’s gravitational
constant,κ(4) is the 4dim gravitational constant,λ is related
to the brane tension,nE is an unit normal vector to the brane
manifoldM, and(5)CE

AFB is related with the 5dim Weyl’s
tensor [16,23]. Note that in what follows, we use the most-
plus signature (diag(−,+, +, +)) for the line elements, and
natural units in whichc = ~ = 1.

For purposes of simplicity, we will not consider bulk mat-
ter, which translates intoFµν = 0, and neglect the non-local
effects caused by the Weyl’s tensor, so thatξµν = 0; the
last hypothesis is due that the system of equations for the ex-
terior is not closed until a further condition is given on the
Weyl’s tensor [16,17]; we will comment on the effects this
assumption has on the results. Note also that we will keep
the presence ofΠµν , see Eq. 4c, in the equations of motion
throughout the paper, and these quadratic corrections will be
our main concern for the study of brane effects on the 4D
physical phenomena.

3. Gravitational Waves Bounds

In this section, we study the gravitational waves originated
in binary systems in the brane world context, using the mod-
ified Einstein’s Eq. (3). At first approximation, we assume

that contributions of the non-local effects caused by the Weyl
tensor reflected inξµν can be neglected [35].

Considering that the metric embedded in the brane can
be written asgµν = ηµν + fµν where ||fµν || ¿ 1,
ηµν = diag(−1, 1, 1, 1) and assuming an appropriate gauge
(∂σfσ

µ = (1/2)∂µf ), Eq. (3) can be written as

(∇2 − ∂2
t )f̄µν = −κ2

(4)T
(0)
µν − 2κ4

(5)Π
(0)
µν , (5)

wheref̄µν
,ν = 0, f̄µν = fµν − (1/2)ηµν andT

(0)
µν , Π(0)

µν are
both calculated to zero order infµν . Note, that we properly
retain only contributions ofΠµν , to study its effects.

Similarly, the conservation equation is maintained
∇νT

(0)
µν = 0, and as we argued previously, we consider non

local contributionsξµν = 0, implying that quadratic correc-
tions are also conserved∇νΠ(0)

µν = 0. Roughly speaking,
there is not exchange of energy-momentum between the bulk
and the brane [16]. Also, we assume no fields in the bulk
space-time generating thatFµν = 0. Then Eq. (5) can be
written as

(∇2 − ∂2
t )f̄µν = −κ2

(4)T
(0)
µν − 12κ2

(4)λ
−1Π(0)

µν , (6)

whereκ2
(4) = λκ4

(5)/6. In GR limit (the vacuum case), the
brane tension is infinite,λ → ∞ generating a plane wave
solution written asf̄µν = Aµν exp(ikαxα), whereAµν is a
constant, symmetric, rank-2 tensor andkα is a constant four-
vector known as thewave vector. In general, the Green func-
tionG(xµ−yµ), of the d’Alembertian operator is the solution
of the wave equation in presence of a delta function source.
Then it is possible to write

f̄µν(xα) = −12κ2
(4)λ

−1

∫

(4)

G(xα − yα)Π(0)
µν (yα)d4y. (7)

After some calculations, we obtain the following expression

f̄ij(t, x) = O[GR] +
12GN

λR
M̈ij(tR), (8)

whereO[GR] indicates that the GR terms are omitted for
simplicity and recovered later. Here, the dots represents
derivatives with respect to time. Under the assumption that
the spatial extent of the source is negligible compared to the
distance between the source and the observer, automatically
it is valid the replacement|x − y| = R, beingtR = t − R
the retarded time andMij the quadrupole momentum tensor
associated with the quadratic energy momentum tensor orig-
inated by the brane-world theory

Mij =
∫

(3)

yiyjΠ
(0)
00 d3y. (9)

From here, it is straightforward to find the quadrupole radia-
tion equation in the brane-world dynamics as [32]

PBr = O[GR]+
6GN

5λ2

(
...
M ij

...
M ij − 1

3
...
M ii

...
M jj

)
+I, (10)
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where Eq. (10) shows the projection on its traceless compo-
nent andI corresponds to the interference term betweenT

(0)
µν

andΠ(0)
µν .

In the following subsection, we explore the radiation
Eq. (10) with a binary system [31] with the aim of under-
stand the contributions of the brane-world theory in the grav-
itational waves emitted by astrophysical objects.

3.1. Modified power radiation using a binary system

Due to the mathematical complexity of Eq. (9) caused by the
Dirac deltas, it is most appropriate use the discrete equation
of (9), written as

Mij =
∑
α

m2
αyαiyαj , (11)

together with the explicit path of both stars [32]

yi
1 = d(φ)

µ

m1
(cos(φ), sin(φ), 0) , (12)

yi
2 = d(φ)

µ

m2
(− cos(φ),− sin(φ), 0) , (13)

whereµ is the reduced mass defined asµ=m1m2/(m1+m2),
beingm1 andm2 the respective mass of the binary stars sys-
tem. Notice, that the space time structure and in consequence
the paths, is only affected by the geometric terms likeξµν .
However, in this case these terms does not play a role.

Now, it is possible to obtain the total average power radi-
ated (recovering GR contribution) over one period of ellipti-
cal motion as

〈PTot〉 =
[
(m1 + m2) +

4µm1m2

λ2
V

]
χ, (14)

where

χ ≡ 32G4
N

m2
1m

2
2

5a5(1− e2)7/2

(
1 +

73
24

e2 +
37
96

e4

)
. (15)

Notice thatλV is the energy value of the brane tension in a
defined region,a the semi major axis ande the eccentricity
of the ellipse binary system. Note that as a toy model, the
interference term will not be studied in this paper. This last
expression differs from GR [32] only in the second term of
the clasp.

Not less important is to show the equation for radiated
power at high energies where brane tension is dominant over
the mass distribution, resulting in

〈PTot〉High =
128G4

N
µm3

1m
3
2

5a5(1−e2)7/2λ2
V

(
1+

73
24

e2+
37
96

e4

)
. (16)

Now, from Eq. (14) is easily to establish the following bound
for the brane tension energy

λV À 2m1m2

m1 + m2
= 2µ, (17)

where the result is only mass depending. With the aim of test-
ing the last result, we probe it using the pulsar binary system

FIGURE 1. Behavior of Eq. (18) for different values of the reduced
massµ. We observe a constant tendency whenµ/λV ¿ 1. On the
other hand, when branes dominates the scene, we have the equation
〈PBr 〉 = 4µ2 〈PGR〉 /λ2

V
.

PSRB1913 + 16, that is one of the most studied and better
known [31-33].

Considering the mass of both stars as:m1 = 1.4414 ±
0.0002 M¯ andm2 = 1.3897± 0.0002 M¯, it is possible to
obtain a numerical upper energy limit for the brane tension
asλ

V
À 1.4150 ± 0.0002 M¯ ∼ 1.5831 × 1048 EeV. This

result remarks a lower energy lower bound ofλV , in function
of the reduced mass of the astrophysical object.

Similarly, notice that

〈PBr 〉
〈PGR〉

= 1 +
4µ2

λ2
V

' 1 + 1.996
(

M¯
λV

)2

, (18)

for the binary system PSRB1913+16. The behavior is shown
in Fig. 1 for different values of the reduced massµ. The usual
GR result is recovered in the limit

lim
µ/λ

V
→0

[
1 +

4µ2

λ2
V

]
= 1 , (19)

whereas in the opposite case we get

lim
µ/λ

V
→∞

[
1 +

4µ2

λ2
V

]
=

4µ2

λ2
V

. (20)

Other interesting exercise is use the data obtained with
the system PSRB1913 + 16 and apply to the period equation
for gravitational waves in the brane regime (In this case, we
extend the results shown in [32,33]). This equation in high
energy regime (where brane effects dominates), can be writ-
ten as

dτHigh

dt
= −384πG5/3

N
m3

1m
3
2

5λ2
V

× (m1 + m2)−7/3
( τ

2π

)−5/3

M, (21)

where

M≡
(

1 +
73
24

e2 +
37
96

e4

)
(1− e2)−7/2, (22)
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hereτ is the binary system period. Using the data reported
in [33], we obtain the following constraint for brane tension
energy:λ

V
=
√

2µ ' 1±0.0001 M¯ ∼ 1.1194×1048 EeV,
which is in good agreement with the results obtained in the
radiated power.

4. Discussion and Conclusions

Due to the lack of results at microscopic scales in the LHC,
the community has decided to look for evidence of brane-
worlds in other test. For this reason, in this paper is proposed
new ways to detect the existence of branes in different astro-
physical tests, or in its case, constraining the brane tension
value with the aim of known the validity region of the theory.

Focusing in the gravitational wave case, we explore
the machinery behind the modified Einstein’s equation and
demonstrate the total (GR+branes) average power radiated,
using the well studied binary system PSRB1913 + 16 as an
example. We observe how the new brane term provides with
extra amount of average power radiation, with the character-
istic that it is mediated with the brane tension. Without loss
of generality and assuming that it is valid the same scenario
at high energies, it is shown the average power radiated in
extreme conditions (where lambda terms is dominant) and
compared with the usual case. It is important to remember
that in this case, we neglect the non local termsi.e. the gravi-
tons that escape from the brane, which generate a reduction
in the average power radiated by the source and clearly, an
essential changes in the average power radiation equation.

Also it is shown the modified period by the presence of
branes in the high energy regime. In the same way and with
the data provided by the binary system, we propose a new
lower energy bound for brane tension. Remarkably, both
bounds for the brane tension are compatible with the data pro-
vided by nucleosynthesis and other cosmological tests. Even
more, the data obtained for the brane tension is compatible
with astrophysical test, particularly in stellar stability [17].

As a final remark, we think that this attempt can generate
a more suitable bound of the brane tension with the capabil-
ity of being detected in future experiments, principally (under
the current experimental scenario) in the evolution of the dy-
namics of binary systems and other more complex systems
composed of neutron stars [34].
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